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A New Encoder for Continuous-Time Gaussian
Signals With Fixed Rate and Reconstruction Delay
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Abstract—In this paper, we propose a method for encoding con-
tinuous-time Gaussian signals subject to a usual data rate con-
straint and, more importantly, a reconstruction delay constraint.
We first apply a Karhunen-Loéve decomposition to reparameterize
the continuous-time signal as a discrete sequence of vectors. We
then study the optimal recursive quantization of this sequence of
vectors. Since the optimal scheme turns out to have a very cumber-
some design, we consider a simplified method, for which a numer-
ical example suggests that the incurred performance loss is negli-
gible. In this simplified method, we first build a state space model
for the vector sequence and then use Bayessian tracking to sequen-
tially encode each vector. The tracking task is performed using par-
ticle filtering. Numerical experiments show that the proposed ap-
proach offers visible advantages over other available approaches,
especially when the reconstruction delay is small.

Index Terms—Bayesian methods, continuous-time signals, par-
ticle filters, predictive coding, quantization, state-space methods,
transform coding.

I. INTRODUCTION

OST digital data transmitted over communication
channels originate from continuous-time signals with
the purpose of having the original continuous-time signals
reconstructed. While many applications do not have a strict
requirement on reconstruction delays, many other applications
are of real-time nature. With the rapid growth in high-speed
communication networks, real-time applications such as smart
electricity grids [1], [2], and networked control systems [3], [4]
are made possible. In both cases, fast changing continuous-time
signals need to be digitally encoded and transmitted over a
communication network, and the reconstruction of the signal
needs to be made with minimal time delay to facilitate fast
decision making. Such applications impose a new challenge on
the encoding technology.
In principle, the encoding problem considered in this paper
could be roughly stated as follows: Given a maximum recon-
struction delay T (in seconds) and a fixed (average) bit rate

Manuscript received July 07, 2011; revised October 16, 2011 and January 18,
2012; accepted February 19, 2012. Date of publication March 06, 2012; date of
current version May 11, 2012. The associate editor coordinating the review of
this manuscript and approving it for publication was Prof. Olgica Milenkovic.

D. Marelli and K. Mahata are with the School of Electrical Engineering and
Computer Science, University of Newcastle, Callaghan, NSW 2308, Australia
(e-mail: Damian.Marelli@newcastle.edu.au; Kaushik.Mahata@newcastle.edu.
au).

M. Fu is with the School of Electrical Engineering and Computer Science,
University of Newcastle, Callaghan, NSW 2308, Australia. He is also with the
Department of Control Science and Engineering, Zhejiang University, China
(e-mail: Minyue.Fu@newcastle.edu.au).

Digital Object Identifier 10.1109/TSP.2012.2190064

R (number of bits per T seconds), we need to encode a con-
tinuous-time signal y(t) in a given class (to be specified later)
so that, at any time t, a reconstructed version §(7) of y(7) is
available for all < t — T, and the reconstruction error is
minimized in some sense (to be specified later). However, this
problem is too general. In particular, notice that, since only the
average bit rate is specified, this problem allows using variable
rate codes, which are not suitable for our intended real-time
network applications. Hence, we consider a particular case of
this problem instead. More precisely, we further assume that
I? bits are transmitted at every ¢ = k7T (k being an integer).
From this problem statement, it follows that we only need to
transmit data once every 1" seconds!. However, we differentiate
the data transmission rate from the sampling rate. More pre-
cisely, a rate much higher than 1/T" can be chosen to sample
the continuous-time signal, provided that we can encode the
sampled signal within the given bit rate 2. With the current
advances in digital electronics, very fast sampling devices are
easily implementable. Hence, we can realistically assume that,
at any time £, the encoder knows the whole continuous-time
signal up to time ¢. On the other hand, the constraint on the data
transmission rate is often unavoidable, especially for large com-
munication networks or wireless links. With the above thinking,
our encoding problem can be restated as follows: Given that the
transmitter knows the whole continuous-time signal y(t) up to
time kT, and that the receiver knows the bits transmitted up to
time (k — 1)T, which R bits of digital information (i.e., update)
need to be transmitted, so that the receiver can reconstruct the
continuous-time signal up to time kT with minimal distortion?

Traditionally, continuous-time signals are encoded by first
sampling the signal and then quantizing the samples. Guided
by the Nyquist-Shannon sampling theorem, the sampling fre-
quency is typically chosen to be higher than, but close to, the
minimum sampling frequency which is twice of the signal band-
width [5]. This sample-and-quantize approach is popular be-
cause of its simplicity and is adequate if the purpose is to in-
form on the sampled signal. However, when the purpose is to
reconstruct the original continuous-time signal, reconstruction
time delay is inevitable with this approach. A natural way to
reduce the time delay is to sample faster. But this results in a
higher transmission rate (number of transmissions per second)
and a higher data rate (number of bits per second)?. Another
drawback of the sample-and-quantize approach is that, in many

'We assume that transmission delay and computational delay are negligible.
But this assumption can be relaxed without adversely affecting our approach.

2The possibility of using entropy coding to reduce the high data rate resulting
from a high sampling rate was studied in [6]. However, this introduces extra
reconstruction delay.
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cases it may not be realistic to assume that the continuous-time
signal is band-limited.

The drawbacks of the sample-and-quantize approach are
avoided by using transform coding [7]. This technique uses
a linear transformation to obtain a vector of real coefficients
which represents the signal over each time-interval of length
T. Hence, the sequence of such vectors can be considered as
an alternative representation of the continuous-time signal.
The essential difference between this linear transformation
and the sampling operation used in the sample-and-quantize
approach, is that each coefficient vector provides a complete
representation of each signal segment, whereas samples from
infinite past and future are needed to represent each segment.
Once the coefficient vector is computed, it needs to be encoded.
In classical transform coding, this is typically done using scalar
quantization on each vector entry. However, it is also possible
to use vector quantization techniques (e.g., generalized Lloyd’s
algorithm or linear predictive vector quantization) [7].

In this paper we propose a coding method to address the
delay-constrained problem described above, under the assump-
tion that the signal y(%) to be encoded is Gaussian. The proposed
method uses transform coding, more precisely the Karhunen-
Lo¢ve (KL) decomposition [8], to obtain a sequence of vectors,
as described above. We then study the optimal recursive strategy
for quantizing these vectors. Unfortunately, it turns out that the
optimal quantizer has a very cumbersome design. However, a
simplified version of it leads to an accessible design. In this sim-
plified version, each vector is encoded using its joint probability
density function (pdf) conditioned on the previously transmitted
quantized data. This is done recursively, every T’ seconds, and
this process involves updating the joint pdf and the quantization
dictionary (code book). In our approach, these are done with the
aid of a state-space model of the KL-decomposed sequence and
a particle filter. To support our choice of this simplified scheme,
we present a numerical example suggesting that the distortion
increase resulting from this simplification is indeed negligible.
In addition, we present simulation results showing that the pro-
posed approach leads to a smaller reconstruction error, when
compared with other available methods, especially for small re-
construction delays. While the complexity of our approach is
significantly higher than that of other methods, it is affordable
when the reconstruction delays is small. Hence, the proposed
method is a valid alternative for coding under small reconstruc-
tion delays, provided that the extra computational complexity is
affordable.

We have explained above our strategy for quantizing the se-
quence of vectors resulting from a KL decomposition. A tech-
nique related to this strategy is known as sequential quantiza-
tion, in the context of vector quantization [9]. In this technique,
the (scalar) components of a vector are sequentially quantized
using their pdf conditioned on the previously quantized sam-
ples. In contrast, in our problem we need to quantize an infi-
nite sequence of vectors, rather than a finite sequence of scalars.
Hence, we cannot express the conditional pdfs analytically or
using a training sequence, but we need to resort to numerical
methods (particle filtering) for pdf tracking.

We note that delay-constrained encoding has been an active
research topic in coding theory for a long time. First, it is well
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known that, if no limitation is imposed on the reconstruction
delay, the theoretical minimum reconstruction distortion, for
a given bit rate, is given by the distortion-rate function of
the continuous-time signal to be encoded [8]. When time
delay is constrained, the problem becomes more difficult. For
the case of zero-delay reconstruction, it was shown in [10]
that, for a discrete-time signal whose samples are statistically
independent, the theoretical minimum distortion is achieved
using scalar Lloyd-Max quantization. This means that optimal
quantization is achieved by considering the knowledge of each
sample independently, rather than jointly with its previous
samples. For Markov sources, it was shown in [11] that if the
source is kth-order Markov, the minimum distortion is achieved
by forming each coded symbol using the last & source symbols,
and the current state of the receiver (which is built using
the past coded symbols). For the case of first-order Markov
sources, this result was extended in [12] for the scenario where
code symbols are transmitted through a noisy channel with
noiseless feedback. The same problem, but without feedback,
was studied in [13], concluding that the minimum distortion
can be achieved considering the current source symbol, and
the probability distribution (according to the encoder) of the
decoder’s state. A number of works study optimal coding
structures where the performance measure is not simply given
by the distortion. In this line, the authors of [14] studied the
optimal coding of Markov sources, in the sense of minimizing
a weighted sum of the distortion and the conditional entropy of
the coded sequence. Also, optimal variable-rate coding, where
the cost function is a weighted sum of distortion and rate, is
studied in [15].

In [16] and [17], a variant of the zero-delay coding scheme
called causal coding is studied. In this scheme, the reproduction
value of each output depends on the present and past outputs.
However, there is no constraint on the reconstruction delay, and
therefore, it permits the placement of an entropy encoder after
the quantizer. Also, theoretical minimum bounds for zero- and
limited-delay coding were studied in [18]-[20], [17], for the in-
dividual sequence setting, where the signal to be coded is not
assumed to be a random process but a deterministic bounded
function. It is unfortunate that no simple expression is available
for the distortion-rate function of a general stationary random
process with correlated samples under zero or limited recon-
struction delay.

The rest of the paper is organized as follows. In Section II
we describe the limited-delay coding problem. In Section III
we study some properties of optimal limited-delay coding, and
we propose a sub-optimal coding strategy which is suitable for
practical implementation. In Section IV we derive a numerical
algorithm for implementing the proposed coding strategy. In
Section V we present numerical experiments comparing the
performance of the proposed coding algorithm with that of
other available methods, and we give concluding remarks in
Section VL.

II. PROBLEM DESCRIPTION

Let y(t). + € R be a continuous-time stationary Gaussian
random process, with zero mean and known autocorrelation
ry(7) = E{y(t)y(t + 7)}. The problem to be addressed is how
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Fig. 1. Comparison between UDC (top) and LDC (bottom) dictionaries.

to code the signal y(), assuming that R bits are transmitted at
every t = kT, for k € N, so that the distortion

97
D= hm & {11; / (y(t) — g}(f))Z} dt @)
LS00 Jo
is minimized.

In order to give some insight into the problem, we intro-
duce the concepts of unlimited-delay coding (UDC) and lim-
ited-delay coding (LDC). Suppose that we want to code the
signal y(t), on the interval ¢ € [0, KT, using KRR bits (i.e.,
using R/T bits per second). Using UDC, the coding is done
by determining a dictionary of codeword signals §;(%), i =
1,...,2%2 which are chosen to minimize the distortion

KT
D=¢ {% |- @(t))?dt} %)

when coding is done by choosing the codeword §(#) of the dic-
tionary which is closest to y(t), i.e.,

§(t) = argmin / (y(t) — §:(1))?dt.

73 (t)

For a given rate R, the distortion D is minimized when K tends
to infinity, in which case it is given by the distortion-rate func-
tion D(R) of y(t) [8]. In this approach, the decoding side is only
able to recover g(t) with a delay of K'T'. If instead, the decoder
needs to recover 4(t) with a maximum delay of 7', we use LDC.

More precisely, we define the codewords §; (#),4 = 1,..., 258

t € [0, KT, so that the decoder can recover (t) on the 1nterval
t € [(k—1)T,kT), after t = kT, foreachk = 1,.... K. To
illustrate this idea, we compare in Fig. 1 an UDC dictionary and
a LDC dictionary for K = 3 and R = 1.

III. LIMITED-DELAY CODING

In this section, we assume that the autocorrelation r,(7) of
y(t), the maximum delay 7', and the number of bits R per time
interval of length T are given. We then propose a suboptimal
LDC strategy for y(t), in the sense of minimizing the distortion
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(1). For convenience in the presentation, we constrain the do-
main of y(#) to the interval ¢ € [0, KT, fora given K € N, and
we minimize (2) instead of (1). However, the resulting coding
strategy, which is stated in Section III-C, is independent of K.
Therefore, it is readily applicable in a practical scenario, where
the domain of y(t) is [0, o).

A. Order Reduction Using the Karhunen-Loéve Decomposition

Our coding problem can be restated as that of coding the se-
quence of segments y(#), € [(k—1)T,kT],fork =1,... K.
As explained in Section I, in practice the continuous-time signal
y(t) is sampled using a very dense grid of points. Hence, the
coding of the sequence of segments mentioned above turns into
a very high dimensional problem. To avoid this, we resort to
transform coding for reducing the dimension of the problem, as
explained in [7, Sec. 12.6] in the context of vector quantization.
More precisely, we use the KL decomposition [8].

Using the KL decomposition, we can expand y(¢), on each
interval [(k — 1)T, kT, as follows:

Z Jﬂl

m=1

N (t— (K — 1)T) 3)

where the functions %, :

(1 c., fo Q;/}'m

[0,T] — R, m € N are orthonormal
Y, (t)dt = 6(m — n)), and the coefficients
Ym = fo y(£)th,, (1)dt are uncorrelated random variables with
E{y2} = M, for some A\; > Xy > --.. Doing the same
expansion with the reconstructed version () of y(¢) we obtain

Z J”L

m=1

— (k—1)T). (4)

lr/} m

Let Dy, k=1,..., K denote the dlstortlon on the segment
b [k~ DT AT] (oo Dy = €15 [50 1 (y(0) — 5(2)2d1)).
Since the functions ,,,, m € N are orthonormal, it follows
from Parseval’s identity [21] that:

TDIc =& { Z (ym(k) - i/m(k))2} . (5)

m=1

Let M € N and suppose that we use a vector quantizer that acts
only on the first M coefficients y(k) = [y1(k), ..., ya(k)]T,
and ignores the remaining coefficients. Then, we have

TD;. = &{|ly(k) - y(B)II”} + Z Ao
m=M-+1
where §(k) = [§1(k), ..., 9 (k)]". Hence, the distortion D,

is given by the sum of the quantization error £ {||y (k) —y (k)||*}
and the truncation error Y .-_ ., 11 A2 . Also, as shown in
Appendix B, D). decreases monotonically with an increase in
M . Hence, if M is chosen large enough to guarantee that the
truncation error is negligible in comparison with the quantiza-
tion error, then, from a practical perspective, the quantization of
y(t) is equivalent to that of the M -dimensional vector process
y{(k). We will address this problem in Section III-B below.
Remark I1: The dimension M of the vector y(k) is chosen
such that the truncation error > _,- 11 A2 is negligible in
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comparison with the distortion ). Also, M needs to be kept
small such that the coding complexity is not unnecessarily in-
creased. Hence, finding the optimal value of M requires an it-
erative procedure.

Remark 2: In the presentation above we consider y(#) and
Y (t), m € N to be continuous-time functions. This implies
that the basis functions ¥.,(t), as well as the coefficients y,,,
m € N, are difficult to compute in practice. However, recall
that we assume that in practice, the knowledge of y(¢) is given
by its samples obtained at a much higher sampling rate than the
transmission rate. Under this assumption, the functions 9, (t)
are obtained as the eigenvectors of the covariance matrix of the
vector of samples of y(%), in the interval £ € [(k — 1)T, kT,
and the coefficients y,, as inner products between these basis
functions and the same vector of samples.

B. Recursive Quantization of the Vector Process y (k)

1) Characterization of Quantization Cells for Recursive
LDC: A coding strategy, either UDC or LDC, of the K (vector)
samples Y5) = [y7(1),...,y"(K)]” induces a partition of
the space RM¥ into 2% cells, each corresponding to a code-
word (i.e., a vector in RM ) of some quantization dictionary.
In this section, we study the structure of these cells for a recur-
sive LDC scheme [7, Sec. 14.1], (i.e., when y(k) is computed
from the vector y(k), and the previously quantized values
¥(1),...,y(k — 1)). The difference between the partitions in-
duced by UDC and recursive LDC is illustrated in Fig. 2, using
a two-dimensional example, where R = 2, K =2and M =1,
i.e., y(1) and y(2) are both scalars. Fig. 2(top) shows the
2FK — 16 quantization cells and codewords for the UDC de-
sign. They are those of an optimal joint quantizer for the vector
[¥(1),y(2)]. Notice that using this design, both samples y(1)
and y(2) need to be known in order to choose the appropriate
codeword [y(1),¥(2)] from the quantization dictionary. On
the other hand, Fig. 2(bottom) shows a recursive LDC design.
Notice that in this case, the arrangement of quantization cells
and dictionary permits choosing the appropriate codeword ¥ (1)
(from a marginal dictionary of 2% = 4 codewords) as soon as
v(1) becomes available. Furthermore, this choice determines
the 2% = 4 quantization cells and codewords for y(2).

Extending the idea above to general values of I?, K and M,
it follows that the partitions induced by recursive LDC coding
have the following structure:

+ Forinterval k = 1: A partition of R is done into 2% cells

T;\, 41 = 1,...,28 each corresponding to a quantized
(vector) value v;, of the first (vector) sample y(1).
+ For interval £ = 2: For each iy = 1,...,2%, a partition

of R™ is done into 2% cells T b2 = 1,1, 2% cach
corresponding to a quantized (vector) value v, ;, of the
second (vector) sample y(2), given that y(1) € 7, .

* The procedure continues so that, at time interval k, for
eachiy,..., i1 = 1,...,2% apartition of R* is done
into 2% cells Tivins b =1, 2 each corresponding
to a quantized (vector) value v;, . ;, of the k-th (vector)
sample y(k), given that y(1) € 7;,,...,y(k — 1) €
T

Bl 1"
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Fig. 2. Quantization cells and dictionary for a Gaussian random vector
[¥(1).¥(2)] using UDC (top) and recursive LDC (bottom).

2) Design of the Quantization Cells and Codewords: In order
to design the optimal recursive LDC, we need to design, for

each %, and each combination of the indexes i1,...,45_1 =
1,..., 2% the quantization cells 7, i, ix = 1,...,2% and
the codewords Vi, 4, , ix = 1,...,2% of RM Let Y¥) =

{y(l)vy(2)~ e /}A’(k)} and S(il 7777 i) = 7—i1 X 7;1,2'2 X X
7i,....in_, - Then, as shown in Appendix A, we have that

Elly(m)-y®IP = > »p (Y(kfl))

T
' /[F;w Iy (k) = 5 (B)II*p
(ywIYED)ayy 6
-
- ilwgl_lp(YU@ 1))
o
’ ikzl ’Al _____ , by (k) = vir e P
< (yIYe )avm

where
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In view of (6), the distortion in the time interval & (i.e., in the
continuous-time interval [(k — 1)7, kT]) depends on the con-
ditional probability of the sample y (k) given the past quantiza-
tion values Y* 1 It is clear from (7) that, if the quantization
cells Ti, i, i =1,..., 2% for the interval k are given, the
optimal quantization codeword v;, . ;, is the centroid of each
cell under the conditional probability p(y (k)Y *~1))3. Hence,
only the quantization cells 7;, . s, , ix = 1,...,2% need to be
designed.

Form (7)—(9), we see that the distortion at time interval k de-
pends not only on the quantizationcells 7;, i, ,ir = 1,..., 2R

s

for that interval (via the integration regions), but also on the
choice of the cells at previous intervals (via p(¥Y*~1) and
p(y(k)[Y¥~1))). A natural question then is whether, at each
k, we can design the 2% cells T e = 1,01, 2F simply
considering the pdf p(y(k)[Y ¥~ D) of y(#) conditioned to the
past quantized values (we call this a greedy design), or instead,
we need to consider the joint pdf p(y(1),....y(K)) of all K
samples, to jointly design all 257 cells 7, , 7 LT

1,230 " 1.0 00
ir=1,...,28 k=1,..., K (we call this a joint design). The
main advantage of the greedy design is that, if it is optimal, we
can devise a simple method for quantizing y (k) recursively. Un-
fortunately, it turns out that a greedy design is not optimal4. This
is shown by Example 1 below.

Example 1: Consider the LDC design depicted in
Fig. 2(right), where K = 2, R = 2 and M = 1, i.e., y(k),
k = 1,2, are scalar discrete-time samples. Let y(1) ~ A/(0, 1)
(i.e., have a Gaussian distribution with zero mean and unit
variance), and consider the particular case where y(1) = y(2).
We consider the greedy and joint designs described above. For
the greedy design, the quantization cell boundaries for y (1) are
computed using Lloyd’s algorithm [7]. Then, for each value of
v(1) € {v1....,v4}, the boundaries for y(2) are computing
using the same algorithm, considering the pdf p(y(2)|y(1)) of
v(2) conditioned on the previously coded value (1) of y(1).
The quantization boundaries so obtained are shown in Fig. 3
(the figure only shows the boundaries on the positive axis,
since those on the negative axis are symmetric). The figure
also shows the distortions obtained for y(1) and y(2). Notice
that this design minimizes the distortion of the first sample,
but not necessarily the total distortion. This is the goal of the
joint design, in which the quantization cell boundaries of both
samples are jointly optimized to minimize the total distortion.
The optimization is carried out using a quasi-Newton (BFGS)
procedure. In order to evaluate whether the optimization
procedure gets stuck into a local minimum, we carry out ten
quasi-Newton parallel searches, which are initialized using
boundaries with randomly chosen locations. It turns out that all
quasi-Newton searches yield the same result. The boundaries
and distortions resulting from the joint design are shown in
Fig. 4. We see that while the distortion of the first sample is
higher than the one obtained with the greedy design, the total
distortion of the joint design is smaller.

3This follows from the same argument used in the centroid optimality con-
dition for vector quantization [7], by replacing the pdf p(y(k)) of y (k) by the
conditional pdf p(y (k)Y *—1).

4The theoretical possibility of this being the case was pointed out in [7, p.
524], in the context of recursive vector quantization.

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 60, NO. 6, JUNE 2012

Boundaries for y(1)

0.9821

Y

0 —— oo

0.2299 —
0.4662 —
0.7149 —
0.9821 ——
1.3116 —
1.7124 —
2.2747 —

Boundaries for y(2)
(0<y(1)<0.9821)

| vy | y@ | Total
Distortion |0.117482 [0.00976707 | 0.127249

Boundaries for y(2)
(0.9821<y(1))

Fig. 3. Quantization cell boundaries and distortion for the greedy encoder.
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Fig. 4. Quantization cell boundaries and distortion for the joint encoder.

Example 1 indicates that the greedy method is not optimal.
Hence, the quantization cells for all time intervals k =1, ..., K
need to be jointly designed using p(y(1),...,y(K)). This can
be a very cumbersome task. Luckily, numerical studies demon-
strate that, when the samples have a jointly Gaussian distribu-
tion, the advantage obtained by the joint method is very small
in comparison with the greedy method. This is illustrated in the
following simple example.

Example 2: Consider the coding of K samples taken from
a discrete-time scalar random process (i.e., M = 1) y (), gen-
erated by filtering discrete-time Gaussian white noise using the
filter g(z) = 1/(1 — az~'). We compare the distortion D, ob-
tained using the greedy design, with the one D; resulting from
the joint design, as described in Example 1. Fig. 5 shows the
distortion per sample (i.e., D,/K and D;/K) resulting from
both methods, for different values of the pole a of the filter g(z).
(Notice that the value of @ determines the level of correlation be-
tween consecutive samples. Notice also that, when samples are
not correlated both, the greedy and joint design, yield the same
result). The figure also shows the difference (D, — D;)/K per
sample, which measures the improvement offered by the joint
design. We see that this improvement is indeed negligible for
all values of a. Fig. 6 shown the same comparison for different
number of quantization levels. (Notice that we do not constraint
the plot to only those values which are powers of two). Also in
this case we see that the improvement given by the joint design
is negligible.
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10 —— Greedy design (K=2)
Joint design (K=2)
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Joint design (K=3)
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Fig. 5. Distortion comparison between greedy and joint encoders, for different
values of «.
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_8 L i : I ‘ ‘ |
L O T S

Number of quantization levels (L)

Fig. 6. Distortion comparison between greedy and joint encoders, for different
quantization levels.

In view of Example 2, and since we are only concerned about
coding of Gaussian signals, we adopt the greedy approach to de-
sign the quantization cells 7;, ., ix = 1,..., 28 for each
time interval k. Notice that in this case, designing the cells
Tiv,oins te = 1,0, 2R s equivalent to designing the code-
words v, gt =1,..., 28 This equivalence follows from
the nearest neighbor optimality condition for vector quantiza-
tion [7], which states that the quantization cell 7;, __;, of each
Vi, i, is formed by those vectors y(k) which are closer to
V;,....i, than to any other codeword. With this in mind, we state
the proposed LDC strategy in Section III-C.

C. Resulting LDC Procedure

Following the analysis above, a suboptimal recursive LDC
strategy is obtained by carrying out, at the k-th time interval,
the following four steps:

(S1) Use a KL decomposition to obtain the vector of co-
efficients y (%), representing the signal y(#) in the interval
[(k — DT, kT];
(S2) Compute the conditional pdf p(y (k)| Y *~1)) using
the past quantized values Y k-1,
(S3) Use p(y(k)]Y*=1) to compute the quantization
codewords v;, i, ik = 1,...,2%;
(S4) Quantize y(k) by choosing y(%) as the codeword
which is the closest to y (k).
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The main burden in the strategy above lies in Steps (S2) and
(S3). These are to be studied next.

Remark 3: The strategy described above redesigns the code-
words vi, ., b = 1...., 28 at each time interval k. A nat-
ural question is whether the decoder is able to reproduce these
codewords for reconstructing ¥ (%). Notice that the codewords
depend on conditional probabilities given the past quantized
values Y* 1 Since Y*~1 is available at the decoder, it is
able to reproduce the codewords, making the reconstruction of
¥ (k) possible.

Remark 4: As mentioned in Section I, our strategy for coding
the sequence of vectors y (k) [i.e., steps (S2) to (S4)], is equiva-
lent to a sequential quantization scheme [9], where instead of the
scalar components of a finite dimensional vector, an infinite se-
quence of vectors is quantized. This prevents us from expressing
the conditional pdf p(y (k)| Y %~ 1) either analytically, or using
a training sequence. Instead, we use a Bayesian tracking proce-
dure, which we describe in the next section.

IV. PROPOSED LDC ALGORITHM

In this section, we describe the numerical implementation of
the steps (S2) and (S3) mentioned above.

A. State Space Realization for pdf Tracking

Step (S2) requires the computation of the conditional pdf
p(y (k)Y #=1)) at each k, given the past quantized values. We
introduce below a recursive scheme for doing so, using a state
space realization of the vector process y (k).

Recall (3) and let (k) = [ (k). ..., ¢¥ar(K)]T. Then, it is
easy to show that the autocorrelation R(k) of y(k) is given by

R(k) = (¢ =1y + 9" (KT)

where * denotes convolution and the superscript * denotes
the transpose, time-reversal operation (i.e., $*(t) = 9" (—t)).
Now, since y(t) is Gaussian, using some spectral realization
method [22] we can build a state space model

(10)

x(k+1) = Ax(k) + Bu(k) (11)
y(k) = Cx(k) (12)
y(k) = Qily(k)) (13)

so that the autocorrelation of y(k) equals (10). In (11)—(13),
x(k) € RY denotes the state vector at time interval k, A &
RY*N B € RV*M C € RM*N, Q, denotes the quantizer
at k, and u(k) is a sequence of independent, M -dimensional
random vectors with distribution A(0, I). Also, to satisfy the
stationarity condition, we assume that the initial state x(1) has
distribution A'(0, ¥}, where ¥ is the solution of & = ATLAT +
BBT.

Using the state space model (11)—(13), we can recursively
compute the conditional pdf p(y(k)| Y *~1)) using a Bayesian
tracking procedure [23], [24]. More precisely, we first compute
p(x(k)[Y*1)) using the following recursive formulas:

p (x(0) Y1)

= [ pxtilxte = Dy (14)
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X (x(k -
p (x(k) ¥ )

1)] Y“‘—l)) dx(k — 1)

p(3(k) | x(k) p (x(k)| YD) 0

" Jaw p (I (X0 ¥E DY dx(h)

where p(x(k)|x(k — 1)) ~ N (Ax(k — 1), BB") and
sk ={y B =IE g

Then, p(y(k)[Y* 1) is computed from p(x (k)Y *~1)) as
follows:

( (k)| Y = 1>)

| oty
RM

/X(k) ¥ (k)=Cx(k)

B)p (%) Y40 dx(k)

(x(k)\Y(k’l)) dx(k). (17)

B. Implementation Using Particle Filtering

The implementation of the recursive formulas (14)—(17) re-
quired for step (S2), and the design of the optimal codewords in
(S3) are both numerically complex. We derive below a numeri-
cally tractable algorithm for approximately implementing these
tasks using particle filtering [24].

Fora given k € N, let X®) = [xT(1),...,xT(k)]T € REN
and Y® = [y (1),...,yT(A)] € R*M Fix k, and suppose
that the conditional distribution p(X Y =1 is known. We
describe below an iterative algorithm which uses the (approxi-
mate) knowledge of p(X ™Y -1 to build an approximation
of p(X ¥+ Y k) Each iteration is for formed by a number of
steps which are detailed below. The initialization of the itera-
tions is addressed subsequently.

Computing (17): The idea is to approximate the distribu-
tion p(X®[Y* 1) by a sum of I impulses (particles) lo-
cated at some points X' = [x7(1),...,xT(k)]T € RV,
1=1,...,1, 1e.

4

The particle locations ng)., i = 1,..., I are obtained from [
random samples of the distribution p(X(k )Y 1)) Now, from
(18), (17) becomes

I

- ) ~ 125(X<“-X§’“>).

=1

(18)

~

Cxi(k).  (19)

I
p(yWIYED) 2 25 by -

Computlng (SS) In view of (19), the codewords v;,
ig = 1,... , for the time interval k&, can be obtained by
running the k -means algorithm [7] on the samples Cx; (k).
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Computing (15): We have
gy (9<k>,x<kf| )
p (300 V)
- (y(k” X, Y(kil)) P (X(k:)| Y(k:—l))
( y (k)] \A_’(kﬂ))

(;I ik)l))) (X(m’wk—l)).(m)

P (X(k‘)

Py
(3
Now, using (16) and the approximation (18), we have that
p(X®|Y ) could in principle be approximated by con-
straining the sum in (18) to only those impulses such that
Qr(Cx; (k) = y(k), ie

I
, 1
IS

(O () =9(k)

P (X(k)

o (X0 —x*)

2

where I, = Z, 1 P(¥(k)|x:(k)) equals the number of such
impulses. However, notice that doing so reduces the number of
particles from I to Ij.. This would cause that the iterations would
have eventually no particle left. To prevent this, we obtain a
new set of I samples ng), ¢t = 1,...,I, by drawing them
randomly from the discrete distribution in (21). These samples
would obviously have repetitions if I, < I. Doing so we obtain

I
( ) %;a (X(k)—XZ(.k’)). (22)

Computing (14): The last step consists in using the points
X,gk) € R¥N i =1,..., 1, to obtain points X( HD e RWHDN
RN § for bulldlng an approximation ofp(X(k“) Y ®) )
as in (14). We have that

»( ’)
= p (k4 1] X, YO p (X0 ¥ )

=p(x(k+1D)|x(k))p (X(k>’ Y(k>) .

(23)

Hence, for each ¢ = 1,...,I, we can obtain a points ngﬂ)
by simply adding to the point X,§k> an extra component x; (k +
1). This component is obtained by a random sampling of the
distribution p(x(k + 1)|x;(k)) ~ N (Ax;(k), BBT).

Initialization: For k = 1, we have that p(X*+D [y ®)) =
p(x(1)). Hence, we approximate it by the following sum of im-
pulses

I
=7 20D~ xi(1),
where the impulse locations x;(1),4 = 1, ..., I are obtained as
random samples of the distribution A(0, ¥) of x(1).

In the explanation above we have used particles to approxi-
mate joint conditional pdfs. Each particle ka) is represented by

~|H
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a vector in R¥Y . Hence, there seems to be a dimension increase
with &. However, this is not the case. Notice that, due to the
Markov property of the state space model (11)—(13), we only
need to keep track of the last component x;{%) of each X; M,
i =1,...,1,avoiding a memory growth of the algorithm. With
this consideration, the resulting algorithm is summarized here.

Algorithm 1

Start by drawing x;(1), 4 = 1,..., I from the distribution
N (0, %) of the initial state x(0). Then, for each k& € N,

1) Compute the codewords v;, i, 4% = 1,...,28
using the k-means algorithm and the points Cx; (k).

2) Choose y(k) = vy, i,, where i, =
argmin; |ly(k) — vi, . jll2 (i.e., choose the
codeword closest to y(k)).

3) Keep only the set of Iy, points x; (k), n=1,..., I
satisfying

i) = argmin ||Cx;, (k) — viy,. jll2,
J

i.e., such that Cx; (k) is closer to v,, _;, than to any
other codeword.
4) Obtainx;(k+ 1), ¢ =1,..., I by doing I random

choices (with possible repetitions) from the set x;, (k),
n=1,..., 1, defined in Step 3.

5) Foreachi = 1,...,7I, draw x;(k + 1) from the
distribution N'(Ax;(k), BBT).

Remark 5: Fig. 1(right) shows a dictionary of continuous
signals for LDC. Notice that recursively designing the code-
words Vi, i, ix = 1,...,2% for each time interval k,
using the k-means algorithm, does not guarantee that the
signals of the resulting dictionary are continuous on the
boundaries of the intervals [(k — 1)T,kT], k = 1,2,.... To

guarantee this, the codewords need to be chosen under the

constraints [11(0), ..., ¥a(0)]vs, .5 = § (kK — )T,
for all i, = 1,...,2%, where §~((k — 1)T) denotes the
value of the reconstructed signal segment g((k — 1)T),

t € [(k—2)T,(k — 1)T], at the boundary (k — 1)7". Similar
constraints can be imposed to guarantee the continuity of the
derivatives of §j(¢) at the interval boundaries.

Remark 6: As mentioned in Remark 3, the decoder needs
to reproduce the codewords v;, . ;,, 4% = 1,..., 2% at time
interval &, in order to reconstruct (k). In Algorithm 1, these
codewords are derived from the set of particles x;(k), i =
1, ..., I, which are randomly generated. In practice, a pseudo-
random generator needs to be used so that the same particles can
be generated at both encoder and decoder ends.

C. Complexity Analysis

In this section we study the numerical complexity of Algo-
rithm 1, proposed in Section IV-B. We summarize below the
operations requiring floating point multiplications. These oper-
ations need to be carried out at both the encoder and the de-
coder, unless explicitly stated, and at each time interval (i.e.,
once every 1" seconds).
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1) The KL transform at the encoder and the KL inverse trans-
form at the decoder require each M F;T" multiplications,
where F; denotes the (super-Nyquist) frequency used for
sampling y(#) before processing.

2) The k-means algorithm with I points of M dimensions and
27 clusters, requires I.J M (2% + 1) multiplications, where
J denotes the average number of iterations required for
convergence.

3) Coding the vector y (k) requires M 2% multiplications (this
is only done at the encoder).

4) The random particle choices carried out in step 4 of
Algorithm 1 requires generating / uniform random vari-
ables, and the generation of u(%) requires generating I M
Gaussian variables.

5) Computing x;(k + 1) = Ax;(k) + Bu(k) and y;(k) =
Cx; (k) requires TN (N + 2M) multiplications.

From the tasks above, the complexity of tasks 2 and 5 are
dominant. Hence, at each time interval, the number of multipli-
cation g at both the encoder and the decoder is approximately
given by

p IIN(N +2M) + TM (28 +1)). (24)

V. NUMERICAL EXPERIMENTS

In order to evaluate the performance of the proposed LDC al-
gorithm, we compare it with a number of standard quantization
techniques. For the comparison we use a random process gen-
erated by filtering Gaussian white noise using a fifth-order But-
terworth filter with cutoff frequency . = 0.25 Hz. The power
spectral density (PSD) of the resulting signal is shown in Fig. 7
(left). While in theory, the signal (%) is of continuous-time, we
implement it as a discrete-time signal with sampling frequency
F; = 100 Hz, which is much higher than the Nyquist rate of
y(t). We generate samples spanning 1000 seconds. We describe
below the quantization methods used in the comparison. Within
the description of each method, we include the complexity asso-
ciated with the decoding task. We consider this complexity in-
stead of that of the encoding task, because the former is higher
than or equal to the latter, in all cases.

Sampling and scalar quantization (SMP + SQ): This
method samples the continuous-time signal y(#) using a super-
Nyquistrate of F; = 1 Hz. Then, each sample is quantized using
a (non-uniform) optimal scalar quantizer. This quantizer is de-
signed using Lloyd’s algorithm ([7], Section 6.4). The recon-
struction (%) of the continuous-time signal from the quantized
samples is done using a filter derived from a non-causal infi-
nite impulse response (IIR) filter f(z). Hence, to achieve a pre-
scribed reconstruction delay 7', we truncate the non-causal com-
ponent of the impulse response f () of f(z) so that f(¢) = 0, for
t < —T'. In order to reduce the error introduced by such trunca-
tion, we choose f(z) to be a raised cosine filter with cutoff fre-
quency 0.5 Hz and roll-off factor 5 = 0.3. The frequency and
impulse responses of this filter are shown in Fig. 7. Finally, to
reduce computations, we also truncate the causal component of
f(t) so that f(t) = 0, for £ > 10 sec. The decoding complexity
of this method is determined by the reconstruction process, and
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f¢y(2nf): PSD of y(t)
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Fig. 7. (Top) PSD of y(t) and frequency response of the reconstruction filter.
(Bottom) Impulse response of the reconstruction filter.

is given by 1007 4+ 1000 multiplications per sample (i.e., per
second).

Sampling and linear predictive quantization (SMP +
LPQ): This method is similar to the SMP+SQ method de-
scribed above, with the only difference in the quantization
stage. This consists of a linear predictive quantizer, with a
linear predictor of 10th order. The design of the quantizer is
done using the method described in [25], which is summarized
in Appendix C. To do so we use a training signal with 29+%/7
samples. The decoding complexity of this method is due to
the reconstruction task and the prediction, i.e., 1007" + 1010
multiplications per sample (i.e., per second).

KL decomposition and scalar quantization (KL 4 SQ):
This method uses a KL decomposition to obtain a sequence y ()
of vector coefficients of y(t), as explained in Section II[-A. The
number M of components of the vectors y (k) is chosen as the
smallest number of components yielding a truncation error at
least 50 dB smaller than the total power. Then, each component
ym(k), m = 1,..., M of y(k) is quantized using the scalar
scheme described in SMP+SQ. To do so, the I? bits available to
quantize the vector y (%) need to be allocated over its M com-
ponents. We do so using the greedy bit allocation algorithm de-
scribed in ([7], Section 8.4). In this method, the I? bits are se-
quentially allocated by assigning, at each step, one additional bit
to the component having the highest reconstruction error. The
decoding complexity of this method is due to the KL transform,
and is given by M F;T multiplications every 7' seconds.

KL decomposition and linear predictive quantization
(KL + LPQ): This method is similar to the KL+SQ method,
with the only difference in how the components ¥,,(k),
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Fig. 8. Distortion comparison for different reconstruction delays 7', and fixed
bit rate R = 8.

m = 1,..., M are quantized. This is done using the linear
predictive method described in SMP + LPQ. The decoding
complexity is given by the KL transform and the prediction,
i.e., M(F;T + 10) multiplications every 7" seconds.

KL decomposition and vector quantization (KL + VQ):
This method uses a KL decomposition as described for the
KL + SQ method. Then, each vector y (k) is jointly quantized
using an optimal vector quantizer. This quantizer is designed
using the generalized Lloyd’s algorithm [7, Sec. 11.3] and a
training signal of 297 samples. The decoding complexity of
this method is given by the KL transform, i.e., M F;T multipli-
cations every 7' seconds.

KL decomposition and linear predictive vector quantiza-
tion (KL + LPVQ): This method is similar to the KL+VQ
method, with the only difference in how the vectors y (k) are
quantized. This is done using a linear predictive vector quan-
tizer. The quantizer is designed using the method in [25], and
summarized in Appendix C. Following [25], we use a first-order
vector linear predictor in KL-LPVQ, since higher orders lead
to instability during the design procedure. The decoding com-
plexity of this method is given by the KL transform and linear
prediction, i.e., M (F;T + M) multiplications every T" seconds.

Proposed method: The proposed method uses the KL trans-
form described for the KI. + SQ method. For obtaining the
state-space model (11)—(12) we use the algorithm described in
Appendix D. Also, for the pdf tracking and codeword design al-
gorithm described in Section IV.B, we use I = 277 particles.

In the first simulation, we compare the distortion of the pro-
posed method to those of the methods listed above. To do so,
we use a fixed rate of 2 = /T = 8 bits per second, and we
vary the reconstruction delay 7" from 0.125 to 1 s (so that the
quantization of y (k) is done using 1 to 8 bits). The result of this
comparison is shown in Fig. 8. For comparison purposes, we
point out that the rate distortion function of the continuous-time
signal (1), evaluated at I? = 8, equals —45.55 dB. We see that
the distortion of the KL, + LPVQ and the proposed methods
are noticeably smaller than those of the other methods. Also,
the proposed method outperforms the KL + LPV(Q method for
low reconstruction delays. The reason for this is discussed in the
next paragraph.

As shown in Section III-B2, a nearly optimal quantiza-
tion strategy is achieved by designing the vector quantizer
Q). for each vector sample y(k) using the conditional pdf
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Fig. 9. Comparison between the KL + LPV( and the proposed methods, for
different reconstruction delays 7" and bit rates 2.
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Fig. 10. Comparison between the KT+ LPV() and the proposed methods, for
different bit rates 2 and minimum delay T = 1/ 3.

p(y (k)Y #=1)) of that sample, given the previous quantiza-
tion values. This requires Qy, to be redesigned at each %, as done
in the proposed method. Instead of doing so, the KL-LPVQ
method uses Qi(y(k)) = Qy(k) — yu(k)) + yp(k), where
vp(k) is the predicted value of y(k), i.e., at each % it uses
the same quantizer Q (which we design using the method de-
scribed in Appendix C) whose center is shifted by y,, (k). Now,
if there is no quantization (or equivalently, as the number of
quantization bits R tends to infinity), p(y (k)| ¥ *~1) becomes
a Gaussian distribution with mean y,(k) and a covariance
matrix which is independent of k. Hence, the KL+LPVQ
method becomes optimal as I? increases; and therefore, the
proposed coding method is advantageous when I? is small.
When the coding bit rate R is fixed, this (i.e., a small value of
) corresponds to a small delay 7.

To see this point in more detail, in the second simulation we
repeat the experiment, only involving the KL+LPVQ method
and the proposed method, and considering different bit rates
IR. The result is shown in Fig. 9, showing the advantage of the
proposed method for low reconstruction delays.

Finally, in Fig. 10 we compare the distortions of the
KL+LPVQ and the proposed methods, for different bit rates 12,
and for each rate, we use the minimum delay, i.e., 7 =1/ R, so
that y (k) is always quantized with one bit (i.e., 2 = 1). We see
that the advantage of the proposed method becomes more clear
at high rates, where the distortion becomes smaller.

Table I shows the details for computing the complexity 1 of
the proposed method, measured in number of multiplications
per interval of T' seconds. These details correspond to a rate of
IR = 8 bits per second, and reconstruction delays 7" ranging

3061

TABLE 1
DETAILS OF THE COMPUTATION OF THE COMPLEXITY g« MULT./I" OF THE
PROPOSED METHOD, FOR R = 8

LT [R[ T [ J [M[N] p |
0.125 | 1 256 5.853 2 12 | 58.14 x 103
0.25 2 512 11.13 2 12 | 155.3 x 10°
0.375 | 3 | 1024 | 20.93 3 13 | 831.6 x 103
0.5 4 | 2048 | 30.46 3 14 | 3.755 x 10°
TABLE II ~
COMPLEXITY MULT./I" OF ALL OTHER METHODS, FOR I2 = 8
‘ T ‘ SMP+SQ ‘ SMP+LPQ l II?I::\S,% ‘ KL+LPQ ‘ KL+LPVQ ‘
0.125 126.6 127.8 25 45 29
0.25 256.3 258.8 50 70 54
0.375 389.1 392.8 112.5 142.5 121.5
0.5 525 530 150 180 159

from 0.125 to 0.5 s. Table II shows the complexity of all other
methods used in the comparison. We see that the complexity
of the proposed method is significantly higher than those of the
other methods. Hence, in view of the performance comparison
presented above, we conclude that the proposed method is a
valid option for encoding under low reconstruction delay (i.e.,
when transmitting one or two bits at a time), if the extra com-
plexity can be afforded.

VI. CONCLUSION

We have proposed a fixed-rate encoding method for contin-
uous-time Gaussian signals to reduce the reconstruction distor-
tion for given constraints on the reconstruction delay and data
rate. The proposed approach uses a Karhunen-Loéve decompo-
sition to obtain a sequence of coefficient vectors, whose innova-
tion is vector-quantized. This is recursively done by considering
the conditional pdf of the current coefficient vector, given the
past quantized data which is already available at the decoder.
While the proposed method achieves a suboptimal reconstruc-
tion distortion, numerical experiments show that the difference
with the optimal reconstruction is negligible in the Gaussian
case, while offering advantages over other available approaches,
especially when the reconstruction delay is small.

APPENDIX A
PROOF OF (6)

Since the quantized value (%) does not depend on the future
values y(k + 1),...,y(K), we have

£ {Ily(k) - I}
= [ Iy = 5@l (Y0) av e
JRM K

/ ly (k) = 3(&)[I*p (Y("’>) dy ®
RME
: / - py(k+1) e y(K))dy (R +1) - dy(K)
RM (K —k)

= [ Iy 5wl (Y0 ax .
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Now, since (k) = v, ;. whenever y(k) € SU) it

follows that:

E{lly(k) — y(B)[1*}
ok ,
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Finally, (6) follows from:
P (Y(kfl),y(k)) =p (y(k)| Y(kfl)) P (Y“"f”) .

APPENDIX B
MONOTONIC DECREASE OF D WITH M

For any M,R € N, define y®)(k) =
[:I/l(k)v e yi\f(k)]Tay(AI)(k) = [Y)I(k)7 ) ?)IW(I{")]T
and let Q,g‘M) yM(k) — yA(k) denote the optimal
quantizer for yD(k) of rate R. Let also D™ denote
the distortion obtained by using the quantizer Q; (M) on
y(k) = [yi(k),....yar(k)]T, and ignores the remaming
coefficients of the expansion (9).

Let, M < N, and define the (not necessarily optimal) quan-
tizer QM) L y M) (k) = §) (k) for y™V) (k), obtained from

k )

the quantizer QiM as follows:
M,N N (M) (M) <
ng,w)(y(.w)(k))] — {Qk (y (k))} S, m<M
me 0’ m > ]\/{

for all m = 1,..., N, where [z],, denoted the mth compo-
nent of . That is, Q(' 1.N) quantizes the first A components of

y ™) (k) according to the optimal quantizer Qk M) for y (M) (k),
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and makes zero the remaining components. Since Q;N) is the
optimal quantizer for y¥)(k) of rate R, it follows that

D’EM:,S{ Y () — oMy H } A2
JV+1
Sg{ y(N( ) Q(\IN (l»))HQ} Z )\m
m=N-+1
=& {lyoow - o ||

+ Z /\2 _ (’V[

m=M+1

APPENDIX C
DESIGN OF A LPQ USING THE METHOD IN [25]

For simplicity, we describe the design of a scalar LPQ. The
same procedure can be straightforwardly applied for designing
a vector LPQ.

Lety(t), t € N be ascalar discrete-time signal, P = p1q '+
poq 24 -+p,q " be an nth-order predictor (g is the forward
shift operation, i.e., P(y)(f) = y(t + 1)), and O( - ) be a scalar
quantizer. In the LPQ scheme, the reconstructed version #(t) of
y(t) is obtained as follows:

g(t) = P()(t) + Q(y — P(§))(2).

Now, given the statistics (i.e., the autocorrelation) of the input
signal, and the predictor P (which is straightforwardly designed
using linear least-squares [7, Sec. 4.3], the problem is how to de-
sign Q. To do so we use a realization y(¢) as a training signal,
and we use the following iterative procedure. At iteration i,
let #“~ 1 (t) denote the reconstructed version of y(t) obtained
from the previous iteration. Then, the quantizer Q% is com-
puted using the k-means algorithm on the residuals

0 =yt - P (i) @),
After doing so, the reconstruction §(*) () is computed by
GOt = o (gu—l)) ().

The iterations stop when the reconstruction error stops de-
creasing. Also, the iterations are initialized by choosing

P ) = oWy — P(y)(t)

where the quantizer Q) is computed using the k-means algo-
rithm on the residuals Y = 3 — P(y).

APPENDIX D
SPECTRAL REALIZATION METHOD USED FOR COMPUTING
(11)—(12)
In this Appendix we described the method we use to compute
the state space model (11)—(12), from the auto-correlation (10).
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Let K € N be such that the tail R(k), k& > K, is negligible,
and let

(25)

Now, for a given N € N, we can find N(z) = 23:1 N,z™"
and D(z) = ZN D,,z " such that

n=1
N(z)(I-D(2)) =~ Ro(z2).
This is done by solving the linear least-squares problem

[N(2),D(z)] = arg min [[N(z) — Ry(2)(I - D(z))]|
N(z),D(z)

where || - || denotes the matrix Frobenius norm. For doing this
approximation, the value of N is chosen using Akaike’s crite-
rion [26, p. 442].

The next step is to build a state-space model (A, B, C)
[similar to the one in (11)—(12)] such that its transfer function
G(z) = C(2I — A) B approximates N(z)(I — D(z)) *.
This is done by choosing [27, p. 101]

D, D, Dy I
_ I o - 0 _ 0
A= . . . B=1.1,

0 " i : :

0 0 I 0 0
C = [N]_ NAT].

The state-space model (A,B,C) is typically not minimal.
Hence, we use balanced truncation ([27], p. 197) to obtain
a model (A,B,C) of reduced order (i.e., with a matrix
A of smaller dimension than A), whose transfer matrix
G(z) = C(21 — A)"'B is approximately equal to G(z).
Then, we have

Ri(z) = G(z). (26)

Now, from (25) and (26), it follows that the spectrum S(z) =
Y JR(k)z* of y(k) is given by:

S(z) =RL(z ") + R(0) + Ry (2)
~ GT(2 1) + R(0) + G(2).

Using the spectral factorization technique in [28, Sec. 8.5], it
follows that:

S(z) = (C(zI- A)"'B+D)(C(z1- A)"'B+ D)7

where B = KWY2 and D = W2 with

K=vP)weP)!
V(P)=B - APCT
W(P) = R(0) - CPC*

and the matrix P being the solution of the Ricatti equation

P = APAT + V(P)W(P) 'V(P)~.
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Equation (27) implies that a spectral realization of y(k) is
given by the following state-space model

%(k+1) =
y(k)

(k)

Ax (28)
Cx(k)

(29

+
+ -

However, the model above includes an output noise component
given by the matrix D. To obtain the desired model (11)—~(12)
from (28)—(29), we use the transformation in [26, p. 178]. Doing
so, we obtain

A:[A B],B:H],C:[C D],
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