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Discrete-Time Convex Direction for Matrices *
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The notion of convex direction has often been used in
the study of robust Hurwitz|Schur stability of polyno-
mials and Hurwitz stability of matrices. In this paper, a
notion of matrix convex direction is introduced for dis-
crete-time systems. Namely, a matrix D is called a
discrete-time matrix convex direction if for any Schur
stable matrix A, stability of A+ D implies that of
A+ puD for all 0 < p < 1. We provide a complete char-
acterization of all such convex direction.
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1. Introduction and Preliminaries

This paper is concerned with the robust Schur-stabi-
lity of a segment of matrices of the the following
form:

A(p)=A+pD, pe0,1] 1)

where A4 is a nominal matrix and D represents the
direction of the segment. An important robust stabi-
lity problem is the following: under what conditions
does the stability of the extreme members (i.e. 4 and
A+ D) of the segment implies the stability of the
whole segment?

The notion of convex direction is first proposed by
Rantzer [1] to study the extreme point property for a
segment of polynomials, and it is defined as follows: a
polynomial p(s) is called a convex direction if for any
Po(s) with deg(py(s)) > deg(p(s)), the stability of both
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po(s) and po(s) +p(s) implies that of every
po(s) + up(s), 0<p<1. It is known that many
existing extreme point results can be interpreted and
unified using convex direction; see [2,3] for details. In
[1], a necessary and sufficient condition, called phase
growth condition, is provided for testing convex
directions. In [2], a simple sufficient condition for
convex directions, called alternating Hurwitz minor
condition (AHMC), is given using the Hurwitz matrix
corresponding to the coefficients of p(s). In [4], a
finite algorithm for testing convex directions is pre-
sented in terms of Routh tables. Note that, in the
polynomial case, there is no significant difference
between testing continuous-time convex directions
and testing discrete-time convex directions. This is
due to the fact that the discrete-time problem can
be converted into a continuous-time one or vice
versa by using, e.g., bilinear transformation. A
remarkable feature of the bilinear transformation is
that the transformed family of polynomials remains
linear in p. By introducing the notion of convex direc-
tion in the state space, Kokame et al. [5] provide a
simple characterization of all matrix convex direc-
tions. Although a bilinear transformation can be
used to convert Schur stability to Hurwitz stability,
it will destroy the linearity in u. To be more precise, a
bilinear transformation for the family of matrices is
given by A(u) — (I — A(u)™"(I + A(n)) and the
result is no longer linear in . Hence, the continuous-
and discrete-time cases have to be treated separately.
We shall provide a complete characterization of all
discrete-time matrix convex directions. It turns out
that convex directions are restricted to only a few
special forms.
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2. Main Result

The main result is simply stated as follows.

Theorem 1. A matrix D is a discrete-time convex
direction if and only if it is similar' to one of the
following matrices:

(i) D;=al, (2)

@ =[oo] 2=[s]  ®
0a0

(i) Dy=[000 (4)
000

where I, is an identity matrix in R"™" and « is a real
scalar such that there exists at least one A for which
both 4 and 4 + D are Schur stable.

We break the proof into two parts. The sufficiency
is given in Section 3, and necessity in Section 4. In the
sequel, we denote

ap ap ... Ay,

a2 a2 - Qop

and
p(s, p) = det[s] — 4 — uD] (6)

=s"+e, 1"+ . +este

3. Proof of Sufficiency

(i) To show that al, is a convex direction, we need to
show that the Schur stability of 4 € R™" and
A+ al, implies that of A+ pal, Vue(0,1),
Va € R. Assume that s* is an eigenvalue of 4, then
s* + pa is an eigenvalue of 4 + pal,. From the con-
vexity of the unit circle, we can conclude that if s* and
s" + a are in the unit circle, so is s* + pa, Yu € (0,1);
(ii) The characteristic polynomials of 4, 4+ uD, and
As 4 pDs are given by

pas, ) =5+ e1 (w)s + (1) 7)
=5+ (a1 — apn)s+ (—ay pa
+ (anay — apay))

and

'A matrix X is said to be similar to matrix Y if there exists a
nonsingular matrix 7 such that T-!X7T = Y.
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pa(s, ) = 5* + ey (u)s + eo (i) (8)
=5+ (—ay — ayp — pa)s
+ ((anaz — anay) + plana))

respectively. The stability constraints for a matrix in
R>*2 are as follows:

eo(p) —er(p) +1>0
eo(p) +e(u) +1>0 )
eo(p) < 1

Since for D, and D; both e;(u), i =0,1 , and the
constraints in ( 9 ) are linear in p, ( 9 ) holds in
such case for all p € [0,1] if it does for pu € {0,1}.
That is, D, and D; are both convex directions.
(iii) The discrete-time stability constraints for matrix
in R¥? are as follows:

eo(p) +e(p) +e(w)+1>0  (a)
eo() —ei(u) +ex(u) —1<0 (b)
-1 <ep(p) <1 (c)

e5(u) — 1 — eg(p)ex(n) +e(u) <0 (d)

It is straightforward to verify that e,(u) is a constant
and

(10)

er(p) = e1(0) — apay
eo(p) = eg(0) + au(ay az; — axas)

(11)

which are linear in p.
Because (10d) is a quadratic function with leading
coefficient being positive and (10a)—(10c) are all linear
with respect to u, we conclude that D; is a convex
direction.

Finally, we need this lemma:

Lemma 1. If D € R™" is a convex direction, so is
T7'DT, where T is a real nonsingular matrix.

Proof. Suppose A and A+ T 'DT are stable
matrices. We need to show that A+ uT7'DT is
stable for all ue€[0,1]. Obviously, TAT™' and
TAT™' + D are stable. Hence, TAT ! + uD is stable
for all 4 € [0, 1]. Equivalently, A + uT~'DT is stable
for all p € [0,1].

4. Proof of Necessity

To show that the conditions in Theorem 1 are neces-
sary, we need to exclude all other matrices from the
set of convex directions, which is straightforward but
unfortunately rather tedious. To begin with, we need
the following result.
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Lemma 2. For a block triangular matrix:

Dy D
D= [ 11 12]

where D, and D,, are square matrices, if D is a con-
vex direction, so are both D;; and Dy,.
Proof of Lemma 2: 1t is obvious by choosing

Ay A
A= [ 11 A ] (12)

Now we proceed to prove the necessity of Theorem 1.
Suppose D is a convex direction. It is obvious that
there must be at least one 4 such that both A and
A + D are stable. To show that D must be in one of
the forms (i)—(iii), we consider the use of similarity
transformations. Subsequently we only need to treat
matrices in Jordan canonical form. In the following,
we shall use €, €; and ¢; to denote sufficiently small
positive real numbers. In particular, when we say
1 — 2¢; — e, > 0, we mean that there exist sufficiently
small €,¢e; >0 such that the above is true. Four
major cases are considered, depending on the dimen-
sions of D.

Case 1. D € R¥2. We need to consider three types of
matrices:

Ds = diag{x;, X2}, x| # X2, X1x3 # 0,

[x 1
D6: 0x:|,X7é0
and
Cxy
D7: ]7)’750
L=V X

An immediate application of Lemma 2 to the above
matrices reveal that we must have |x;| < 2, |x;| <2
for Ds and |x| < 2 for D¢ . This restriction on the size
of the diagonal elements shall be used throughout the
proof.

Case 1.1. D5 = diag{x;, x,}, x| # X3,
el(n) = —ay; — axn — p(x1 + x,)
eo(p) = (ax + px2)(an + px1) — apan
and ( 9 ) becomes
px1xy + planx + apxy + X1 + X3)
+ (anan — apay +an +an+1) >0
1x1x; + planx; + apxy — X — xp)
+ (anan —apay —ay —an+1) >0
1x1% + plan X + apxy)
+ (anan — apay) <1 (14)
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From the symmetry of x; and x, in ( 14 ), we need to
consider only two subcases: (i) x; > 0,x, > 0 and (ii)
x; < 0 < x,. The counterexamples below show that
Ds is not a convex direction. We only list the counter-
examples here and the reader can consult the
Appendix for details.

Counterexample for subcase (i-1): x; > 0,x, > 0 and
O0<x+x<2.

_3ax; + 2(x} — x;%; + 2x5)

an

4(xy — x1)
_ 3e1xp = 2(x1 (% = 2) - x%)
2 4(x - xy)

ap =1
_ 962 x,x, + 861 (2x3 — x1 %, + Zx%) — 4x]x2(x% — 2xyx, + X5 — 4)
16(x; — x7)”
(15)

Counterexample for subcase (i-2): x; > 0,x, > 0 and
2< x4+ x <4

) =

8 — 4x| + 261X1 - 2x1(€2 + X1) +XIXZ(863 +x; — 4E3x1)

apn =

4(x; — x3)
2 = —8 4+ 2x5(2 — €)) + x2(2€; — 8e3xy + 2x3 — X1 X, + 4€3%1 X
n 4(x1 = x2)
ap = 1
ay =apap —e + 1+ (an +ap) (16)

Counterexample for subcase (ii-1): x; <0 < x, and
0< X1 + X5.

—261 —+ 262 + 2x1 - x% + X1X2

an =

2(x) — x,)
g — 2¢; — 26y — 2%y — x1%5 + x%
2 2(x; = x3)
ap=1
ay = ajap — (1 —€) (17)

Counterexample for subcase (ii-2): x; < 0 < x, and
x;+x, <0.

_ X1 (61 + €+ 263X2(X1 -+ 1) — Xy — 2)

a

X2 — X
ayy = x(€1 + €3 + 2e3x1 (%2 + 1) — x; — 2)
X1 — X
ap=1
ay =anap+1—ay—an—¢€ (18)

x 1

Case 1.2. Dy = [0 X

], x # 0. We have
eo(k) = p°x* + p(ay x + apx — ay)
+ (anaxn — apan)
el(p) = —ay —axn — 2pux (19)
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and (9 ) reduces to

WX+ playx + apx — ay; — 2x)

+ (a1 — apay —ay —ap)+1>0

x4+ planx + apx — ay; + 2x)

+ (anan — apay +ayy +ap)+1>0

px? + p(anx + apx — as)

+ (anayn —apay) < 1 (20)
We only have to construct counterexamples for the

case x > 0. For x < 0, we simply change the signs of
ap and ay.

Counterexample for subcase (i): 0 < x < 1.

4X+2—€1+€2
ay = -——7"

2 b
ar =1
x(2x —€; + e —4)
= — )
4
ap = 2( x+€2) (21)

X(2x — € + € —4)
Counterexample for subcase (ii): 1 < x < 2.
ap = e3x2 -3
ap =1
—2€3X2 —+ €] + 4
- 2(—263+ 1)+4X—61 +62 -4
ay; = €3x3 + xz(—2€3 + 1) —4x + €] — € + 4
(22)
Case 1.3. D; = [_); i} , ¥ # 0. Now, we have
el(p) = —ay —ay — 2ux
eo(u) = p2(x* + %) + u(x(an + ax)
+y(a — axn)) + (anayn — apay)  (23)
and the stability constraints (9 ) become
©(2 4 17) + p(x(an + az) + y(az — ay)
—2x) + (anayn — apay —aj —ay +1) >0
P+ %) + w(x(arr + axn) + y(ap — ay)
+2x) + (anan — apay +ay +ap +1) >0

B2+ ) + u(x(an + axn) + y(a — az))
+ (an1ay — apay) < 1 (24

ap = 3
—€3X

By substituting 1 = 0 and 1 into ( 24 ), we find that
[2x +ai1 +ap| <2 and |ay; +ap| <2 (25)

which in turn shows that |x| < 2. Also, if ( 24 ) is
violated for x,a;, and a,,, it remains so for
—X,—ay; and —ay,. Again, we only need to consider
x> 0.
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Counterexample for subcase (i): 0 < x < 1.
aj +axy = —2x
2 2
X =2x—y —€¢+e
ap—ay = .
y
anay —apay) =2x+¢€ —1 (26)

The equations above have at least the following solu-
tion:

a) = —-x
ay = —Xx
—ata =2+ 2 =y = /0(e,0) + (2 ) (2 - %) +7)
ap = 2
_a—a+2= 2+ Al g~ 2x 4 )P+ (me 6 — 2x 4 — )

as 2y

@7

where O(e;, ;) = (6 — €)(e; — € + 4x — 2x%) — 2)°
(e1 + ).

Counterexample for subcase (ii): 1 < x < 2.

ay +ay =e3( +y%) -2
—6x’ — (=265 + 1) + x(—e3p” +4) — (<265 + 1) — ¢ + ¢, — 4
y

ap —ay =
_ 2, 2 1
anan —apay = —e3(x° +y°) +¢ +

(28)

The equations above also have at least the following
solution:

apy =-1

ay = -1+ +)%)

_ Oy(e1,62,63) + (dx — 4 — x2 — %) — \/((2 —x)? -f—yz)2 + 0y(e1,62,€3)

= >

_ Os(ey,62,€3) — \/(—(2 —x) =+ (g —6) e (22— + 2% — xy2))?

2y
(29)

ap

a

where

O1(e1,6,€3) = —€1 + € + 5(2x% — x> + 27
- xy°)

Os(e1,62,€63) = (€1 — €2)(8 + €, — ey — 8x
+2x°) = 2% (e + &)+

26(x = 2) (X + y) (4 + € — & — dx + x°

+5°) +&(x -2 +)7)

O;(e1,€,€3) = (€] — €) + e3(—2x% + x> — 2)?
+x%)

(30)

Case 2. D € R¥3. The discrete-time stability con-
straints for third order polynomials are given by
(10).

The possible Jordan forms in R3*3 are as follows:
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[x10 [ x00 y10 x 00
Ox1 |, [O0y1], |OyO|, | O0x0
| 00 x | 00y 00x 0 0 x;3
-xl y OW X1 0 0
=yx1 0 |, 10 xy (31
| 0 0 x; | 0 —yx

We first notice the fact that for a block diagonal
matrix, exchange two of its non-zero blocks will not
affect its convex direction property. Then, by apply-
ing Lemma 2 and results in R**2, it is revealed that
the only possible candidates for discrete-time convex
directions in R* are oy and the following:

010 [010]
D= |001|, Do=|000 |,
000 (00|
x00 [ x 00
Dp=|000|D,=|0x0 (32)
000 1000

Case 2.1. D = Dg. We have the following counter-
example:

—0.9890029 —0.999938 6.25 x 10~}
A=Ag= 4 0 0
63996 -4 0
(33)

Case 2.2. D = Dy. We can consider two cases with the
observation that a necessary condition is |x| < 2. We
need to show that Dy is not a convex direction when

x #0.

Counterexample for subcase (i): (0 < x < 2).

43—+ - -2)

x+2 -5
_ X 430026 = 5) + (116} — 53¢, + 69) + x(6€] — 386} +92¢, — 89) + €} — 6} + 116} — 5¢; +6
- x(x+2¢ - 5)°

an =

ap=x+2¢ —5,ay =x,
24x(3q -7+ —3¢ +4
ap=————"—"7——,

x+2¢ -5 an =0
ay=ap=1,a3=€-2 (34)
Counterexample for subcase (ii): (-2 < x <0).
o EAxl-a) -+ -2)
"= x—2¢ +5
au:_x‘+2x’(2—e.)—;.1(e%—7q+17)+zx(e§—9é,+3oq-33)+et-6e?+nef—se.+a
)r(x—2€|+5)2
a3 =-x+2 -5,a4y =x,
2
ap = xz—-———+ x(3;_s12)€::-|5+3€| -4 ,a3=0
ay=ap=1,a3=-x+¢ —2 (35)

Case 2.3. D = D, . For this case, we only need to
consider x € (—2,0) because (i) we must have |x| < 2
(Lemma 2,) and (ii) D;p and —D;( have the same
convex direction property.
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Counterexample for Dy:

e X 4 _ (e1x+ 265+ x)

11 — 2 y ¥12 — (63—3x)

a _ (e = x)(e1x + 2¢3 + x) an =1

13 — (x(zx — 63)) ’ 21 — 4y
2¢3 — 3x

ay=-1, ap= 3x

(36)

Case 2.4. D = D,;. Using the same argument as in
Case 2.3, we only need to consider x € (—2,0).

a3 =axp =az =1

Counterexample for Dy;:
(21 — ey +e3+2)
2 bl
a3 = 0.25(4€} —4e(6 —e3 +x—2) + &
—26)(e5 — x4 2) + & — 2e3x — 8x)
261 —62+€3 - 2x
2

ay = — app = —€ —€ —X

@y =apn=1, a3z=-—

a3 =0, ap=ayp=1

(37

Case 3. D € R¥*. The discrete-time stability con-
straints for fourth order polynomials are the following:
1+e3(p) +ex(p) + er(p) +eo(p) >0
1-e3(p) +ex(p) —er() + eo(p) >0
e1(p) —es(p) <2(1 —eo(n))
e(p) — es(p) > 2(eo(p) — 1)
e3(1) + 2e0(m)ea() + er(w)es(w) — eo(n) — ex(m)
—eo()e3 (1) — € — e3(w)ea(u) — el (w) + 1
+eo(p)er(m)es(p) >0

From the analysis of cases 1 and 2 and Lemma 2, we
know that any Jordan forms involving complex eigen-
values are not convex directions. Further, out of the
following possible Jordan matrices with real eigenva-
lues

(38)

x100 3100
A [0x10 . |0y10
Dloox1 ] @|o0y0]
000 x 000 x
2100 7100
0z00 0y00
. . "
(iii) 000 , (iv) 001 (39
000 x 000 x

(i) and (ii) above can be eliminated. In (iv) we should
have x = y = 0. In (iii) we must have xy =0,z =0.
However, if either x or y is not zero , then it will
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violate Case 2.2. Therefore, it cannot be a convex
direction. So now the only two candidates for dis-
crete-time convex direction are:

0100 0100
0000 0000

= —_ 4

2710000 "2 o001 (40)
0000 0000

For D), , a counterexample is given by:
—0.0406597 0.262038 0 —0.0118078

4 — 0.629544  0.278577 0 0
2= 1 0 0 —0.974787
0 0 1 1.78088
41)
For D3, a counterexample is as follows:
0 -3 0 -5
Ao = -1 0 0 O )
P71 0 /5-11
1 1 1 1

The eigenvalues of A3 + uD,; are , respectively,
D
@ - D #@ -1 ap=0
[1%2(461 - 5%, :l:i%(%l —5) atp=1/2

Clearly, for some sufficiently small ¢; > 0, the eigen-
values at u = 0 and p = 1 are inside the unit circle but
those at p = 1/2 will go unstable.

Case4. D € R™",n > 4. Applying Lemma 2 and the
analysis for case 3, the only candidate for discrete-

Table 1. Counterexample for Ds with x;x, > 0.
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time matrix convex direction is af, which is already
known to be a convex direction.
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Appendix

In this Appendix, we verify all the counterexamples
used in Section 4 (Tables A.1-A.7). For each counter-
example, we simply tabulate all the stability con-
straints at =0 and 1 and some p* € (0,1) . All
these tables can be readily verified by a mathematica
program called DCD_checking.m which is available
by anonymous ftp from ee.newcastle.edu.au under
the directory /pub/LinXIE. As mentioned before,
€1,€; and €3 are sufficiently small positive numbers.

n Constraints When 0 < x; + x;, <2 When 2 < x; +x, < 4
eg—e;+1>0 —a¥inind) o 6 >0
0 e+e +1>0 € >0 262—453x1xz—x;2x2+2(x|+x2)+4 >0
€ < 1 £4L_ (xl-;xz) <1 2(51+ez)—4€3x|xi—x,x2+2(x1+xz) <1
e—e+1>0 (xl +x, + 2) - 61/2 >0 2e,+4e3x1xz+x12x2+2(x|+x2)—4 >0
1 e+e+1>0 €§>0 €& >0
€ < 1 51/4 + (Xl‘zh\’z) <1 2(61+ez)+4e3x,x21-x,x2+2x,+2x2—8 <1
e—e+1>0 * € — mfsxlxz—zﬂ'xixﬁ(xl—2)(xz—2)] <0
u* e+e +1>0 —ix1x2+€ <Oatp* =1/2 *

e0<l *

*
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Table 2. Counterexample for Ds with x;x, < 0 and x; < 0 < x;.
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n Constraints When 0 < x; + x; When x; + x, <0
e+e+1>0 Rlatnin 5 €6 >0
0 e—e+1>0 L —€ — 26 —de3x1x +4 >0
€ <1 1-¢ <1 —6 —2axx+1< 1
e+e+1>0 2:2—‘2—;51—_1‘1>0 € +263x1%3 — X1 — X5 >0
1 e—e+1>0 §=2adnin 5 —€1 — 26— 2e3%1 %+ X, + X, +4 >0
€ <1 l-e<1 l-e<1
eg+e+1>0 * *
1/2 eg—e+1>0 * *
e <1 ﬂx"_ifz—_xnﬁ>1 1—e—A2—gxx; > 1

Table 3. Counterexample for Dg with x > 0.

7 Constraints When (0 < x < 1) When (1 < x < 2)
e+e+1>0 4x+¢e >0 —263x2+€1+4>0
0 e—e+1>0 € >0 >0
€ <1 Srbarasl o —ax’+e+1<1
e+e+1>0 e >0 6 >0
1 e—e+1>0 6>0 255 +4x+ e —4>0

e <1 ated g
e+e+1>0 *
I’ eg—e+1>0 —Z 4 <Oarp* =}
e0<1 *

ax’+2x+e6-3<1
*
—u' (=26 — pf + 1)+ 4t x + e (1 - p*)
4 (e —4) > —p*(x—2)* < Oasp* — 0
*

Table 4. Counterexample for D; with x > 0.

L Constraints When (0 < x < 1) When (1 < x < 2)
e+e+1>0 4x+¢€ >0 26(*+y)+e+4>0
0 e—e+1>0 >0 6 >0
g <1 2x+e—-1<1 6+ +ag+1<1
e+e+1>0 & >0 e >0
1 e—e+1>0 € >0 262+ )+ e +4(x—1)>0
€ <1 6a-1<1 6+ +e+(2x-3) <1

e+e+1>0
eo-—e1+1>0
€0<1 *

*
2
—i—"zjy)+—1—1‘ 19 < atp’ =1

*

w P +57) = (x =22 + )+ Olae2,6) <0

*
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Table 5. Counterexample for Dg and Dy.
n Constraints Dy Dy when (0 < x < 2) Dy when (-2 < x < 0)
e+e+e+1>0 1.99 g >0 §>0
0 € — € + € — 1<0 —0.009999 — < 0 2x — € < 0
-l<eg<1 0.001 O0<e <1 0<e <1
ef—1—epe,+e <0 —1.00099 28 +6-2<0 —x(e; + 1) +2+ ¢ -2<0
e+e+e+1>0 1.97826 >0 >0
1 e—e+e—1<0 —0.0217395 -2x—¢€ <0 — <0
-l1<¢g<1 —0.0107404 O<e <1 O<e <1
e —1—epe, +e, <0 —0.98926 (e +1)+2+6-2<0 23+ -2<0
e+e+e+1>0 16001 e —2<0 *
! e—e +e,—1<0 15999 * 2o >0
-l<g<l1 15999 * *
ed—1—epe,+e, <0 2.55952 x 10° * *
Table 6. Counterexample for Dy, and Dy;.
m Constraints Dip(-2<x<0) D (-2<x<0)
e+e+e+1>0 %.L#{L €3
0 eo—‘e|+82—1<0 ﬂlf_m —€
-l<eg<1 —€3 0<l—¢<1

e(z,—l—eoe2+el<0

ete+e+1>0

1 e—e+e—1<0
-l<eg<1

e%—l—eoe2+e1<0

e+e+e+1>0
eg—e+e;—1<0
-l<eg<1
eﬁ—l—e0e2+e1<0

=

2¢; +2£23 +€3x)
2

4+2¢)+2e3—x;
2

—4-2¢)+2e3—x,

2
€3

2¢; +25§ +€3x]
2

€1

—4¢) + 2606, — 0.5€,6, + 0.5¢, ¢
€3 —elxlfzzﬂ~92ﬂ+x% >0
—62—4x1 + €1x; —52251'+£3;*l—x% <0
0<1 —-<1

—4¢; + 26 + € — 0.5¢1€; + 0.5¢ €3 + 4x;
—3€;1x1 +0.5¢xx; — 0.5¢3x; +x1§ <0

*
*

1—¢ +0.25x3 > 1
*
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Table 7. Counterexample for Dy, and D3,

Lin Xie and Minyue Fu

M Constraints Dy, Di3(€1 = 15%)
1999
ete +e+e3+1>0 0.122109 1000
l—e;4+e;—e;+e>0 3.97201 1o
0 e;—e3—2(1—¢) <0 —0.237635 —ﬁ
ep—e3—2(eg—1)>0 4.46291 ﬁ
eg + 2epey + €163 — ey — €3 — eoeg - e%— 1.25975 x 107° 100(1)333000
epey — €+ 1+ egeje3 >0
ep+e +et+es+1>0 0.0000343852 22
1—€3+€2—€1+e()>0 160766 %
1 e1—e3—2(1—¢) <0 —0.343837 —ﬁ
ep—e3—2(eg—1)>0 6.81139 i%o
€3 + 2e062 + €163 — € — €2 — €9€3 — €~ 2.09615 x 107 T00000000
8(2)82 —el+ 1 + ege1e3 > 0
e+e+ertes+1>0 0.0610718 28
l—es+e,—e +e5>0 2.78983 248
i ep—e3—2(1—¢) <0 -0.290736 %
e1—e;—2(eg—1)>0 5.63715 - 2
e+ 2epe; +e1g3 — €9 — e — e0e3 — €g— —3.55455 x 107 1300000000

epey — el + 1+ epere; > 0




