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Abstract:Many different types of adaptive or “univer-
sal controllers”, capable of dealing with a very broad range
of linear time-invariant systems, have been proposed. One
class of such controllers uses switching between a finite, or
at least countable, number of fixed controllers until stabil-
ity is detected. Such controllers are very attractive from
a theoretical viewpoint, in providing stabilization and as-
ymptotic performance for a broad class of plants. How-
ever, such controllers are also known to have very poor
transient properties, due to the long time required to
search for a stabilizing feedback. The key contribution
of this paper is to introduce the “method of localization”
which can greatly improve the speed of the search. The
method is described for linear time-invariant discrete time
systems of known nominal order, with disturbances and
noise present. Analysis and simulations demonstrate the
potential for greatly improved transient performance.

1 Introduction

Significant research into adaptive control has been con-
ducted by many authors for some time, see for example
[1]-[15]. Omne fundamental motivation for this research is
the desire to construct a “universal controller” which re-
laxes the assumptions of “classical” adaptive control; such
as minimum phase, known plant order and relative de-
gree, size of exogenous disturbances. Since the early 1980s
the assumptions required have been weakened significantly
[4]-[15], in many cases by using a switching adaptive con-
troller. For example, in [8] it was shown that the only a
priori information which is needed for adaptive stabiliza-
tion is the order of a linear time-invariant stabilizing con-
troller. A switching control algorithm proposed in [4] and
its discrete-time generalization [1] not only provide global
stability of the closed-loop system, but do so in the sense
of Lyapunov. Some later results on this subject include
work done in [9] and its discrete-time extension given in
[7]. However, as has been pointed out by many researchers
(see, for example, [7]) these “universal controllers” are far
from being ideal. One of the main drawbacks of the pro-
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posed algorithms is that of the poor transient performance
of the algorithms described in [1, 4, 7, 8, 9]. This poor
transient performance can be attributed in part to the
exhaustive search procedures utilised.

To alleviate the problem of exhaustive search, two ap-
proaches have been proposed recently. The first approach
is called supervisory control [11, 13, 6] which employs a
family of on-line plant estimators (predictors) and deter-
mines the switching strategy based on the prediction er-
rors. This supervisory control approach guarantees ex-
ponential stability. Also, simulation results demonstrate
that supervisory control usually gives better performance
than “non-supervisory” switching control methods. A sec-
ond approach to avoiding excessive search times is to re-
duce the number of controllers required to stabilize the
plant family, see for example [3].

We develop a new method of discrete-time adaptive con-
trol design, namely, the method of localization. The prop-
erties of compactness [4] and robustness of the family of
the controlled plants are essential ingredients in the pro-
posed method. The main idea of this method is to reduce
the problem of adaptive stabilization to effective localiza-
tion on a finite set of potentially stabilizing feedbacks.
The main concepts of the proposed method are developed
in this paper for the class of linear single-input/single-
output uncertain systems. We show that typical assump-
tions such as minimum phase, known plant order and rel-
ative degree, availability of information about exogenous
disturbances may not be necessary for rapid localization.

2 Preliminaries

We consider linear time invariant discrete-time plants:

D(q)i N(q)ur + ¢, (1)

vo= Gt (2)

where D(q) and N(gq) are polynomial operators in the for-
ward shift operator, ¢:

D(q) = q"+dn1q"""+ -+ do (3)

N(g) = npo1@™ '+ -+ +1ng (4)

(; is an input disturbance term, v; is a measurement noise

term, uy; is the system input and y; is the measurement of
the system output ;.

1802



We consider a set of plants of the form (1), (2), which
we classify by the set:

Q= {(D(q), N(q)) : ()

We would like to construct an adaptive controller such
that the closed-loop system is globally stable for any
(D,N) € Q. Two important, though not restrictive, as-
sumptions we require are as follows:

D(q) < QD,N(q) c QN}

Assumption 2.1 The set 2 is compact.

Assumption 2.2 Forall (D, N) € Q, there exist no com-
mon zeros of D(q) and N(q) on or outside the unit disk.

In other words, €2 contains only a set of output sta-
bilizable plants. Furthermore, since €2 is compact, then
it is a set of “uniformly” output stabilizable plants. We
introduce an equivalent non-minimal (though in view of
Assumption 2.2 stabilizable and detectable) state space
description of the plant (1)-(2):

Tip1 = Aajt + But + eon_1€¢ (6)
Yo = eapqty (7)
where
UUtT = [Ut—n+1, ot U2, Ut—1, Yt—n41, © yt—1,yt} (8)
€ =Crpy1 T E;l;oldivtfi (9)
+
I(n—l)x(n—l) 0
A=10 Lin (10)
n —d
( ﬂ:[ ng nNi Np—2 ]7 c_l:[ do d]_ dnfl :I,

It .. € R™X™ is a square matrix of zeros, except for

ones on the super-diagonal, that is I}, = [6;-1]);

and e; is the i** standard basis vector for RZ*~1.

Under Assumptions 2.1 and 2.2 there exist finite de-
compositions of the set  into possibly intersecting sets
Q;,i = 1, .-+ s so that for each i, there exists a sin-
gle controller transfer function H;(g), such that for all
(D,N) € Q;, the controller v, = —H,(q)y; stabilizes
(1),(2).Any linear time invariant controller H(q) of order
(n — 1) can be rewritten as:

Uy = *th (12)
where
K={fo- fn-2 90 - — gn-1] (13)
and H(q) is
n—1 n—2 .
H(q) _ In—-19 + gn—29q + + go (14)

qnfl + fnfquﬁZ + -+ fO

The main idea behind the switching adaptation method is
as follows. It is possible to define a finite number of poten-
tially stabilizing linear time-invariant controllers {K;}5_;
where s € N can be (in principle) arbitrarily large. In
switching adaptive controls (such as those in [2], [4], [8])
an ‘exhaustive’ search for a stabilizing K; is conducted.
In the method of localization, however, we replace a reg-
ular switching of the controller K; — Ks — --- with a
purposeful search over the space of potentially stabilizing
controllers. To facilitate this, we introduce the notion of
“stabilizing sets”. We first define an auxiliary output, z,
as

2z = Cx;, CT e R (15)
and the inclusion:
Tl < Alleea]| + co (16)

Definition 1 7Z; is said to be a stabilizing inclusion of
the system (6), (7) if Iy being satisfied for all t >ty and
boundedness of €(e; € lx), implies boundedness of the
state, xy, and in particular, there exist ag,B, and o €
(0,1) such that [l < ago [z | + Boletlle.. - B

Definition 2 The uncertain system (6),(7) is said to be
globally {C, A} stabilizable if for the given values of C in
(15) and A in (16):

1. I, is a stabilizing inclusion of the system (6), (7) and

2. there exists a control, uy = —Kuxy, such that after a
finite time, Iy 1s satisfied. i

Using the following preliminary results, we later show
that stabilizing sets can be effectively used in the process
of localization.

Lemma 1 Let sup,,, |€141| < 00,CB > 0. Then there
exists a co such that the system (6), (7) is globally {C,0}
stabilizable if and only if

Mmax (PA)| < 1 (17)

where

P=I-(CB)"'BC (18)

Proof: (See full version of this paper) 1

Remark 1 The stability condition (17), (18) is equiva-
lent to the condition that the transfer function from wu,
to 2, C(2I — A)~1B, be relative degree 1, and minimum
phase. I

Remark 2 If the original plant transfer function from wuy
toys, (1), (2) is known to be minimum phase, and relative
degree 1 then it suffices to take C' = e |, and the system
is then co stabilizable for any co > 0.

If the original plant transfer function is non-minimum
phase, then let:

C= [f07f1 fn727907gl gnfl] (19)
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The transfer function from ug, via (6) to z is then:

2t = F(Q)ut + G(q)yt
_ (A(Q)F(Q) + G(Q)B(q)> "
A(q) '

where F(g) = (fo+ fra+ - + fa 2q?) and G(q) —
(go+ga+ -+ +gn1q"").

Therefore, for a non-minimum phase plant, knowledge
of a C such that I; is a stabilizing inclusion is equiv-
alent to knowledge of a (possible improper) controller
{ut = —=G(q)/F(q)y+} which stabilizes the system. Be-
cause we are dealing with discrete time systems, it is not
clear whether this corresponds to knowledge of a proper,
stabilizing controller for the set. i

(20)

Remark 3 Because of the robustness properties of expo-
nentially stable linear time invariant systems, Lemma 1
can easily be gemeralized to include non-zero, but suffi-
ciently small A. 1

Lemma 2 Any Q which satisfies Assumptions 2.1 and
2.2 has a finite decomposition into compact sets:

L
0= UQ‘Z
/=1

such that for each (, there exists a Cy,Ay and co e such
that, for all (A, B) € Q°, T, is a stabilizing inclusion, and
CyB has constant sign.

(21)

Proof: (Outline) It is well known that (e.g. [4]) that Q
has a finite decomposition into sets stabilized by a fixed
controller. From Remark 2, the requirements for
knowledge of a Cy such that G(Cy, -, ) is a stabilizing set
on () are less stringent than knowledge of a stabilizing
controller for the set QF. I

3 Localization-known ¢ bound

We now introduce our control method, including the
method of localization for determining which controller
to use. The first case we consider, is the simplest case
where there is a single set to consider:

Case 1: L =1, sgn (CB) known & ¢ bound known:

In this case we decompose {2 as:

Q=0'=[Jo (22)
i=1
For i = 1...s we define a control law:
. 1

where the plant model described by, A;, B; is in the set
Q;. We require knowledge of a A such that:
CB

[C(A— A; <0_&>) < A;Vi,V(A,B) € Q; (24)

and 7 is a stabilizing inclusion on €2; for all i. Note that
for any bounded 2, for which we can find a single C
which gives C(2I — A)~!B minimum phase and relative
degree 1 we can always find, for s large enough, a A with
the required properties. (see for example [4])

At any time t > 0, the auxiliary output 2 41 which would
have resulted if we applied u; = —K;x; to the true plant
is, using (6):

CAx; + C’Bui + Cegp_1€t
Zt4+1 — CB (ut — ui)

@ _
241 =

Note that if the true plant is in the set €;, then from
(25) and (23)

sz =C (A — A; <2>> s + Ceon_16 (27)

CB;

and therefore, if the true plant is in €;, then from (24),
and with co = |Ceap_1]

21| < Allze] + co (28)
Our proposed control algorithm for Case 1 is as follows
(where, without loss of generality, we take CB > 0).
Algorithm A: Known ¢ bound and L =1

Step 1.1 Initialization:

50: {1727 S} (29)
Step 1.2 Localization:
If ¢ > 0, perform the following; else skip to Step 1.3.
If z; > Alzy—1| + ¢ then set
St = Stfl - {ky v jsfla ]s}
If —z > Alxi—1| + co then set
St = St—l - {j17j27 R 7k}
otherwise, Sy = S;_1.
where k,j1 ... js and s are integers from the
previous time instant (see steps 1.4, 1.5).

Step 1.3 Possible Control Computations
For all i € S, compute u} as in (23).

Step 1.4 Control Sorting
Order u},i € S; such that:

u{l < u{z < ... < u{s (30)
Then apply the “median” control:
uy = uf where k = Jls/2)- (31)

Step 1.5 Done
Wait for the next sample and return to Step 1.2.

We then have the following stability result for this
control algorithm.
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Theorem 3 The control algorithm, (29) - (31), applied
to a plant where C' is known, and where the
decomposition (22) has the properties that (24) is
satisfied and I; is a stabilizing inclusion, has the
following properties:

(a) The inclusion:

T, ¢ 1] < Allea]| + co (32)

is violated no more than N = |logy(s)| times.

(b) All signals in the closed loop system are bounded. In
particular there exist constants o, 8 < 00,0 € (0,1)
such that all trajectories satisfy, for any

t(), Tty y T > 0,

gzl < a0y, || + 8 (33)

Proof: (Outline-see full version for details)

(a) We can show that if (32) is violated at time ¢, then
Stp1 < %st from which (a) follows.

(b) Exponential stability follows from (a) since
whenever (32) is satisfied, the system is

exponentially stable. I

Case 2: L > 1 & known ¢ bound:

Suppose that we do not know a single C' such that
both Z; is a stabilizing inclusion, and C'B is of known
sign, then using finite covering ideas [4] as in Remark 2
let

L

L st
o=Jo'=J U2,
=1

=1 m=1

(34)

where for each ¢, we know Cy, Ay, c§ such that Z; is a
stabilizing inclusion on Q¢ and the sign of (C,B) is
constant for all plants in Q.
At this point we need to be careful since if Q¢ does not
contain the true plant, 7; need not be a stabilizing
inclusion. As a result of this, divergence of the states
may occur without violating (32). To alleviate this
problem, we use the exponential stability result, (33), in
our subsequent development (see equation (35) below).
Algorithm B: Known & bound and L > 1
We initialize ¢(i) = 0, Ry = {1,2, ... L} and take any
¢ =1{ly € Ry. We then perform localization using
Algorithm A on Qf, with the following additional’ steps:
If at any time

|zl > ao™ Dl || + 5 (35)

(where a, o, 3 are the appropriate constants for Q° from
Theorem 3), then we set S¢ = {}.

Mn fact, we can localize simultaneously within other Q% 4 # £,
however for simplicity and brevity we analyse only the case where
we localize in one set at a time.

Also, if at any time ¢, S’ becomes empty, we set

R, = Ry—1 — {{},t(i) = t, and we take a new ¢ from R;.
With these modifications, it is clear that Theorem 3 can
be extended to cover this case as well:

Corollary 4 The control algorithm B applied to a plant
with decomposition as in (84) satisfies:

(a) There are no more than: L —1+ Y5 [logy(se)]
wmstances such that

|21 > A, |lell + coe, (36)

(where ; denotes the value of { at time t).

(b) All signals in the closed loop are bounded. In
particular, there exist constants &, f < oo,d € (0,1)
such that for any to, x¢,, T > 0

ey < @3 |l || + B (37)

Proof: Follows from Theorem 3. I

4 Localization-unknown ¢ bound

In this section we consider the problem of localization
based switching control for linear uncertain plants where
an upper bound on the disturbance, sup;-,, |€/, is not
known. To facilitate this extension, we will make the
following observation. The control law described by
Algorithms A, B is well defined, in the following sense. If
for some ¢ € {1, ... L} and for all ¢ we have

c§ > sup, |Cregn_16¢], then Ry # {} . This is the key
point allowing us to construct an algorithm of on-line
identification of the parameters c§,¢ =1, ... L. To take
advantage of this fact, if R; is empty, then we know that
our assumed value(s) for c§ are too small, and so we
compute R; with different values of c§ over a finite
interval, until we reach the point where R, is non-empty.
We now propose the following modification of Algorithm
B:

Let Ry, (cf(t)) denote the localization set R; computed
for a finite time interval [to,t], (where t5 is implicitly a
function of ¢ to be defined) based on an assumed
disturbance bound, c§(t), with the initial condition
Ry, (c6(t)) = Ro. For simplicity of notation we will
mostly supress the dependence of R;;, on cj(t) in the
following;:

Algorithm C. Unknown ¢ bound and multiple sets

1.1 Initialization:
For { =1, ... L set ty = to; and c§(tg) =0
Rtn,to = RO

1.2 Modify the algorithm of localization as follows:

Ry, = {

Rtflytz — {E} ift > ta,
Ry otherwise,

(38)
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where

=

and 7 is an integer choosen such that as™ < 1.

tif Ry, ={}andt >ty + 7,
to otherwise,

(39)

1.3 If R4, = {}, estimate new disturbance upper bound
parameters c€,€ =1, ... L:

et = {

ch(t — 1) +myeq if t <ty + 7,

ch(t — 1)+ e ift >to+ T, (40)

where €q is a positive constant and:

{m|Ry,(c(t — 1) +meo) # {}}
(41)

min

my = arg
me{1,2, ...}

The main idea behind the proposed algorithm consists of
on-line estimation (40), (41) of the parameters of the
localization sets and the resetting of the localization set
Ry, (38), (39) if the process of localization is exhausted,
that is, when R ., is empty. €g is used to ensure that a
localization can only be exhausted a finite number of
times. 7 is used to ensure that if we need to compute m;
(41), that only a bounded amount of data needs to be
considered.

Theorem 5 The control law in algorithm C (38)-(41)
applied to a plant subject to unknown but bounded
exogenous disturbance with decomposition as in (34)
satisfies:

(a) There are no more than a finite number of instances
such that Ry = {};

(b) All signals in the closed-loop system are bounded.
Moreover, there exist constants &, 3 < 00,6 € (0,1)
such that for any tg > 0:

|zt + ]| < a6 |12, | + B (42)

Proof: (Outline)The proof of global stability follows that
of Theorem 3 with one slight difference. Since the
relation Ry, (c§) # {} is valid for any t >ty if

sup |Crean—1€| p; the total number of times

t>to
that cﬁ is altered does not exceed:

£ >
max
X TI<e<L

S— |:maX1<E<L SUP;>y, |Crean—1€]

} +1< o0

€0

This, in turn, guarantees that the inequality (37) cannot
be violated more than S times. Relying on this fact the

bound (42) can be easily proven through simple algebraic
manipulations. il

5 Illustrative Example

An example is presented in this section to illustrate the
behaviour of an uncertain discrete-time system with an
unobservable exogenous disturbance.

The set of possible SISO plants is described as:

Yer1 = QoY +ar1yi—1 + alyi—2 +us + ¢
a; € [-1.75,1.75 ,i=0,1,2,
¢ : sup|¢yl <~
t>to

Choosing the vector C' and the stabilizing set Z; as
prescribed in Section 3, we obtain

Tyt |zegr] < Allzel +

where C' = (0,0,1) and A = 0.9
We decompose the set
Qp = ([-1.75,1.75],[-1.75,1.75], [-1.75, 1.75]) into 216
subsets with the basic vectors of decomposition
{Kz}fi? . K; = (Ky;, Kai, K3;). Each element of the
gain vector, K;; , j€{1,2,3}, i€ {1, --- 216} takes a
value in the set of six elements {£+1.5,4+0.9,+0.3} giving
62 = 216 different possibilities. In Figure 1 the results of

Switching control with localization

0 L Il Il Il Il Il Il Il Il
0 10 20 30 40 50 60 70 80 90 100

Time (samples)

Figure 1: Localization based control with random distur-
bance.

computer simulation of the closed-loop system subject to
a uniformly distributed exogenous disturbance, are
presented. Algorithm A has been used for this study.
These results are compared with those obtained by
simulation of a more conventional switching controller

(Figure 2)
i(t) = i(t — 1) if Z, is satisfied
1 i(t = 1)+ 1 otherwise.
Clearly, the localization based control has a vastly
superior transient response in this example.

up = Kt
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x 10 Switching control without localization
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Figure 2: Switching Control without Localization

6 Conclusion

This paper develops a new method of adaptive
discrete-time control. The main idea of the method
consists in effective reducing the problem of adaptive
stabilization to localization on a finite set of potentially
stabilizing feedbacks. To avoid serious practical
limitations of standard switching-type “universal
controllers” associated with an excessive overshoot
different types of localization algorithms are presented.
The method of localization is developed in this paper for
the class of uncertain linear discrete-time SISO plants
subjected to unknown exogenous disturbance, input
disturbance, and measurement noise. We show that such
typical assumptions as minimum phase, known plant
order and relative degree, and availability of information
about disturbances are not necessarily needed for fast
localization.
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