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Abstract— This paper studies a state estimation problem for
a networked dynamic system characterized by a communication
graph. A new distributed state estimation method is based on a
distributed MAP (maximum a posteriori) estimation algorithm
for each node to update its local state. This distributed method
is applied to the state estimation problem for a large power
network and illustrated using the IEEE 118-bus system. It is
shown that the performance of this method is close to that
given by a centralized Kalman filtering approach and much
better than that given by a local Kalman filtering approach,
yet the computational complexity and communication load of
the proposed method are low for each node, making the method
scalable for large-sized networked systems.

I. INTRODUCTION

Since the state estimation problem for power networks
was introduced in [1] four decades ago, it has remained
a fertile research area. Indeed, this area has received in-
creasing attention from researchers in different fields in
recent years, owing to the multidisciplinary nature of smart
grid [2]. State estimators are broadly utilized to obtain an
optimal estimation from redundant noisy measurements, and
to estimate the state of a subnetwork which is not directly
monitored for computational or economical reasons. The
state estimation module is one of the key modules in the
energy management system (EMS), playing a vital role in
power dispatch, economic optimization, security analysis,
voltage stability analysis, and fault detection, diagnosis and
recovery [3].

Traditional state estimation algorithms are centralized,
mostly based on the Kalman filtering technique [4]. How-
ever, distributed state estimation algorithms are necessary
for large-sized networked systems, such as power networks,
traffic networks and mobile sensor networks. State estimation
algorithms can be divided into static and dynamic types.
Under stationary operational conditions, power systems are
usually treated as quasi-static systems. Many studies have
been made on distributed static estimation approaches, and
we refer the readers to [5-7]. Tai et al. [7] proposed a dis-
tributed weighted least-squares (WLS) estimation approach
for static state estimation with the property that the local
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estimates converge to the same estimates obtained via the
centralized estimator. At present, the static state estimators
are widely used in the power networks under the reliable
operation of the transmission and distribution systems. When
transient dynamics are considered, power networks are typ-
ically modeled as dynamic systems. The dynamic change
of loads gives rise to the adjustment of generations, which
in turn leads to a change in the flows and injections at
all buses. These dynamic changes can not be captured by
the traditional static state estimation, thus promoting the
development of dynamic state estimation [8-12]. Compared
with the traditional static state estimation methods, these
dynamic schemes have better accuracy and the ability to
predict the future state, which is valuable for the operator
to perform the security analysis and contingencies. Hence,
the forecasting ability of dynamic state estimation plays an
important role in the improvement of the overall EMS control
and operation.

In this paper, we consider a dynamic state estimation
problem of linear dynamic systems, with applications to
power networks where the state vector consists of the voltage
magnitude and angle at all buses in power networks. The
objective of this paper is to develop a fully distributed
dynamic estimation scheme for large-scale systems. Under
the assumption that the communication graph of the network
is acyclic, which is valid for many power networks, we
provide a distributed MAP estimation algorithm to update
the local state estimate at each time step and then apply
local predictors to give the one-step-ahead prediction for
the state vector which is treated as the priori to calculate
the state estimate at the next sampling time. Compared to
the centralized state estimation algorithm, this distributed
algorithm offers suboptimal state estimation. But the major
advantage of the distributed algorithm is that only local
computation and communication are needed. We also show
that the distributed algorithm at steady state converges in a
finite number of iterations, which equals to the maximum
path length of the acyclic graph. The main contribution
of this paper is that it generalizes known results on static
state estimation [7] to the dynamic case, and results in a
much lighter communication load than that of [5] and [6].
Demonstrated via the IEEE-118 bus system, the performance
of the proposed method is close to that given by a centralized
Kalman filtering approach and much better than that given
by a local Kalman filtering approach, yet the computational
complexity and communication load of the proposed method
are low for each node, making the method scalable for large-
sized networked systems.
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Fig. 1. Topological structure of the IEEE 118-bus system.

Fig. 2. The graph G depicting the partition of the 118-bus system.

II. PROBLEM STATEMENT

In this paper, we study a networked system with a connect-
ed graph G = (V, E), where each node i ∈ V = {1, · · · , n}
denotes a node corresponding to a control area and E ⊂ V×V
denotes the set of edges (i, j) interconnecting nodes i and
j. Let Ni = {j : (i, j) ∈ E} be the set of neighbors of node
i. It is assumed that graph is connected and undirected (i.e.,
there exists a two-way path between each pair of nodes) and
that the graph is void of self-loops and multiple edges.

For a connected graph without loops, the length of a path
is the number of edges forming it. The radius of node i is
defined as the maximum length of a path between node i and
any other node j in the graph, denoted by εi. The diameter
of the graph is Γ = max{εi, i ∈ V}.

Consider the linear dynamic model for the power systems:

xi(k + 1) = Aixi(k) + ωi(k), i ∈ V, (1)

where xi(k) ∈ Rsi is the state of node i and ωi(k) ∈ Rsi is
the associated process noise.

Two types of measurements are available:

yi(k) = Cixi(k) + νi(k), (2)
zi,j(k) = Bijxi(k) +Bjixj(k) + νi,j(k), (3)

where yi(k) ∈ Rqi is the measurement of node i, zi,j(k) ∈
Rqij is the measurement describing the interaction between
node i and node j, νi(k) ∈ Rqi and νi,j(k) ∈ Rqij

are the associated measurement noises. We will call yi(k)
the local measurements and zi,j(k) the edge measurements.
The sample time k takes values of 0, 1, 2, . . .. The constant
matrices Ai, Ci, Bij and Bji are the state transition matrix

and the measurement matrices of appropriate dimensions.
For simplicity, it is assumed that noises ωi(k), νi(k) and
νi,j(k) are independent white Gaussian with zero mean and
covariances Ri, Si and Ti,j , respectively, and the initial state
xi(0) is also an independent Gaussian variable with mean
x̄i(0) and covariance Σi(0).

The measurement model above is motivated by power net-
works where the state of each bus (or node) is measured by
a local control center, and the edge measurement represents
the so-called tie-line measurement between two subnetworks.
For the partition made of the 118-bus system in Fig. 1, the
graph G is described as Fig. 2, for which the edge (1,3) as an
example means the existence of an edge measurement related
to the subsystems 1 and 3. We note that edge measurements
are natural for describing physical interactions in a large-
scale dynamic system.

We have the following two assumptions:
Assumption 1: The graph G is acyclic.
Assumption 2: The measurement matrix Ci has full

column rank, while the covariances of noises Ri, Si and Ti,j ,
and the initial state Σi(0) are invertible for i ∈ V , j ∈ Ni.

Assumption 1 means that the graph does not have a
cycle. Note that this is not a severe requirement for power
networks because many power networks can be partitioned
into acyclic graphs, as shown in Figs. 1 and 2. Assumption
2 guarantees that state estimation error will be bounded and
positive definite. Again, this is a common assumption for
state estimation in power systems.

III. CENTRALIZED STATE ESTIMATION

In this section, we discuss the centralized state estimation
approach. Firstly, we find that (1), (2) and (3) can be stacked.
Denote the aggregated state x(k) = (xT1 (k), · · · , xTn (k))T

and measurement z(k) = (· · · , yTi (k), · · · , zTi,j(k), · · · )T ,
so the state and measurement equations can be written

x(k + 1) = Ax(k) + ω(k), (4)
z(k) = Hx(k) + ν(k), (5)
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respectively, with A = diag [A1, · · · , An],

H =


· · ·

· · · 0 Ci 0 · · ·
· · ·

· · · 0 Bij 0 Bji 0 · · ·
· · ·

 ,
ω(k) = (ωT

1 (k), · · · , ωT
n (k))T and ν(k) =

(· · · , νTi (k), · · · , νTi,j(k), · · · )T , with covariance

R = cov(ω(k)) = diag[R1, · · · , Rn],

R∗ = cov(ν(k)) = diag[· · · , Si, · · · , Ti,j , · · · ],

respectively. The initial state x(0) is aggregated with mean
x̄(0) = (x̄T1 (0), · · · , x̄Tn (0))T and covariance Σ(0) =
diag[Σ1(0), · · · , Σn(0)].

The centralized state estimator is a standard Kalman filter,
which involves two parts: centralized maximum a posteriori
(MAP) estimator and centralized one-step-ahead predictor.
They are detailed below.

A. Centralized MAP Estimation

Let x̂(k|k) denote the estimate for the state vector at
time instant k conditioned on the measurements available
up to time k, and Σ(k|k) be the associated estimation error
covariance matrix. From [13], We get

x̂(k|k) = E{x(k)|Z(k)},
Σ(k|k) = E{(x(k)− x̂(k|k))(x(k)− x̂(k|k))T |Z(k)},

where Z(k) = {z(0), z(1), · · · , z(k)}. The MAP estima-
tion approach [14] is to compute

x̂(k|k) = arg max
x(k)

p(x(k)|Z(k)), (6)

where p(x(k)|Z(k)) denotes the probability density function
of x(k) conditioned on the measurements Z(k). Using the
method in [15], the MAP estimator (6) is equivalent to

x̂(k|k) = arg max
x(k)

p(z(k)|x(k))p(x(k)|Z(k − 1)). (7)

From (5), (7) becomes

x̂(k|k) = arg min
x(k)

[(
z(k)−Hx(k)

)T
R−1∗

(
z(k)−Hx(k)

)
+
(
x(k)− x̂(k|k− 1)

)T
Σ−1(k|k− 1)

(
x(k)− x̂(k|k− 1)

)]
,

(8)
where the variable x̂(k|k − 1) denotes the prediction of the
state at time instant k, based on the measurements available
up to time k−1, and its error covariance matrix is Σ(k|k−1).
Then, it is easy to obtain the optimal estimation value as

x̂(k|k) = Σ(k|k)
(
HTR−1∗ z(k) + Σ−1(k|k− 1)x̂(k|k− 1)

)
,

and the estimation error covariance is

Σ(k|k) =
(
HTR−1∗ H + Σ−1(k|k − 1)

)−1
, (9)

which is initialized by x̂(0| − 1) = x̄(0) and Σ(0| − 1) =
Σ(0). In this way we get the optimal estimate at each time
instant in a recursive manner.

B. Centralized Prediction

This step is about optimal prediction of x(k + 1) using
the available measurements Z(k), i.e., we want to compute
the conditional mean x̂(k+ 1|k). From (4) and the obtained
estimation x̂(k|k) with its error covariance Σ(k|k), we have

x̂(k + 1|k) = Ax̂(k|k), Σ(k + 1|k) = AΣ(k|k)AT +R.

Once the measurement at time k + 1 becomes available,
x̂(k+1|k) and Σ(k+1|k) will become the priori information
for computing the centralized state estimate x̂(k+1|k+1) in
the next time step, as described in the previous subsection.
Hence, the recursion goes on.

Although this is the optimal solution to the estimation
problem, it is necessary to install the centralized state
estimator in a control center to collect all measurements
over the entire network, and requires a powerful computer
to do relatively heavy calculations. This will create heavy
computation burden and communication bottleneck when the
network size becomes large. In the next two sections, we
will investigate the local state estimation and distributed state
estimation methods, respectively.

IV. LOCAL STATE ESTIMATION

In this section, we describe a local state estimation method
from the local viewpoint of node i ∈ V , using only the local
measurements. This is basically the same as the centralized
state estimation method, except that the edge measurements
are not employed. Naturally, this will lead to a sub-optimal
estimator. We introduce this method for the purpose of
comparison later.

For every i ∈ V , the local Kalman filtering algorithm,
which is obtained using (1) and (2), is given by the following
recursive equations:

x̂i(k|k) = x̂i(k|k − 1) +Ki(k)
(
yi(k)− Cix̂i(k|k − 1)

)
,

Σi(k|k) = Σi(k|k − 1)−Ki(k)CiΣi(k|k − 1),

x̂i(k + 1|k) = Aix̂i(k|k),

Σi(k + 1|k) = AiΣi(k|k)AT
i +Ri,

where

Ξi(k) = CiΣi(k|k − 1)CT
i + Si,

Ki(k) = Σi(k|k − 1)CT
i Ξ−1i (k).

V. DISTRIBUTED STATE ESTIMATION

This section bears the main contribution of this paper.
We will describe the proposed distributed state estimation
method. This method also involves two parts: a distributed
MAP estimator at each subsystem replacing the centralized
MAP estimator in the centralized center, and a local state
predictor which is the same as in the local state estimator.

A. Distributed MAP

In the distributed MAP estimator, each node i ∈ V obtains
an estimate x̂i(k|k) for the local state xi(k) at time k,
by using (2), (3) and the exchanged information from its
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neighbors j ∈ Ni. The purpose is to minimize the global
objective function

J(x(k)) =
(
z(k)−Hx(k)

)T
R−1∗

(
z(k)−Hx(k)

)
+
(
x(k)− x̂(k|k − 1)

)T
Σ̆−1(k|k − 1)

(
x(k)− x̂(k|k − 1)

)
,

where Σ̆(k|k − 1) = diag[Σ1(k|k − 1), · · · , Σn(k|k − 1)]
with Σi(k|k − 1), i = 1, · · · , n being the block diagonal
sub-matrix of Σ(k|k − 1).

From the problem description, we can see that although
we assume that Σ(0) is a block diagonal matrix in the global
model, Σ(k − 1|k − 1) is no longer diagonal at time k =
1, 2, · · · , and then Σ(k|k − 1) is not diagonal. In order
to achieve the distributed estimation scheme, in (9) we only
use the diagonal elements of Σ(k|k−1), i.e., we replace this
matrix with Σ̆(k|k − 1) to obtain Σ(k|k). Hence, this leads
to a suboptimal estimate.

Denote the suboptimal estimate by x̂∗(k|k) with it-
s estimation error covariance Σ∗(k|k), where x̂∗(k|k) =
arg minx(k) J(x(k)). Also denote Σ∗i (k|k) (i = 1, · · · , n)
as the block diagonal sub-matrix in Σ∗(k|k) corresponding
to the state xi(k) on node i. Furthermore, notice that the
edge measurement zi,j(k) is usually of lower dimension,
so every control center indeed only needs to transmit the
reduced dimensional information Bjix̂j(k|k) instead of the
complete local estimation x̂j(k|k) to its neighbors and this
indicates a very light communication load [7].

The construction of the distributed MAP estimator is split
into three steps, which is developed in three lemmas.

Lemma 1 [7] Consider a distributed state estimation
scheme under Assumptions 1 and 2. Let x̂i(k|k) and Σi(k|k)
be the resulting estimate and the associated estimation error
covariance for i ∈ V , respectively. If Σi(k|k) = Σ∗i (k|k),
then x̂∗(k|k) = (x̂T1 (k|k)), · · · , x̂Tn (k|k))T minimizes
J(x(k)) at time k.

For each node i ∈ V and j ∈ Ni, define

ᾱi(k) = CT
i S
−1
i yi(k) + Σ−1i (k|k − 1)x̂i(k|k − 1),

Q̄i(k) = CT
i S
−1
i Ci + Σ−1i (k|k − 1),

yji(k) = zi,j(k)− βi
j(k), βi

j(k) = BjiQ̄
−1
j (k)ᾱj(k),

Sji(k) = Ti,j + Φi
j(k), Φi

j(k) = BjiQ̄
−1
j (k)BT

ji.

The following lemma studies the distributed MAP estima-
tion of the local state in a graph with only two nodes.

Lemma 2 Consider the system (1)-(3) with two nodes,
i.e., nodes i = 1, 2. Under the distributed MAP estimation
scheme, it can be obtained that

x̂∗i (k|k) = Σ∗i (k|k)(ᾱi(k) +BT
ijS
−1
ji (k)yji(k)),

Σ∗i (k|k) = (Q̄i(k) +BT
ijS
−1
ji (k)Bij)

−1,

where yji(k) and Sji(k) are defined in the above. Further-
more,

Σi(k|k, εi + l) = Σ∗i (k|k), for all l ≥ 0,

where εi = 1 and εi + l is the step number of iteration.
As shown in Fig. 3, in an acyclic graph, if one and only

one node’s radius equals to 1 and the radii of all the other

Fig. 3. Topological structure of a radial graph.

nodes is 2, then the graph is called a radial graph. The node
with 1 radius indicated by i is known as the central node. The
following lemma generalizes the result of two-node graph to
the radial graph.

Lemma 3 Suppose that Assumptions 1 and 2 hold. At time
instant k, the distributed MAP estimation and the estimation
error covariance of node i ∈ V are given by

x̂∗i (k|k) = Σ∗i (k|k)(ᾱi(k) +
∑
j∈Ni

BT
ijS
−1
ji (k)yji(k)),

Σ∗i (k|k) = (Q̄i(k) +
∑
j∈Ni

BT
ijS
−1
ji (k)Bij)

−1.

A radial graph, as shown in Fig. 3, can be seen as a two-
node graph, by combining nodes 1, · · · , n into a single
node. Thus, the proof is omitted due to space limitation.

Based on Lemma 3, we can design the main algorithm.
Initially, every control center j calculates the local estimation
x̂j(k|k, 0) and the estimation error covariance Σj(k|k, 0),
using its local measurements and initial information of state.
Then node i utilizes information βi

j(k, h) and Φi
j(k, h)

received from its neighbor j to update the edge measurement,
where h is the step number of iteration. Meanwhile, control
center i computes αj

i (k, h) and Qj
i (k, h) related to its

most recently updated local estimation and estimation error
covariance, and whereafter transmits them to its neighbors.

Algorithm 1 Distributed MAP estimation algorithm

For each i ∈ V and at time step k = 0, 1, · · · :
1) Node i computes its local estimation and covariance:

x̂i(k|k, 0) = Q̄−1i (k)ᾱi(k), Σi(k|k, 0) = Q̄−1i (k),

which are initialized by x̄i(0) and Σi(0).
2) Node i transmits the following information to j ∈ Ni:

βj
i (k, 0) = Bij x̂i(k|k, 0), Φj

i (k, 0) = BijΣi(k|k, 0)BT
ij .

3) Main loop (h = 1, 2, · · · is the step of iteration):
(a) Using the information transmitted from j ∈ Ni, node
i updates the edge information

yji(k, h) = zi,j(k)− βi
j(k, h− 1),

Sji(k, h) = Ti,j + Φi
j(k, h− 1).

(b) Node i computes the current state estimation and
error covariance matrix:

x̂i(k|k, h) = Q−1i (k, h)αi(k, h), Σi(k|k, h) = Q−1i (k, h),
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where

αi(k, h) = ᾱi(k) +
∑
j∈Ni

BT
ijS
−1
ji (k, h)yji(k, h),

Qi(k, h) = Q̄i(k) +
∑
j∈Ni

BT
ijS
−1
ji (k, h)Bij .

(c) Node i computes

αj
i (k, h) = ᾱi(k) +

∑
m∈Ni/{j}

BT
imS

−1
mi (k, h)ymi(k, h),

Qj
i (k, h) = Q̄i(k) +

∑
m∈Ni/{j}

BT
imS

−1
mi (k, h)Bim,

and then transmit the following information to node j

βj
i (k, h) = Bij [Q

j
i (k, h)]−1αj

i (k, h),

Φj
i (k, h) = Bij [Q

j
i (k, h)]−1BT

ij .

�
Theorem 1 Suppose that Assumptions 1 and 2 hold. At

time instant k, if Algorithm 1 is used, then for every i ∈ V ,

x̂i(k|k, εi + l) = x̂∗i (k|k),

Σi(k|k, εi + l) = Σ∗i (k|k), for all l ≥ 0,

where εi + l is the step number of iteration.
Proof: The proof considers the state estimation of node

i from its local point of view. At the first iteration h =
1, consider the radial sub-graph of G, which has node i as
the central node and all its neighbors. Apply Algorithm 1
together with Lemma 3 to this radial graph. After the first
iteration, node i can obtain the desired suboptimal estimate
corresponding to this sub-graph.

When the iteration h = 2, consider the radial sub-graph of
G, having i as the central node and all its neighbors, in which
we combine each node j ∈ Ni with its neighbors but except
node i into a single node as the neighbor of node i. Applying
Algorithm 1, each node j computes the quantities βi

j(k, 2)
and Φi

j(k, 2), and sends them to node i, in which they are
builded by using the information βj

m(k, 1) and Φj
m(k, 1)

previously received from node m ∈ Nj/{i}. Then, the case
of the second iteration is equivalent to using Lemma 3 to
the above mentioned radial sub-graph, and node i is capable
of computing the suboptimal estimate and estimation error
covariance of this sub-graph formed by all nodes, which are
less than or equal to two hops away from it.

At the iteration h, combine each node j ∈ Ni together with
all the nodes, which are less than or equal to h−1 hops away
from it, but without node i into a single node. Then consider
the radial sub-graph which is formed by these nodes and has
node i as the central one. Similar to the above argument,
we get that node i is capable of computing the suboptimal
estimate of this radial graph formed by all nodes, which are
less than or equal to h hops away from node i. Since there is
no more information transmitted from nodes after h ≥ Γi at
each time k, node i will obtain the suboptimal estimate and
its covariance corresponding to the whole graph G, and this
value will remain unchanged in the subsequent iterations.
Then we achieve (14) for all i ∈ V . �
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Fig. 4. The traces of the covariances of the three methods

It can be seen from (14) that the local estimates on all
nodes converge after Γ steps.

B. Local Prediction

Based on (1) and the distributed state estimate x̂∗i (k|k)
with the associated error covariance Σ∗i (k|k), it is easy to
obtain the state prediction with its covariance matrix

x̂i(k+1|k) = Aix̂
∗
i (k|k),Σi(k+1|k) = AiΣ

∗
i (k|k)AT

i +Ri.

Once the measurements at time k + 1 become available,
x̂i(k + 1|k) and Σi(k + 1|k) are used to build local state
estimation x̂i(k + 1|k + 1) and covariance Σi(k + 1|k + 1),
for each node i ∈ V . Hence, Algorithm 1 goes on.

VI. SIMULATION RESULTS

In this section, we use the IEEE 118-bus system to test the
performance of the distributed state estimator (or distributed
Kalman filter (DKF)) by comparing with the centralized
state estimator (or centralized Kalman filter (CKF)) and
the local Kalman filter (LKF). As shown in Fig. 1, this
118-bus system is partitioned into 6 subsystems and the
induced topology is acyclic. These subsystems are seen
as nodes and connected by tie-lines, which is shown in
Fig. 2. To simplify the simulations, we assume that phasor
measurement units (PMUs) are used for measurements so
that linear measurements are available.

The computational loads of the centralized and distributed
MAP estimators are O((

∑n
i=1 si)

3) and ñiO(s3i ), where ñi
denotes the cardinality ofNi. The computational load of each
distributed estimator relates to the number of its neighbors.
Since each node only has a few neighbors, i.e., ñi � n, the
computational load of the proposed distributed algorithm is
smaller than that of the centralized method.

We run these three estimation algorithms under Assump-
tions 1 and 2. The sum of the trace of the estimation error
covariance can be described as

∑n
i=1 Tr{Σi(k|k)}, which

can be used to describe all methods. We will use them to
compare the performances of these estimation algorithms.

Fig. 4 shows that the trace of estimation error covariance
of the DKF algorithm decreases faster than that of the LKF
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scheme, which means that the performance of the DKF
estimation algorithm is better than the LKF method. After
converge to some constant, the estimation value of DKF
scheme is only marginally larger than that of the CKF.

VII. CONCLUSIONS

A distributed method for state estimation is presented for
large-scale networked systems with applications in multi-area
interconnected power networks. The core of this new method
is the distributed MAP estimator. Under the assumption that
network graph is acyclic, the distributed MAP estimator
converges to the suboptimal estimate at each local area in
the steady state after a finite number of iterations, which
equals to the diameter of the graph. The distributed esti-
mation algorithm enjoys low computational complexity and
communication load. Yet, when applied to power networks,
its estimation accuracy is only marginally worse than the
centralized MAP estimation algorithm, as demonstrated on
the IEEE 118-bus system.

APPENDIX

Proof of Lemma 2: The proof is divided into two parts.
A. We consider the distributed MAP estimation scheme.

Firstly, we discuss the state estimation on node 1 at time
instant k, as the argument goes the same for the estimation
on node 2. For node 2, it is clear that

x̂2(k|k) = Q̄−12 (k)ᾱ2(k), Σ2(k|k) = Q̄−12 (k).

The information transmitted from node 2 to node 1 is

β1
2(k) = B21x̂2(k|k), Φ1

2(k) = B21Σ2(k|k)BT
21.

Node 1 updates the edge measurement using the received
estimation from node 2:

y21(k) = z1,2(k)− β1
2(k), S21(k) = T1,2 + Φ1

2(k).

Following by the distributed MAP estimator (8) with
z(k) = [yT1 (k), yT21(k)]T , H = [CT

1 , BT
12]T , R∗ =

diag[S1, S21(k)], the local estimation and its error covari-
ance on node 1 are

x̂1(k|k) = Σ1(k|k)(ᾱ1(k) +BT
12S
−1
21 (k)y21(k)),

Σ1(k|k) = (Q̄1(k) +BT
12S
−1
21 (k)B12)−1.

With the same proof, we can also get that

x̂2(k|k) = Σ2(k|k)(ᾱ2(k) +BT
21S
−1
12 (k)y12(k)),

Σ2(k|k) = (Q̄2(k) +BT
21S
−1
12 (k)B21)−1.

B. The whole dynamic system can be written
as (4) and (5), with x(k) = (xT1 (k), xT2 (k))T ,
ω(k) = (ωT

1 (k), ωT
2 (k))T , A = diag [A1, A2],

z(k) = (yT1 (k), yT2 (k), zT1,2(k))T , ν(k) =
(νT1 (k), νT2 (k), νT1,2(k))T ,

H =

 C1 0
0 C2

B12 B21

 , R = diag [R1, R2] ,

R∗ = diag[S1, S2, T1,2]. At time k, consider the centralized
MAP estimation, in which Σ(k|k−1) is replaced by Σ̃(k|k−
1). According to (9), we obtain

Σ∗(k|k) =

[
Γ11 Γ12

ΓT
12 Γ22

]−1
,

where

Γ11 = CT
1 S
−1
1 C1 +BT

12T
−1
1,2B12 + Σ−11 (k|k − 1),

Γ12 = BT
12T
−1
1,2B21,

Γ22 = CT
2 S
−1
2 C2 +BT

21T
−1
1,2B21 + Σ−12 (k|k − 1).

According to the matrix inverse lemma, we obtain that the
first diagonal block of Σ∗(k|k) is given by

Σ∗1(k|k) = [CT
1 S
−1
1 C1+Σ−11 (k|k−1)+BT

12S
−1
21 (k)B12]−1.

Following the same argument, we have that

Σ∗2(k|k) = [CT
2 S
−1
2 C2 +Σ−12 (k|k−1)+BT

21S
−1
12 (0)B21]−1.

It is straightforward to get Σ∗i (k|k) = Σi(k|k), i = 1, 2.
Furthermore, on the basis of Lemma 1, we get x̂∗(k|k) =

(x̂T1 (k|k)), x̂T2 (k|k))T . �
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