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Abstract—This paper first reveals that the tracking and distur-
bance rejection problems can be decoupled into two independent
optimization problems under the 2-DOF control framework. This
result is then used for the design of a 2-DOF controller for a dual-
stage actuator (DSA) system to provide desired performance of
disturbance rejection and step tracking. The 2-DOF controller is
designed based on the doubly coprime factorization approach, with
which the closed-loop transfer function is expressed explicitly in
terms of design parameters. This greatly simplifies the optimization
of design parameters in meeting desired specifications. We further
study how to use the design parameters to deal with specific prob-
lems in the DSA, i.e., control allocation and trajectory planning.
For step tracking beyond the secondary actuator range, a nonlin-
ear controller is also used for the primary actuator to complete the
task. Experimental results demonstrate the practical implementa-
tion of the DSA control system and verify its effectiveness for step
tracking and disturbance rejection and its robust performance un-
der load changes.

Index Terms—Doubly coprime factorization (DCF), dual-stage
actuator (DSA), motion control, 2-DOF control.

I. INTRODUCTION

DUAL-STAGE actuator (DSA) servo systems are charac-
terized by a structural design with two actuators connected

in series along a common axis. The primary actuator (coarse ac-
tuator) is of long travel range but with poor accuracy and slow
response time. The secondary actuator (fine actuator) is typically
of higher precision and faster response but with a limited travel
range. By combining the DSA system with a properly designed
servo controller, the two actuators are complementary to each
other providing long travel range, high positioning accuracy, and
fast response. The DSA servomechanism has been commonly
used in the industry, e.g., the dual-stage hard disk drive (HDD)
actuator [1]–[3]. The dual-stage HDD servomechanism can sig-
nificantly increase the servo bandwidth to lower the sensitivity
to various disturbances, and thus, push the track density [4].
Other DSA applications also include machine tools [5], robot
manipulators [6], XY positioning tables [7], nanopositioner [8],
and DSAs using stick–slip [9], [10] or inchworm actuators [11].
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Although the mechanical design of a DSA system appears to
be simple, it is a challenging task to design controllers for the
two actuators to yield an optimal performance because of the
specific characteristics in the DSA systems. 1) The DSA system
is a dual-input single-output (DISO) system, which means that
for a given desired trajectory, inputs to the two actuators are not
unique. Thus, a proper control strategy is required for control
allocation. 2) The secondary actuator typically has a very lim-
ited travel range, which results in a severe actuator saturation
problem. A number of approaches have been reported to deal
with dual-stage control problems. Control design for reference
following can be found in [12]–[14]. The secondary actuator sat-
uration problem is explicitly taken into account in [15] and [16]
during the control design. A decoupled track-seeking controller
is developed in [17] to enable high-speed short-span seeking for
a dual-stage HDD servo system. Further, short- and long-span
seeking controls are incorporated in a single control scheme
with fast settling time [18], [19]. The literature has also demon-
strated successful applications of some new control theories
and design methods to DSA servo systems. For example, ro-
bust control is used to overcome plant uncertainty and maintain
performance [7], [13]. Repetitive control is used to suppress
periodic disturbances and vibrations [5]. Nonlinear control is
applied to handle the actuator saturation [18] or to enhance the
seeking performance [19].

In this paper, we present a new control design method for a
DSA system consisting of a linear motor (LM) and a piezoac-
tuator (PA). We focus on the development of a two-degree-
of-freedom (2-DOF) controller for disturbance rejection and
step tracking in the PA range. A doubly coprime factorization
(DCF) [20] is used for the 2-DOF controller design because
it can provide the advantages that: 1) it parameterizes all lin-
ear internally stabilized 2-DOF controller by two free design
parameters; 2) it offers a unifying design method to solve the
tracking and disturbance rejection problems; and 3) the derived
frequency transfer functions of disturbance rejection response
and seeking response are simply expressed and they are uniquely
in terms of the design parameters, which makes the relationship
between the design parameters and the desired specifications
explicit. Compared with the existing DSA control methods, the
proposed 2-DOF controller in this paper explicitly addresses
both the step tracking and disturbance rejection problems in
a unifying design framework and gives a solution to a spec-
ified performance index indicating the tracking performance.
Further, we reveal that the tracking performance of asymptot-
ical tracking and disturbance rejection in the dual-stage sys-
tems is equivalent to two independent optimization problems.
This result obviously can decouple the design goals for such a
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Fig. 1. Generic 2-DOF control system.

multiobjective design problem, and thus, simplify the control
design process. To complete the functionality of the DSA, a
nonlinear controller is also introduced for the LM to achieve
step tracking beyond the PA range. Therefore, the resulting
DSA control system involves both linear control and nonlinear
control, where linear control (i.e., 2-DOF control) is used for
local control only. Finally, we verify the effectiveness of the
DSA controller through experimental results.

Throughout this paper, we use the following notation. For
any signal u(t), we denote its Laplace transform by û(s). ‖ · ‖
denotes the Euclidean vector norm and ‖ · ‖2 the norm in space
L2 . Let RH∞ denote the set of all stable, proper, and rational
transfer function matrices.

II. 2-DOF CONTROL DESIGN BASED ON DCF

The 2-DOF control systems are the most general feedback
configuration in linear control schemes. Fig. 1 shows a generic
structure for this class of systems. In this setup, G denotes the
given linear time-invariant (LTI) plant model, W denotes the
known LTI stable and proper weight, and K denotes the 2-DOF
controller to be designed. The signals r, y, u, and d represent,
respectively, the step reference signal, the system output, the
control input, and the disturbance with energy bounded by δ2 ,
i.e., ‖d‖2

2 ≤ δ2 .
In this paper, we consider the asymptotic tracking and dis-

turbance rejection problems for the system in Fig. 1. We need
to design the controller K such that the closed-loop system is
internally stable and the system output y asymptotically tracks
a step signal r(t) = v, t ≥ 0, for all disturbance d ∈ L2 with
‖d‖2 ≤ δ. The measure of the tracking performance is defined
as

J =
∫ ∞

0
‖e(t)‖2dt (1)

where e(t) = r(t) − y(t) denotes the tracking error. Obviously,
J depends on the disturbance d. We thus consider the worst
value of J over all possible d as the performance index for the
tracking and disturbance rejection problems, i.e.,

sup
‖d‖2 ≤δ

J. (2)

Therefore, it is our interest to seek a controller K among all
possible stabilizing 2-DOF controllers to achieve the minimum
value of (2) defined by

Jopt = inf
K

sup
‖d‖2 ≤δ

J. (3)

The DCF is a well-suited approach to solve (3). Let the right
and left coprime factorizations of G be given by

G = ND−1 = D̃−1Ñ (4)

where N , D, Ñ , D̃ ∈ RH∞ and satisfy the doubly Bezout
identity [

X̃ −Ỹ
−Ñ D̃

] [
D Y
N X

]
= I (5)

for some X , Y , X̃ , Ỹ ∈ RH∞.
Nett et al. [21] have proposed explicit formulas for the DCF

representation of an LTI system in terms of its state-space real-
ization. This method is numerically easy to use. To do this, we
first represent the plant model G(s) in state space as follows:

G(s) = C(sI − A)−1B (6)

where A, B, and C are matrices with appropriate dimensions.
Suppose the pairs (A,B) and (A,C) are stabilizable and de-
tectable, respectively. Select F and L such that (A − BF ) and
(A − LC) are both Hurwitz. Thus, a DCF of G(s) is given by




N(s) = C(sI − A + BF )−1B
D(s) = I − F (sI − A + BF )−1B
Ñ(s) = C(sI − A + LC)−1B
D̃(s) = I − C(sI − A + LC)−1L
X(s) = I + C(sI − A + BF )−1L
X̃(s) = I + F (sI − A + LC)−1B
Y (s) = −F (sI − A + BF )−1L
Ỹ (s) = −F (sI − A + LC)−1L.

(7)

According to [20], the class of all linear internally stabilizing
2-DOF controllers K = [K1 K2 ] can be parameterized by

û = K1 r̂ + K2 ŷ (8)

K1 = (X̃ − RÑ)−1Q (9)

K2 = (X̃ − RÑ)−1(Ỹ − RD̃)

Q,R ∈ RH∞ (10)

where Q and R are the free parameters to be designed. By
substituting the controllers K1 , K2 , and the factorized plant
model (4) into Fig. 1, we can easily obtain the following input–
output relationship in the frequency domain:

ŷ = Tyr r̂ + Tyd d̂ (11)

with

Tyr = NQ (12)

Tyd = (X − NR)ÑW (13)

where Tyr and Tyd denote the closed-loop transfer functions
from the reference and disturbance to the system output, re-
spectively. The proof of the formulas (12) and (13) is given
in the Appendix. It is advantageous that the closed-loop trans-
fer functions are expressed by the design parameters Q and R
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explicitly. Hence, from Parseval’s theorem, we have

J =
∫ ∞

0
‖e(t)‖2dt = ‖r̂ − ŷ‖2

2

= ‖(I − Tyr )r̂ − Tyd d̂‖2
2 . (14)

Then, the following result is clear.
Theorem 1 [22]: Let G have nonminimum phase (NMP) zeros

z1 , z2 , . . ., zm with corresponding Blaschke vectors η1 , η2 , . . .,
ηm . Then, the minimax tracking performance of asymptotical
tracking and disturbance rejection of the system is given by

Jopt = inf
Q

‖(I − Tyr )r̂‖2
2 + δ2 inf

R
‖Tyd‖2

∞ (15)

= 2
m∑

i=1

Re(zi)
|zi |2

cos2 � (ηi, v) + δ2 inf
R

‖Tyd‖2
∞. (16)

Remark 1: The theorem reveals that the optimal tracking per-
formance with the 2-DOF controller is a sum of two terms as
shown in (15). The first term is the optimal tracking perfor-
mance of the system without the disturbance input d, while the
second one is the best achievable performance of disturbance
attenuation of the system without the reference signal r. These
two optimal problems have been studied in [23] and [24], re-
spectively; the results therein are then applied to yield (16).

From the controller design point of view, Theorem 1 also
implies that to achieve Jopt is equivalent to two independent
optimization problems in terms of the free parameters R and
Q, respectively. More specifically, these two problems are as
follows.

1) Design R ∈ RH∞ to minimize ‖(X − NR)ÑW‖∞.
2) Design Q ∈ RH∞ to minimize ‖(I − NQ)r̂‖2

2 .
Intuitively, one may simply choose R = N−1X and Q =

N−1 to yield Jopt = 0. However, this option only applies to the
special case where the plant must be proper, right invertible,
stable and minimum phase, the resulting R and Q are proper,
and the control input has no saturation. In practical servomecha-
nisms, these strict conditions are rarely satisfied at the same time.
Instead, the designer has to deal with one or more of these con-
straints. Therefore, the design of R and Q requires some extra
techniques to obtain a practical servo system without degrading
the tracking performance significantly. In general, we can at-
tempt to design R and Q such that Tyd = (X − NR)ÑW → 0
and Tyr = NQ → I in the frequency of interest according to
the design specifications [25]. Under this circumstance, a sub-
optimal controller is achieved to approximate the optimal one
that yields (16), while to handle the constraints at hand. The per-
formance of the resulting servo system will then compromise
among the optimal tracking, robustness, and easy implementa-
tion (e.g., least controller order). The design examples along
this line include [26] that aims for optimal step responses of a
unstable and NMP flexible beam, and [27] that handles control
design with actuator torque constraints.

In the next section, we will apply such a 2-DOF controller
design approach to a DSA servo system, which consists of a
DISO plant with saturations for both actuators. In particular,
we will address the design of R that determines the control
allocation of the two actuators for disturbance rejection and the

Fig. 2. DSA positioning system. (a) Experimental setup. (b) Illustration of the
DSA. (c) DISO plant model of the DSA (G1 : LM model, G2 : PA model).

robust stability of the feedback loop. On the other hand, Q is
designed to generate the desired trajectories in response to a
step reference for the two actuators; as such, the overall system
output can obtain a fast and smooth response.

III. APPLICATION TO A DSA CONTROL SYSTEM

A. Plant Modeling

The DSA positioning system is depicted in Fig. 2(a), which
consists of a primary stage driven by an LM and a secondary
stage driven by a PA. The LM has a 0.5-m travel range, while the
PA has a limited travel range of ±15 µm. Fig. 2(b) illustrates
the mechanical structure of the DSA. The nonlinear friction
force f of the LM is overcome by a precompensator (see [19]
for details). The PA is equipped with integrated control elec-
tronics, which eliminates the piezoceramics nonlinearities such
as hysteresis and creep providing linearity up to 3 nm. Addi-
tionally, the control electronics actively damps the mechanical
resonance of the PA stage flexure. In this setup, we can simply
ignore the coupling forces between the two actuators mainly
because of the much larger mass of the LM relative to the PA
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Fig. 3. Frequency responses of the DSA system (solid lines: identified, dashed
lines: measured).

and the high stiffness of the PA. For more details of justification
of this approximation, see [19]. After these manipulations, the
control-oriented DSA plant model can be depicted by Fig. 2(c).
The LM model is approximated by

G1 =
ŷ1

û1
=

k1

s2 (17)

where y1 is the LM position output, u1 is the control input
with |u1 | ≤ ū1 = 1 V, and k1 = 1.5 × 107 . The PA model is
approximated by

G2 =
ŷ2

û2
=

k2

s2 + as + b
(18)

where y2 is the PA position output relative to the LM, u2 is the
control input with |u2 | ≤ ū2 = 5 V, and k2 = 3.0 × 106 , a =
1810, and b = 1.0 × 106 . Fig. 3 shows the frequency responses
of the LM and PA system, which verify the accuracy of the
identified models in the frequency of interest [19].

In Fig. 2(c), the system output y, i.e., the absolute position
of the PA, is the only available measured output for feedback
control. Hence, the overall DSA model G can be represented as
a DISO linear system

ŷ = Gû = [G1 G2 ]
[

û1
û2

]
. (19)

To obtain the DCF of G by (7), we transform G into a state-space
form as (6), whose system matrices are given by

A =
[

A1 0
0 A2

]
=




0 1 0 0
0 0 0 0
0 0 0 1
0 0 −b −a




B =
[

B1 0
0 B2

]
=




0 0
k1 0
0 1
0 k2




C = [C1 | C2 ] = [ 1 0 | 1 0 ]

where A1,2 , B1,2 , and C1,2 are the state-space representation of
the LM and PA, respectively.

For the disturbance source, we are concerned with a shock
disturbance acting on the LM. The half-sine wave with a duration
of 10 ms is typically used as the standard industry shock test [28].
Thus, we can model the disturbance as

W =


 0.05

0.0008s + 1
0




d =
{

sin(314(t − t0)), t ∈ [t0 , t0 + 0.01]
0, otherwise

where t0 denotes the time instance at which the disturbance is
injected. Obviously, we have ‖d‖2 ≤ δ = 0.0707 .

In the sequel, we first present the 2-DOF controller design for
step responses within the PA range, and then, discuss a switching
control scheme to incorporate the step responses beyond the PA
range.

B. 2-DOF Controller for Step Response Within PA Range

The 2-DOF controller for the DSA step responses within the
PA range should satisfy the following specifications.

1) The overshoot should be kept under 1 µm.
2) The control inputs to the LM and PA are not saturated,

i.e., should not exceed ±1 and ±5 V, respectively.
3) In response to a step reference, the displacement of PA

should settle down to zero at steady state such that it can
further response to a sequential step reference.

4) The DSA servo system should have gain margin (GM)
larger than 6 dB and phase margin (PM) more than 50◦.

For simplicity, we will present a step-by-step design
procedure.

Step 1: DCF of G
According to (7), we should first select F and L such that

(A − BF ) and (A − LC) are both Hurwitz. Clearly, F is a
state-feedback gain matrix and L is a state-estimator gain matrix.
Since there is no coupling between the LM and the PA, the gains
F and L can be partitioned as

F =
[

F1 0
0 F2

]
L =

[
L1

L2

]
. (20)

Hence, we can individually design the gains for the LM and
PA loops by using the pole placement method such that the PA
loop should have a faster dynamics than the LM loop, and the
estimator is faster than the state feedback loop. To do this, we
select F1 = [0.0024 2.2 × 10−5 ] and L1 = [3037 3.8 × 106]T

to make the LM loop and its estimator have a bandwidth of 30
and 200 Hz, respectively, and select F2 = −[0.286 3.7 × 10−4 ]
and L2 = [243 − 3.6 × 105]T for the counterparts of the PA
with 60 and 250 Hz bandwidths, respectively. Then, the DCF of
G can be easily computed by (7).

Step 2: Design of R
For disturbance rejection, we should make the disturbance

rejection function Tyd = (X − NR)ÑW → 0 in the low fre-
quencies. Let R = [R1 R2 ]T and N = [N1 N2 ], we then
take

R1 = N−1
1 Xr1(s) (21)

R2 = N−1
2 Xr2(s) (22)
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Fig. 4. Bode plots. (a) Disturbance rejection response Ty d . (b) Γ function indicating DSA control allocation (η = 6.4 × 10−4 ).

with

r1(s) =
1 − β

(ηs + 1)2 (23)

r2(s) =
β

(ηs + 1)2 (24)

where η > 0 and β ∈ [0 1] are tuning scalars. Note that the
order of r1,2 is chosen to make R1,2 proper at least. Further, we
can see that R1,2 is stable because, in our case, X is stable and
N1,2 has no NMP zeros, respectively. Then, we have

Tyd =
(

1 − 1
(ηs + 1)2

)
XÑW. (25)

We can see that the term (1 − 1/(ηs + 1)2) introduces low
gains in low frequencies for disturbance rejection. Moreover, the
available frequency region for the disturbance rejection problem
can be increased with a smaller η, as shown in Fig. 4 (a). Ideally,
the system stability can be guaranteed with an arbitrary η, which,
however, may not preserve a desired stability margin. To see
this, we can study the DSA open-loop characteristics, which is
defined by

OL(s) = GK2 =
Y1G1 + Y2G2 − X/(ηs + 1)2

X(1 − 1/(ηs + 1)2)
(26)

where Y1 and Y2 are, respectively, the elements of Y with Y =
[Y1 Y2 ]T . It is clear that the open-loop transfer function is
related to η only. However, the relationship between the stability
margin and η is implicit. Hence, we may have to tune η by trial
and error such that the desired disturbance rejection function in
(25) and stability margin are both achieved.

Next, we discuss how to select β. In fact, for a given Tyd (or
equivalently, a given position output), β is related to the allo-
cation of the control efforts of the two actuators. Typically, the
LM works mainly for the low-frequency movement, while the
PA responses more for high-frequency disturbance. With such
allocation in the frequency domain, it is possible to take full
advantage of the PA to bypass the LM uncertainty in the high-
frequency band and improve the servo bandwidth. A key point
to analyze the control allocation of the two actuators is the inter-
section of the two paths in the frequency domain. Specifically,
we can analyze the ratio of the open-loop systems of the two

Fig. 5. Bode plot of DSA open-loop systems indicating stability margin.

actuators. This idea is identical to the so-called PQ method [12].
Let the controller K2 = [K21 K22 ]T , and then, define the
open-loop systems of the LM and PA as OL1 = G1K21 and
OL2 = G2K22 , respectively. Then, we can obtain the ratio of
OL1and OL2 as

Γ =
OL1

OL2
=

X(1 − β) − (ηs + 1)2Y1G1

Xβ − (ηs + 1)2Y2G2
. (27)

We can see that Γ is a function of β provided that η is determined.
In order to make the two actuators have maximum cooperation,
Γ is chosen to give a roll-off characteristics and a PM of at least
60◦ at the 0-dB crossover frequency [12].

In our case, we choose η = 6.4 × 10−4 , and the correspond-
ing Bode plot of the Tyd is shown in Fig. 4(a). Based on (27),
we then choose β = 0.8, which achieves a PM of 102◦ for
Γ function, as shown in Fig. 4(b), from which we can also
see that the 0-dB crossover frequency (also referred to as the
hand-off frequency) decreases with a larger β. This indicates
a large disturbance rejection contribution from the PA, but it
also tends to saturate the PA. To check the stability margin,
Fig. 5 shows the open-loop system of the DSA, which indicates
that the DSA open-loop system [OL(s)] is dominated by the
LM loop [OL1(s)] in the low frequency while by the PA loop
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[OL2(s)] in the high frequency. Furthermore, the DSA system
achieves a PM of 54◦ at 146 Hz and a GM of ∞. Compared
with the LM loop whose PM is only 13◦ at 84 Hz, we can see
that the PA loop improves the stability margin and pushes the
open-loop frequency bandwidth.

Step 3: Design of Q
Let Q = [Q1 Q2 ]T . Due to the fact that G1 and G2 are

minimum phase, we thus aim at the design of Q1 and Q2 such
that Tyr = N1Q1 + N2Q2 → 1 has a high-frequency band-
width and the control inputs for a step response are within
both actuators’ control limits. Furthermore, it is required that
the displacement of PA settles down to zero at steady state.
This means that y1(∞) = r and y2(∞) = 0 should be satisfied
for a step response with amplitude r assuming the disturbance
with d(∞) = 0. Hence, we first analyze the individual position
outputs of the two actuators. Partition D is given as

D =
[

D1 0
0 D2

]
(28)

and suppose d = 0, it is thus easy to get[
ŷ1
ŷ2

]
=

[
G1 0
0 G2

] [
û1
û2

]

=
[

N1D
−1
1 0

0 N2D
−1
2

]
DQr̂

=
[

N1Q1
N2Q2

]
r̂. (29)

We can see that the step responses of the two actuators are
completely decoupled in terms of Q1 and Q2 . As the transfer
functions N1 and N2 have been properly designed in step 1 to
individually reflect the LM and PA closed-loop dynamics, we
can then interpret Q1 and Q2 as the trajectory planning functions
for the two actuators.

According to Theorem 1, we can infer that the minimal ‖(I −
NQ)r̂‖2

2 achievable is zero as the DSA model has no NMP zeros.
This can be completed by selecting Q1 = N−1

1 and Q2 = 0,
which, however, is not a practical solution due to the improper
Q1 and the saturation of u1 . In order to compromise between
the tracking speed and the limitation of the control input, we
choose Q1 and Q2 as

Q1 = N1(0)−1 (30)

Q2 = γN2(0)−1(1 − N1N1(0)−1) (31)

where γ ∈ [0 1] is a tuning scalar. It is obvious that
N1(0)Q1(0) = 1 and N2(0)Q2(0) = 0, which imply that

y(∞) = y1(∞) + y2(∞) = r + 0 = r. (32)

Moreover, define the LM and PA closed-loop dynamics by

T1 = N1N1(0)−1 (33)

T2 = N2N2(0)−1 . (34)

We then have the step response transfer function of the DSA

Tyr = T1 + γT2(1 − T1). (35)

Fig. 6. Bode plot of the DSA closed-loop systems.

It is clear that when γ varies from 0 to 1, the cutoff frequency of
Tyr switches from T1 to that of T2 . On the other hand, we can
see from (31) that the PA will follow the scaled tracking error
of the LM loop, i.e., γ(1 − N1N1(0)−1)r, where γ actually
determines the contribution of the PA to the overall position
output. Since the PA has a faster response than the LM loop, it
is preferable to have a maximal position output of the PA. Thus,
we should maximize γ ∈ [0 1] subject to

‖Tyr‖∞ ≤ 1.067 (36)

‖u2‖∞ ≤ 5 V (37)

where the constraint (36) is introduced for an overshoot under
1 µm, while (37) is for no saturation of the PA control input. For
the LM, its control input u1 is generally not saturated for step
responses within the PA range. Otherwise, we have to go back
to step 1 and reduce F1 for slower LM dynamics. Although this
iteration can be avoided by adding extra tunable dynamics to
(30) to generate a slower trajectory for the LM, we believe it is
not cost-effective as the selection of Q1 as a constant gain can
reduce the overall controller order.

In our case, we obtain γ = 0.5 to meet the requirement.
Fig. 6 shows the Bode plot of the closed-loop systems for the
DSA(Tyr ), the LM(T1), and the PA(T2), respectively. We can
see that the DSA frequency bandwidth is located between the
LM loop and the PA loop, which indicates that the DSA servo
system should be faster than the LM loop but slower than the
PA loop as expected.

C. Switching Control for Step Response Beyond PA Range

For step tracking beyond the PA range, only the LM takes
the control task while the PA is switched off in the initial stage.
When the position output y approaches the target such that
the tracking error enters the PA range, the PA is then turned
on to speed up the response. At this stage, the control inputs
to the two actuators are taken over by the 2-DOF controller.
Such a switching control scheme is illustrated later in Fig. 7.
Beyond the PA range, the LM is controlled by a proximate
time-optimal controller (PTOS) [29], which can achieve near
time-optimal performance and accommodate plant uncertainty
and measurement noise. The LM control design beyond the PA
range is not the purpose of this paper, and thus, not considered
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Fig. 7. DSA controller structure for practical implementation.

further. For alternative control design methods in this range,
see [19] and the references therein.

Here, we briefly give the PTOS controller for the LM

u1 = sat
[
h2(f(e1) − ẏ)

]
(38)

f(e1) =




h1

h2
e1 , for |e1 | ≤ yl

sgn(e1)
(√

2ū1k1α|e1 | −
ū1

h2

)
, for |e1 | > yl

(39)

e1 = r − y (40)

where sat[·] is with the saturation level of ū1 = 1 V, α is referred
to as the acceleration discount factor, h1 and h2 are constant
gains, and yl represents the size of a linear region. To make the
functions f(e1) and f ′(e1) continuous such that the control input
remains continuous as well, we have the following constraints:

α =
2h1

k1h2
2

yl =
ū1

h1
. (41)

The PTOS control law introduces a linear region close to the
target to reduce the control chatter. In the region |e1 | ≤ yl , the
control is linear, and thus, the gains h1 and h2 can be designed by
any linear control techniques. In our case, we select [h1 h2 ] =
[0.0024 2.2 × 10−5 ]. Thus, we have yl = 416 µm.

D. Controller Implementation

Fig. 7 shows the block diagram of the DSA controller in prac-
tical implementation. When the tracking error |r − y| > 15 µm,
the switch is with “a,” then u1 is generated from the PTOS
controller, as given by (38), while u2 is set to 0. When
|r − y| ≤ 15 µm, the switch changes to “b,” then the vector
u is taken over by the 2-DOF controller. Note that here we use
a transformed 2-DOF controller structure for easy implementa-
tion. The reason is that the lumped 2-DOF controller computed
by (9) and (10) results in four subcontrollers, each with an order
of 24. This high-order controller significantly increases the com-
putation requirement for the DSP. Instead, the equivalent 2-DOF
controller structure in Fig. 7 decomposes the lumped controller
into several elements: each element is numerically easy to com-
pute and appears only once in the controller. Its computational
time is reduced to around one-fourth of the lumped controller.
This apparently moderates the effect of computational delay

Fig. 8. Experimental reference and shock disturbance signals.

that deteriorates the robustness of the closed-loop system and
slows down the dynamic response of the closed-loop system to
a reference command. Further, the transformed controller has
better numerical accuracy, which avoids the effects of roundoff
and quantization that may lead to limit-cycle oscillations in the
closed-loop system.

IV. EXPERIMENTAL RESULTS

Experiments are conducted on the DSA positioning system
to verify the effectiveness of the proposed DSA controller. For
comparison, we also carry out the experiments for the single-
stage actuator control system, where the LM is controlled by the
PTOS controller and the PA is switched off for any reference
input. The controller is implemented by a real-time DSP system
(dSPACE-DS1103) with the sampling frequency of 5 kHz. Fig. 8
shows the time signals of the step reference command as well
as the shock disturbance acting on the LM. These signals are
injected into the DSA control system for performance tests.

First, we obtain the tracking results within the PA range, as
shown in Fig. 9. In this case, only the 2-DOF controller is at
work. From Fig. 9(a), we can see that the PA is effective to speed
up the step response and eliminate the LM position error due to
the shock disturbance occurring at t = 0.1 s. As such, the dual-
stage (DS) servo significantly outperforms the single-stage (SS)
servo, as shown in Fig. 9(b), in terms of the settling time and
disturbance rejection. Note that the high-frequency oscillations
in the responses are due to the sensor quantization noise and are
hard to eliminate completely. Hence, we can only guarantee the
position accuracy to be within ±1 µm. Further, we calculate the
corresponding performance cost J(e) defined by (1), and it is
shown in Fig. 9(c), which indicates a smaller J(e) achievable
by the DSA compared to the single-stage servo. Although Jopt

derived in (16) for the DSA under study can be close to 0, it is
impractical due to the actuator saturation limitation. Therefore,
it is used for benchmark only.

Next, we present the tracking results beyond the PA range,
as shown in Fig. 10. In this case, the switching control is in-
volved. From Fig. 10(a), we can see that the PA is activated at
t = 0.02 s only when the tracking error is less than 15 µm. Com-
pared with the single-stage servo in Fig. 10(b), the dual-stage
servo improves the settling time only a little bit due to its small
travel range relative to the reference amplitude. However, the
enhancements of disturbance rejection and performance cost, as
shown in Fig. 10(c), are still obvious.

Finally, we evaluate the robust performance against plant un-
certainty, which mainly stems from various payloads mounting
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Fig. 9. Experimental 2-DOF control for disturbance rejection and step tracking within PA range. (a) DSA. (b) Single-stage actuator. (c) Performance costs.

Fig. 10. Experimental switching control for disturbance rejection and step tracking beyond PA range. (a) DSA. (b) Single-stage actuator. (c) Performance costs.

TABLE 1
ROBUSTNESS EVALUATION OF THE DSA CONTROL SYSTEM

on the motor platform. Table I summaries the results for various
step references and with or without 1 kg payload carried by
the DSA. The results clearly show a smaller difference of the
specifications between with payload and without payload. This
verifies the robustness of the proposed controller on our DSA
application.

V. CONCLUSION

We have revealed that the tracking and disturbance rejection
problems can be decoupled into two independent optimization
problems under the 2-DOF control framework. Then, each prob-
lem can be separately solved by the design of the free parameters
in the 2-DOF controller, which is parameterized based on the
DCF approach. The 2-DOF controller is applied to an actual

DSA system for disturbance rejection and step tracking in the
PA range. For long step tracking beyond the PA range, a PTOS
controller is used for the LM to complete the task. Experimental
results demonstrate that the proposed DSA control system can
significantly speed up the step response and enhance the shock
disturbance rejection compared with the single-stage servo sys-
tem. Further, the performance is robust within an acceptable
level when the DSA is subject to payload changes.

APPENDIX

First, from (5), the expression of K2 (10) also equals

K2 = (Y − DR)(X − NR)−1 . (42)

Let the right coprime factorizations of K2 be given by

K2 = NkD−1
k . (43)

Thus, we can take

Nk = Y − DR Dk = X − NR. (44)

Next, the return difference equation (I − GK2)−1 can be
expressed by

(I − GK2)−1 = (D̃−1D̃DkD−1
k − D̃−1ÑNkD−1

k )−1

= (D̃−1(D̃Dk − ÑNk )D−1
k )−1

= Dk (D̃Dk − ÑNk )−1D̃. (45)
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By using (5) and (44), it is straightforward to verify that

D̃Dk − ÑNk = I. (46)

Therefore, substituting (44) and (46) into (45) yields

(I − GK2)−1 = (X − NR)D̃. (47)

Now, by applying (47), we can easily obtain the expression
of Tyd as

Tyd = (I − GK2)−1GW

= (X − NR)D̃D̃−1ÑW

= (X − NR)ÑW.

To get the expression of Tyr , we only need to rewrite K1 (9) as

K1 = (D − K2N)Q (48)

which is expressed in terms of K2 . Applying (5) and (10) suffices
to prove (48) straightforwardly, and it is thus omitted. Therefore,
we have

Tyr = (I − GK2)−1GK1

= (I − GK2)−1G(D − K2N)Q

=
(
(I − GK2)−1GD − (I − GK2)−1GK2N

)
Q

=
(
(I − GK2)−1N − ((I − GK2)−1 − I)N

)
Q

= NQ.

By far, we complete the proof of (12) and (13).
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