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Abstract— The economic dispatch problem (EDP) is of vital
importance in the operation and control of power systems.
In this paper, we consider the extended EDP that takes into
account transmission losses and propose a distributed algorithm
based on the average consensus algorithm and the bisection
method. We assume that the total transmission losses can be
represented by the B matrix loss formula, and the commu-
nication network between generators (nodes) is a connected
undirected graph. A leader node is used to broadcast the total
demand information by communicating with merely a small
part of the nodes. Our algorithm is distributed in the sense
that the nodes conduct local computations and communicate
with their neighbors. Simulation results are given to show the
performance of our algorithm.

I. INTRODUCTION

Due to the decrease of petroleum reservoirs and the
massive usage of petroleum in power generation nowadays,
the efficient utilization of petroleum energy has raised a big
concern in the community of power systems. To deal with
this situation, the economic dispatch problem (EDP), which
targets the minimum aggregate costs of power generation in
a cooperative way, has been intensively investigated for the
past decades. Many centralized algorithms have been devel-
oped to solve the EDP, e.g., the lambda iteration method, the
binary search method, and the dynamic programming based
algorithm [1].

Although many well-designed centralized algorithms are
available nowadays, researchers are forced to develop dis-
tributed algorithms for the EDP by the unstoppable trend of
smart grids. Future smart grid, which will likely incorporate
numerous distributed generation systems, is a typical large
scale system [2]. The widely spatial distribution of power
generation systems adds extra difficulties in solving the
EDP. Fortunately, for large scale systems, many distributed
algorithms for control, estimation, and optimization have
been proposed [3]. Compared with centralized algorithm-
s, distributed algorithms exhibit the benefits including the
feasibility in large scale systems, the reinforced robustness,
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and the evenly dispatched computation and communication
burdens.

The following references are recent works on distributed
algorithms for the EDP in smart grid. In [4] and [5],
the authors propose the incremental cost consensus (ICC)
algorithm to solve the EDP, where the average consensus
algorithm is used to guarantee the balance between demand
and supply. In [6], a distributed algorithm based on the ratio
consensus is developed, which requires that the nodes have
enough storage capacities for other nodes’ parameters. A
consensus + innovation approach is proposed in [7], where
the consensus term ensures the commonly shared optimal
incremental cost while the innovation term guarantees the
balance of demand and supply. In [8], the authors propose
a consensus based distributed algorithm, which enables the
generators to collectively learn the mismatch between de-
mand and total supply for feedback. Two fully Distributed
algorithms for the EDP are also proposed in our previous
works [9] and [10], respectively. The algorithm proposed
in [9] deals with the EDP with quadratic cost functions on
connected undirected graphs, and then is extended to deal
with the EDP with general convex functions on strongly
connected directed graphs in [10].

However, transmission losses are neglected and only the
basic EDP is considered in [4]–[10]. Transmission losses,
however, shall not be neglected in practical operations of
power systems. If we schedule the generators according to
the optimal solution to the basic EDP, the transmission losses
in reality will cause an imbalance between demand and
supply, resulting in frequency drop and possibly threatening
the stability of power systems [11]. In the extended EDP,
i.e., the EDP including transmission losses, the transmission
losses will lead to the incremental losses, thus making
the centralized solution to the extended EDP much more
complicated than the solution to the basic EDP [1]. Since all
the algorithms proposed in [4]–[10] can be viewed as various
distributed implementations of the centralized solution for
the basic EDP based on the Lagrange dual method, these
algorithms can hardly be further adjusted for the extended
EDP. However, few algorithms for the extended EDP have
been proposed.

Forced by the urgent need for distributed algorithms
to solve the extended EDP including transmission losses
and continuing along our previous works [9] and [10], we
propose a distributed algorithm in this paper. Our algorithm
is based on the average consensus algorithm, and adopts
the idea of bisection. A leader node is used to inform
the generators of the aggregate demand information, which
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communicates with a small part of the generators only. Our
algorithm is distributed in the sense that the nodes conduct
local computations and communicate with their neighbors
bidirectionally. The penalty factors and the total transmission
losses are computed based on the average consensus algo-
rithm in a distributed fashion, and the optimal incremental
cost is determined using the bisection method locally at each
node.

The rest of the paper is organized as follows. Some
basics on graph theory, the average consensus algorithm,
the problem formulation, and a centralized solution to the
extended EDP are introduced in Section II. A distributed
algorithm for the extended EDP is presented in Section
III. In Section IV, numerical results are given to show the
performance of our algorithm. We conclude our paper in
Section V.

II. PRELIMINARIES AND PROBLEM FORMULATION

In this section, we first introduce some basics on graph
theory and the average consensus algorithm on undirected
graphs, and then give the problem formulation of the ex-
tended EDP. Finally we present a centralized solution for
the extended EDP.

A. Basics of Graph Theory

An undirected graph G = (V,E) consists of a non-empty
finite set of nodes V = {1, 2, ..., n} and a finite set of
unordered edges E ⊆ V ×V . Let us denote the neighbor set
of node i ∈ V by Ni = {j ∈ V − {i} : (j, i) ∈ E}, which
implies that node i can communicate with its neighbors bi-
directionally. The degree of node i, denoted by di = |Ni|, is
defined as the cardinality of Ni. Since G is undirected, for
any i and j, (i, j) ∈ E implies (j, i) ∈ E. An undirected
graph is connected if there is a path from any node to
any other node. The diameter of the connected undirected
graph G, denoted by DG, is the length of the longest among
the shortest paths connecting any two nodes. Self-loops are
included, i.e., ∀i ∈ V, (i, i) ∈ E. A non-negative matrix
Q ∈ Rn×n is associated with graph G, where [Q]ij > 0 if
and only if (j, i) ∈ E.

B. Average Consensus Algorithm

Let us consider the undirected graph G = (V,E), where
V = {1, . . . , n}. Each node i ∈ V holds a state denoted by
x ∈ R. Denote by x = [x1, . . . , xn]T ∈ Rn the aggregate
state. Define the Metropolis weight matrix Q ∈ Rn×n
associated with graph G as

qij =



1

max (di, dj) + 1
, if j ∈ Ni,

1−
∑
j∈Ni

qij , if i = j,

0, otherwise,

(1)

where qij is the entry of Q on the ith row and the jth
column.

With the iteration index denoted by κ = 0, 1, . . . , the
average consensus algorithm is given by

x(κ+ 1) = Qx(κ), (2)

where x(0) is the initial aggregate state at κ = 0. Rewrite
iteration (2) in the following distributed fashion,

xi(κ+ 1) = qiixi(κ) +
∑
j∈Ni

qijxj(κ), ∀i = 1, . . . , n. (3)

We say that algorithm (2) solves the average consensus
problem asymptotically, i.e., for any initial states xi(0)’s, it
follows

lim
κ→∞

xi(κ) =

 n∑
j=1

xj(0)

 /n, ∀i = 1, . . . , n.

Note that matrix Q can be obtained locally, and algorithm
(3) can be implemented in a distributed fashion. Therefore
the average consensus algorithm (2) is fully distributed. See
more details in [12]–[14].

C. Problem Formulation

Now we present the problem formulation of the extended
EDP, which aims at minimizing the total cost for power
generation of multiple generators to provide the desired
amount of power within the generators’ capabilities.

Suppose that there are in total n generators in the power
grid, labelled from 1 to n. Let us denote the total load
demand and the output of the ith generator by PL and Pi,
respectively. With the line capacity constraints neglected, we
formulate the extended EDP as follows:
• Objective

min

n∑
i=1

Fi(Pi) =

n∑
i=1

(
1

2
αiP

2
i + βiPi + γi

)
, (4)

where Fi(Pi) is the cost function associated with the
ith generator, and αi > 0, βi, and γi are the cost
parameters [1].

• Capacity constraints of generators

P i 6 Pi 6 P̄i, ∀i ∈ V, (5)

where P i and P̄i are the lower bound and upper bound
of the output of the ith generator, respectively.

• Power balance constraint
n∑
i=1

Pi − Ploss − PL = 0, (6)

where Ploss is the total transmission losses all over the
power grid.

In this paper, we assume that the total transmission losses
are a function of the generator outputs Pi’s and we use the B
matrix loss formula (B coefficients) to represent Ploss, given
by

Ploss =

n∑
i=1

n∑
j=1

PiBijPj +

n∑
i=1

B0iPi +B00, (7)
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where Bij = Bji, B0i, and B00 are computed according
to the line parameters and the average daily operating s-
tatus of the power systems [11, Chap. 13.3]. Though total
transmission losses can also be computed using the power
flow equations, we use the B matrix loss formula, for
it can give a sufficiently accurate estimation of the total
transmission losses in the off-line mode with a small amount
of computation [1].

In this paper, we impose a communication network on the
power grid with each node in the communication network
associated with a generation bus. The nodes (generators) only
communicates with their neighbors in a connected undirected
graph G = (V,E), where V = {1, . . . , n}. Furthermore,
to highlight the meaning of the decentralization of our
algorithm, we further assume that G is a sparse graph in
the sense:

max
i=1,...,n

di � n.

D. Centralized Solution to Extended EDP

We then introduce a centralized solution to the extended
EDP (4)-(6). This centralized algorithm is based on the
Lagrange dual method, which is usually referred to as the
Lambda iteration method [1].

The Lagrange function of the extended EDP (4)-(6) is
given by

L =

n∑
i=1

Fi(Pi)− λ

(
n∑
i=1

Pi − Ploss − PL

)
,

where λ is the Lagrange multiplier.
The optimal solution and the optimal Lagrange multiplier,

denoted by P ∗i and λ∗ respectively, satisfy

∂L

∂P ∗i
=

dFi(P ∗i )

dP ∗i
− λ∗

(
1− ∂Ploss

∂P ∗i

)
= 0,∀i. (8)

Combining the cost functions (4) and the inequality con-
straints (5), we have for all i ∈ V ,

(αiP
∗
i + βi)pfi > λ∗, for P ∗i = P i,

(αiP
∗
i + βi)pfi = λ∗, for P i < P ∗i < P̄i,

(αiP
∗
i + βi)pfi < λ∗, for P ∗i = P̄i,

(9)

where pfi is the penalty factor:

pfi = 1/

(
1− ∂Ploss

∂Pi

)
.

From the loss formula (7), it follows that

pfi = 1/

1− 2

n∑
j=1

BijPj −B0i

 . (10)

We can obtain the optimal solution P ∗i ’s and the optimal
Lagrange multiplier λ∗ by combining (6) and (9). But Ploss
has a quadratic term, making it more complex to compute
P ∗i ’s and λ∗. We now introduce the following iterative
algorithm in [1], with the iteration step denoted by k =
0, 1, . . .

Step 1: At k = 0, the generators pick initial values Pi[0]’s
such that

n∑
i=1

Pi[0]− PL = 0.

Step 2: Compute the penalty factors pfi[k]’s and the total
transmission losses Ploss[k] according to (10) and (7), re-
spectively.
Step 3: Solve the following equations to get Pi[k+ 1]’s and
λ[k + 1].

n∑
i=1

Pi[k + 1]− Ploss[k]− PL = 0, (11)


dFi(Pi[k+1])

dPi[k+1]
pfi[k] > λ[k + 1], Pi[k + 1] = P i,

dFi(Pi[k+1])

dPi[k+1]
pfi[k] = λ[k + 1], Pi[k + 1] ∈ (P i, P̄i),

dFi(Pi[k+1])

dPi[k+1]
pfi[k] < λ[k + 1], Pi[k + 1] = P̄i,

(12)
Step 4: Go back to Step 2 and loop until convergence.

Remark 1: The algorithm above has been widely used in
power industries [15]. The core idea is to use the penalty
factors and the transmission losses at the previous iteration
as an estimation of the current penalty factors and the
transmission losses. In this way we get over the difficulty
of directly solving (6) and (9).

III. DISTRIBUTED ALGORITHM FOR EXTENDED EDP

In this section we present our distributed algorithm, which
is based on the centralized algorithm introduced in Section
II-D, the average consensus algorithm (2), and adopts the
idea of bisection.

To make our algorithm work, a leader node which knows
the total demand PL and the coefficient B00 is needed. The
leader node only communicates with m nodes, where m
and n are known by all the nodes and m < n. To make
our distributed algorithm meaningful, we further assume that
m� n. Denote the set of the nodes communicating with the
leader node by V1 = {1, . . . ,m}, and define V2 = V −V1 =
{m + 1, . . . , n}, which is the subset made up of the nodes
without communicating with the leader node. The integral
procedures are as follows.
Step 1: broadcast the total demand information PL. We
use the average consensus algorithm with heterogeneous
initialization of the nodes such that after convergence each
node will get the total demand information.

The leader node broadcasts (PL + B00)/m to the nodes
in V1. Each node in V establishes a variable xi(κ). For
initialization at κ = 0, assign

xi(0) =

{
(PL +B00)/m, for i ∈ V1,
0, for i ∈ V2.

Run the following average consensus algorithm till conver-
gence,

xi(κ+ 1) = qiixi(κ) +
∑
j∈Ni

qijxj(κ), ∀i ∈ V. (13)
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When iteration (13) converges, each node i ∈ V will get a
common value x∗ given by

x∗ = lim
κ→∞

xi(κ) =

 n∑
j=1

xj(0)

 /n =
PL +B00

n
.

Step 2: determine Pi[0]’s satisfying the inequality constraints
(5) and

n∑
i=1

Pi[0]− PL −B00 = 0.

The average consensus algorithm is also used here in order
that each node gets the estimation of the aggregate generation
capability of all the generators.

For this purpose, each node i ∈ V establishes two
auxiliary variables xi(κ) and x̄i(κ), initialized by

xi(0) = P i, x̄i(0) = P̄i.

Then run the following average consensus iterations till
convergence,

xi(κ+ 1) = qiixi(κ) +
∑
j∈Ni

qijxj(κ), ∀i ∈ V, (14)

x̄i(κ+ 1) = qiix̄i(κ) +
∑
j∈Ni

qij x̄j(κ), ∀i ∈ V. (15)

When iterations (14) and (15) converge, each node i ∈ V
will get the common values x∗ and x̄∗ similarly given by

x∗ =

(
n∑
i=1

P i

)
/n, x̄∗ =

(
n∑
i=1

P̄i

)
/n. (16)

After obtaining x∗ and x̄∗, the nodes can get the Pi[0]’s
following

Pi[0] = P i +
x∗ − x∗

x̄∗ − x∗
(P̄i − P i), ∀i ∈ V. (17)

Step 3: The computation of the penalty factors pfi[k]’s and
the total transmission losses Ploss[k].

We assume that each node i knows the B coefficients as-
sociated with itself, i.e., Bij , ∀j ∈ V . The key to calculating
pfi[k] is to calculate

∑n
j=1BijPj [k] in a distributed fashion.

For this purpose, each node i ∈ V establishes an auxiliary
variable yji (κ), where the superscript j represents yji is meant
for the calculation of pfj [k].

We initialize yji ’s according to

yji (0) = BijPi[k]. (18)

Then run the following iteration till convergence,

yji (κ+ 1) = qiiy
j
i (κ) +

∑
l∈Ni

qily
j
l (κ), ∀i ∈ V. (19)

Denote the convergence value of (19) by yj∗, it follows
that

yj∗ =

(
n∑
i=1

BijPi[k]

)
/n.

Therefore the penalty factor pfj is given by

pfj [k] = 1/
(
1− 2nyj∗ −B0j

)
. (20)

Loop until all the nodes j ∈ V obtains their pfj [k]’s.
We then compute the total transmission losses Ploss[k].

Since the constant term B00 has already been included in
x∗, we only need to compute

P
′

loss[k] =

n∑
i=1

n∑
j=1

Pi[k]BijPj [k] +

n∑
i=1

B0iPi[k]

=

n∑
i=1

(
nyi∗[k]Pi[k] +B0iPi[k]

)
.

(21)

For this purpose, each node establishes an auxiliary variable
yi(κ), initialized by

yi(0) = nyi∗[k]Pi[k] +B0iPi[k]. (22)

And then run the following average consensus algorithm till
convergence,

yi(κ+ 1) = qiiyi(κ) +
∑
j∈Ni

qijyj(κ), ∀i ∈ V. (23)

Denote the convergence value of (23) by y∗, it follows
that

y∗ =

n∑
i=1

(
nyi∗[k]Pi[k] +B0iPi[k]

)
/n = P

′

loss[k]/n.

Step 4: The calculation of Pi[k + 1]’s and λ[k + 1].
Rewrite (12) in the following form:

Pi[k+1] =


P i,

λ[k+1]−βiPFi[k]
αiPFi[k]

< P i,
λ[k+1]−βiPFi[k]

αiPFi[k]
, λ[k+1]−βiPFi[k]

αiPFi[k]
∈ (P i, P̄i),

P̄i,
λ[k+1]−βiPFi[k]

αiPFi[k]
> P̄i.

(24)
Note that for all i ∈ V , αi > 0 and pfi[k] > 0, therefore

the function λ[k+1]−βiPFi[k]
αiPFi[k]

is monotonically increasing
with respect to λ[k+ 1]. So Pi[k+ 1] is also monotonically
increasing with respect to λ[k+ 1], which enables us to use
the bisection method. The detailed procedures are as follows.

Each node establishes two commonly shared variables
λ+ and λ− such that the optimal Lagrange multiplier must
lie in the interval [λ−, λ+]. The initial λ+ and λ− can be
selected to be extremely large and small, respectively, for the
convergence of bisection is very fast.

Let t = 0, 1, . . . denote the bisection steps. At step t, each
node computes

λ(t+ 1) = (λ−(t) + λ+(t))/2.

Each node then obtains Pi(λ(t + 1)) according to (24)
with λ[k + 1] replaced by λ(t + 1), and then establishes a
variable zi(κ), which is initialized by

zi(0) = Pi(λ(t+ 1)). (25)

Run the following iteration till convergence,

zi(κ+ 1) = qiizi(κ) +
∑
j∈Ni

qijzj(κ), ∀i ∈ V. (26)
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After convergence, denote the convergence value by z∗. Then
each node updates λ−(t+ 1) and λ+(t+ 1) according to
• For z∗ < y∗[k] + x∗,

λ+(t+ 1) = λ+(t), λ−(t+ 1) = λ(t+ 1).

• For z∗ = y∗[k] + x∗,

λ[k + 1] = λ(t+ 1), and the bisection stops.

• For z∗ > y∗[k] + x∗,

λ+(t+ 1) = λ(t+ 1), λ−(t+ 1) = λ−(t).

Recompute Pi(λ(t + 1))’s and circulate the bisection until
convergence. Then each node obtains Pi[k+1] and λ[k+1].
Step 5: Go back to Step 2 and loop until convergence. Then
each nodes obtains the optimal solution P ∗i .

The overall procedure of our distributed algorithm is
summarized in Algorithm 1.

Algorithm 1 Distributed Algorithm for Extended EDP
Require: PL: the total load demand;
Ensure: P ∗i : the optimal power assignment, ∀i ∈ V ;

1: The leader node broadcasts the total demand information
to the nodes in V1;

2: All the nodes obtain x∗ using iteration (13);
3: Each node determines Pi[0]’s according to Step 2;
4: for k = 0, 1, 2, . . . do
5: Each node computes their penalty factors pfi[k]’s and

the transmission losses P
′

loss[k] using (18)-(21);
6: Each node initializes λ+(0) and λ−(0);
7: for t = 0, 1, . . . do
8: Each node computes λ(t+1) = (λ+(t)+λ−(t))/2;
9: Each node computes Pi(λ(t+ 1)) using (24)-(26);

10: Each node updates λ+ and λ− accordingly;
11: end for
12: end for

Remark 2: Our algorithm is distributed in the sense that
the nodes conduct local computation and bidirectional com-
munication with their neighbors, except for those nodes who
also need to communicate with the aggregator.

IV. NUMERICAL SIMULATION

In this simulation case, we apply our distributed algorithm
to the extended EDP on the IEEE 30-bus system [17]. The
generator parameters are adopted from [7], where we set
γi = 0 MU for all i, for it does not affect the power dispatch.
The following are the B coefficients for the IEEE 30-bus
system [18].

There are in total 6 generators in the IEEE 30-bus system,
whose parameters are shown in Table I. We set P i = 10 MW,
so they are not shown in the table. The communication
network is a connected undirected graph as shown in Fig. 1,
where the leader node is labelled 0. The solid lines represent
the bidirectional communication between generators, while
the dotted lines represent the unidirectional information paths
from the leader node to the nodes in V1 = {1, 2}. Note that

26 
 

Table 1. Fuel cost and emission data for IEEE 30 bus six system. 

Gen. Cost coefficients   Emission coefficients   Gen. Limit 

a b c   α β γ ζ λ   Pmin Pmax 

1 100 200 10 4.091 -5.554 6.49 2.0E-4 2.86 0.05 0.50 

2 120 150 10 2.543 -6.047 5.638 5.0E-4 3.33 0.05 0.60 

3 40 180 20 4.258 -5.094 4.586 1.0E-6 8.00 0.05 1.00 

4 60 100 10 5.326 -3.55 3.38 2.0E-3 2.00 0.05 1.20 

5 40 180 20 4.258 -5.094 4.586 1.0E-6 8.00 0.05 1.00 

6 100 150 10   6.131 -5.555 5.151 1.0E-5 6.667   0.05 0.60 

 

 

Table 2. B-loss coefficients for IEEE 30 bus system. 

Bij 0.1382 -0.0299 0.0044 -0.0022 -0.0010 -0.0008 

-0.0299 0.0487 -0.0025 0.0004 0.0016 0.0041 

0.0044 -0.0025 0.0182 -0.0070 -0.0066 -0.0066 

-0.0022 0.0004 -0.0070 0.0137 0.0050 0.0033 

-0.0010 0.0016 -0.0066 0.0050 0.0109 0.0005 

-0.0008 0.0041 -0.0066 0.0033 0.0005 0.0244 

B0 -0.0107 0.0060 -0.0017 0.0009 0.0002 0.0030 

B00 0.00098573     

 

 

 

TABLE I
GENERATOR PARAMETERS (MU = MONEY UNIT)

Generator αi (MU/MW 2) βi (MU/MW ) P̄i(MW )

1 0.08 2.0 80

2 0.06 3.0 90

3 0.07 4.0 70

4 0.06 4.0 70

5 0.08 2.5 80

6 0.08 2.5 80

 
6

5  1

4  2

3

0

Fig. 1. Communication network of the 6 generators and the leader node.

the communication paths do not necessarily coincide with
the power transmission lines.

In this case the total power demand is PL = 300 MW.
We set λ+(0) = 10 MU/MW and λ−(0) = 0 MU/MW,
which are sufficient to ensure λ∗ ∈ [λ−(0), λ+(0)]. In
the calculation of Pi[k]’s and λ[k], we artificially set the
bisection number to 15, such that for each k, |λ(15)−λ[k]| 6
1
2 |λ

+(14)− λ−(14)| = 1
215 |λ

+(0)− λ−(0)| ≈ 0.0003.
We first give the results of this case neglecting the

transmission losses. The optimal Lagrange multiplier λ∗ =
6.5944 MU/MW, and the optimal power assignments are
P ∗1 = 57.43 MW, P ∗2 = 59.91 MW, P ∗3 = 37.06 MW,
P ∗4 = 43.24 MW, P ∗5 = 51.18 MW, P ∗6 = 51.18 MW.
Note that generator 5 and generator 6 have the same optimal
assignments because they are identical.
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TABLE II
ITERATIVE RESULTS OF λ[k] AND THE TOTAL COST

Iteration λ[k] (MU/MW)
∑n

i=1 Fi(Pi[k]) (MU)

1 7.7335 1429.3

2 6.8521 1729.4

3 6.8668 1459.2

4 6.8582 1467.2

5 6.8600 1460.3

6 6.8600 1460.8

7 6.8600 1460.9

We then show the results of the EDP including transmis-
sion losses using the proposed algorithm. The updates of λ[k]
and Pi[k]’s are shown in Table. II and Fig. 2, respectively.
We set the iteration step to 10, while the convergence is
already reached at k = 7. The optimal Lagrange multiplier
λ∗ = 6.8600 MU/MW, and the optimal power assignments
are P ∗1 = 52.36 MW, P ∗2 = 60.05 MW, P ∗3 = 41.38 MW,
P ∗4 = 45.99 MW, P ∗5 = 53.44 MW, P ∗6 = 51.88 MW.
The aggregate generation output is

∑n
i=1 P

∗
i = 305.11 >

300 MW, which is caused by the transmission losses.
We can see that the presence of transmission losses slightly

increase the optimal incremental cost (Lagrange multiplier)
by 6.8600−6.5944 = 0.2656 MU/MW. Note that in this case
the optimal power assignments of generator 5 and generator 6
are different. The reason is that the B coefficients associated
with generator 5 and generator 6 are heterogenous, thus
leading to the difference in penalty factors.

Moreover, from an intuitive thought, since the optimal
incremental cost increases when transmission losses are
considered, the optimal power assignment for each generator
in the presence of transmission losses should be also larger
than that when transmission losses are neglected. But in fact
sometimes it is not the case. The power assignment for gen-
erator 1 neglecting transmission losses is 57.43 MW, which
is larger than 52.63 MW, the power assignment including
transmission losses. This is also due to the transmission
losses and the consequent penalty factors. In this case, the
penalty factor of generator 1 is pf1 = 1.1084 > 1.

V. CONCLUDING REMARKS

In this paper, we propose a distributed algorithm based on
the average consensus algorithm and the bisection method to
solve the EDP including transmission losses. Our algorithm
is distributed in the sense that the nodes conduct local
computations. Through numerical experiments we show the
effectiveness of the proposed algorithm. Future work would
include the extension of our algorithm to the EDP with
other practical constraints, e.g., line capacity constraints,
the spinning reserve, and prohibited operating zones of
generators.
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Fig. 2. Iteration results of the generators’ outputs Pi[k].
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