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Adaptive Stabilization of Linear Systems Via 
Switching Control 

Abs-pact-In this  paper,  we  develop  a  method  for  adaptive  stabiliza- 
tion  without  a  minimum-phase  assumption  and  without  knowledge of the 
sign of the  high-frequency  gain. In contrast to recent  work by Martensson 
[SI, r e  include  a  compactness  requirement on the  set of possible  plants 
and  assume  that an upper  bound on the  order of the  plant is  known. 
Under  these  additional  hypotheses, we generate  a  piecewise  linear  time- 
invariant  switching  control  law  which  leads to a  guarantee of Lyapunov 
stability  and  an  exponential  rate of convergence for the  state. One  of the 
main  objectives  in  this  paper is  to eliminate  the  possibility of “large  state 
deviations”  associated  with  a  search  over  the  space  of  gain  matrices  which 
is  required  in [SI. 

I. IhTRODUCTION 

T HE recent literature on adaptive stabilization includes a 
number of papers indicating a variety of situations where one 

can dispense with some of the so-called classical assumptions, 
e.g., see [1]-[8]. In contrast to earlier research in adaptive 
control, the emphasis in this new work has been on reducing the a 
priori information which is required of the system. That is, the 
issue of concern is to determine the extent to which one can relax 
the requirements that the plant’s degree and relative degree  are 
known, the plant is minimum phase, and the sign of the high- 
frequency gain is known. 

This new line of research can be traced back to a paper by 
Morse [ 11 which raised a number of open questions involving the 
classical assumptions in parameter adaptive control. Subse- 
quently, in [2], Nussbaum paved the way for adaptive control in 
the absence of information on the sign of the high-frequency gain. 

a smooth stabilizing He considered the problem of finding 
controller 

Z(t) =fW)t m ) ;  

w )  = g ( ~ ( t ) ,  z( t ) )  

for the one-dimensional system 

i ( t )  =ax@) + qu(t); 

Y ( t )  = x( t )  

with  both q # 0 and a > 0 unknown. In  his paper [2], Nussbaum 
describes a whole family of controllers of the form  (1.1) which 
achieve the desired stabilization for system (1.2). 

Following this work, a number of more general results emerged 
for adaptive stabilization of higher order linear time-invariant 
systems with unknown high-frequency gain; see,  for example, the 
papers by Byrnes and Willems [3], Mudgett and Morse [4], 
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Willems and Byi-nes [5], and Lee and Narendra [6]. Another 
breakthrough is contained in a recent paper by Morse [7] where it 
is shown that adaptive stabilization is possible with even less a 
priori information than heretofore required. In  his paper, Morse 
developed a “universal controller” which can adaptively stabilize 
any strictly proper, minimum-phase system with relative degree 
not exceeding two. 

Another surprising result is due to Martensson [8]. For a set of 
minimal plants, it is established that adaptive stabilization is 
possible with only one rather weak assumption. Namely, it  is 
assumed that there exists some nonnegative integer I having the 
property that each possible plant admits an Ith-order stabilizing 
compensator. Subsequently, it  is shown how even this assumption 
can be relaxed. As Martensson points out, however, his controller 
is severely limited from an implementation point of view. The 
first limitation stems from the fact that the controller may end up 
performing a rather exhaustive on-line search over the space of 
candidate gain matrices before “latching on”  to an appropriate 
stabilizer. Consequently, Lyapunov stability cannot be guaran- 
teed; it  is  only shown that the state is bounded and converges to 
zero. Hence, there is  no control over large excursions in the state 
space even when the initial state is arbitrarily small. From a 
practical point of view, the consequence of this exhaustive on-line 
search may be excessive overshoot. This situation is illustrated in 
Fig. 1 for the scalar plant in (1.2).  For this system, a suitable 
Martensson-type controller is described by 

i ( t )  =y2(t) ;  Z ( 0 ) I  1; 

u ( t ) = y ( t ) h ( ~ ( t ) ) ” ~  [sin h(z(t))1’2+ 11 cos h(z(t))  (1.3) 

where 

h ( z )  = log z .  

Notice in Fig. 1 that for the initial condition of x(0) = 1, ~ ( 0 )  = 1 
and parameter values a = 1 and q = - 1, the peak overshoot in 
y( t )  is 300 O O O !  A second practical limitation of the Martensson 
controller stems from the susceptibility of the so-called Nussbaum 
gain to measurement noise. This limitation is also inherent in  [2]- 
[8] where a similar Nussbaum structure is used. To illustrate, we 
again consider plant (1.1) with the adaptive Nussbaum-type 
stabilizer (see [4]) 

Z(t) =y2( t ) ;  

u(t)  =y(t)z2( t )  COS z(t) (1.4) 

and suppose that the measured output y(t) is additively corrupted 
by some “small” disturbance E ( &  say,  for  example, E ( [ )  is white 
noise and 

y ( t )=x( t )+E( t ) .  (1 5 )  

Then it is easy to see from (1.4) that ~ ( t )  may tend to infinity if E(?)  
has nonvanishing covariance. This will happen when y2(t)  is 
nonintegrable as a consequence of variations in E(t). Therefore, 
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Fig. 2. Simulation using controller (1.4) for system (1.2) with additive 
measurement disturbance. 

the control gain may  not converge and we see that an arbitrarily 
small persistant measurement perturbation may destabilize the 
system. Fig. 2 demonstrates this phenomenon for the initial 
condition x(0) = 5, z(0) = 0, parameters a = 1 and q = 1 ,  and 
measurement disturbance E(t) = 0.25 sin 100t. 

Given the motivation above, the objective in this paper is to 
develop a controller which not only stabilizes the system (as in 
[2]-[8]) but does so in the sense of Lyapunov. This distinction is 
important because with Lyapunov stability we can get a handle on 
the types of undesirable “overshoot” behavior described above. 

The results of this paper are obtained by strengthening 
Martensson’s hypotheses for the sake of generating a more 
“practical” controller. To this end, there  are two more assump- 
tions which we impose beyond those in [8]. Our first assumption 
is that an upper bound on the order of the plant is known. Second, 
we make a compactness assumption on the set of possible plants. 
Within this framework, we achieve the stated stability objectives 
using a switching control law which is a piecewise linear time- 
invariant feedback. It is shown that only a finite number of 
switches occur .and then the controller remains fixed with a 
constant compensator gain matrix. 

II. SYSTEM AND ASSUMFTIONS 

A finite upper bound  on state dimension nmax < co is 
sDecified and each possible plant is a linear time-invariant system 

X(t) =Ax(t)  + Bu(t); 

y ( t ) = c x ( t ) ;  r E 10, 03) (2.0.1) 

with statex(t) E R“ for some n I nmax, control u(t) E Rm, and 
measured output y( t )  E R‘. The given set of possible plants C 
consists of triples (A, B, C )  and we use the notation C, to denote 
the subset of C consisting of those plants having dimension n,  i.e., 

E, p ( ( A ,  B,  C )  E C :dim A = n x n )  

for n = 1, 2, . -, nmX. Throughout this paper, it is assumed that 
C, is compact for n = 1,2,  . , nmax and that every possible plant 
(A, B, C )  E C is a minimal realization. 

Remarks 2. I :  The assumptions above guarantee that for every 
possible plant (A,  B,  C )  E C, there exists an Ith-order linear 
time-invariant dynamic compensator ( I  of course depends on the 
dimension of A )  

so that  with state 

the closed-loop system 

(2.1.1) 

(2.1.2) 

is asymptotically stable. Since the upper bound on the state 
dimension nm is assumed to be known, the order I of this 
dynamic compensator can be taken to be the same for all (A,  B,  
C )  E C. This follows because if (A,  B, C) E C and dim A = n 
x n, then stability can be guaranteed using an nth-order 
Luenberger observer which implies that a compensator of 
dimension nmax can also be used to guarantee stability. This higher 
dimensional compensator is trivially obtained by augmenting the 
nth-order Luenberger observer with a stable subsystem of order 
nmax - n with states which are decoupled from the states of the 
observer. This observation will be used to our advantage in 
Lemma 3.1 to follow. 

The compactness assumption on each C, implies that the class 
of systems under consideration does not include singular perturba- 
tions. In other words. the model does not handle parasitics. A 
simple example illustrating this restriction is given by the 
singularly perturbed system 

d(t) =x@)+  u(r) ;  E E [01 E ~ J ;  

It is straightforward to verify that 

c ,= [(:I :, 1) : E E (0, Em] 1 (2.1.4) 

which is not compact. It should also be noted that the compactness 
assumption on the X, implies that some bound is available on the 
system parameters. This assumption is  what distinguishes this 
work from the cited literature on adaptive stabilization. 

A .  Notation for  the Closed-Loop System . 

Given any fixed triple (A, B, C) E C and a set of gain matrices 
(F,  G, H ,  K )  for an Ith-order compensator, the closed-loop 
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system is described by 

f ( t )  =Ax(t)  +Bu(t); 

Y ( t )  = Cx(0; 

u(t)  = K W  (2.2.1) 

where 

1099 

any fixed i E ( 1 ,  2, .-.,f}, define 

ET { ( A ,  B, C )  E C : all  eigenvalues of A,(Kj)  have 
real  part s - (y + E)}. 

Again, using compactness of the X and continuity of eigenvalues 
of A,(Ki)  with respect to the system matrices, it follows that X: is 
compact. Then the definition of C: guarantees that for  each u = 
(A,  B, C )  E E?, 

IIeA*(Ki)rIlerr+O 

as t -+ w.  Hence, (3.1.2) is satisfied by taking 

M* 4 max { max IIeA*(Ki)fIIerf: i = l ,  2, * - e ,  f}. 
oEXJ,tE[O,oo) 

A 4 [o A 0  0] ; B 4  [o B O  I ] ;  

and 
x(t)  a [x(t)’z(t)’l‘;   u(t)  2 [u(t ) ’ i ( t ) ’ l ’ .  

To denote the dependence of the closed-loop system matrix on the 
chosen compensator gain matrix K ,  we use the notation 

A J K )  P A+BKC. 

HI. A PRELIMINARY LEMMA 

The following technical lemma will be useful in Section N 
where we construct a switching compensator leading to Lyapunov 
stability with an exponential rate of convergence for the state. 

Lemma 3. I :  Let (decay rate) y > 0 be arbitrarily specified. 
Then, there exist a (compensator dimension) 1 5 nmx, a 
constant M* > 0 ,  a finite number of compensator gain 
matrices K , ,   K2 ,  - -, K, E R ( r + m ) x ( / i r ) ,  and compact sets C r ,  
CY, e . . ,  X? such  that 

f 
i) U E ~ = c ;  (3.1.1) 

i=  I 

ii) Foreach i E ( 1 ,  2, *.-,f} andeach ( A ,  B, C )  E E;, 
we  have 

IIeA*(Ki)‘II sM,e-S‘  (3.1.2) 

for all t E [0, w).. 
Proof: Recalling the Remarks in Section 11-A, it suffices to 

take the compensator dimension 1 = nmax in the proof to follow. 
Note, however, that it may be possible to use a lower order 
compensator as far as implementation is concerned, e.g., see 
Example 1 in Section VII. 

We first choose E > 0 to be any fixed number. Now, given any 
y > 0 and any triple u = (A,  B ,  C )  E C, we can select K ,  E 
R(/+m)x( ‘+r )  so that the closed-loop system matrix 

A,(K,) = A  + BK,C 

has eigenvalues all having real part less than - (y + E ) .  
Let nu be the dimension of A and  note that by continuity of the 

eigenvalues of A.(K,) with respect to the system matrices, we 
can find an open neighborhood Vu of systems around a (all having 
di_megio_n nu) satifying the following _conditjon.-For each d = 
( A ,  B, C) E Vu, the eigenvalues of A + BK,C also have real 
part less than - (y + E). Consequently, for each n E { 1, 2, * * , 
n,}, we generate an open covering of C, by taking the union of 
the sets Vu as a ranges over C,. Now, using compactness of each 
X,, we’can extract a finite set of gain matrices K,J ,  K,,2, * ,  

KnJ(,) and associated open neighborhoods Vn,l,  V,,2 - * - V,,,r(,,) 
such that for each a E Vn,i, A*(K,,,i) has all its eigenvalues wlth 
real part less than -(y + E ) .  

To complete the construction of the compensator gain matrices, 
we simDlv take the set { K T ,  K,, - -, K f )  to be the union of the 

IV. CONSTRUCTION OF THE SWITCHING COMPENSATOR 

In this section, we provide the formal construction of a 
switching compensator which achieves the desired Lyapunov 
stability with exponential decay rate. First, however, we give 
some heuristic motivation for the basic idea behind the construc- 
tion. We begin at time zero with compensator gain matrix Kl  and 
use the output information to construct a “monitoring function” 
V(t, T ~ ) ;  see Step 4 to follow. This function, being related to the 
state of the system, is used to decide when to switch from Kl  to 
K2. Once this switch has taken place, we then use V(t, 72) to 
decide when to switch from K2 to K3; this process continues with 
switching from K3 to K4, K4 to K,, etc. Eventually (see the proof 
of Theorem 5. l) ,  the compensator gain matrix will “latch” onto 
some Kp ( p  I f) which does indeed stabilize the system. 
Subsequently, no further switching occurs. The proof of stability 
of the compensated system is relegated to Section V where the 
main result of this paper is stated. 

Step I :  Select any desired decay rate y > 0 and take K l ,  K2, 
- e - ,  Kf E R(r+m)x( l+r )  and X:, E,*, * e - ,  C; satisfying the 
requirements of Lemma 3.1. 

Step 2: For  each i E { 1,2 ,  . . . , f} and each triple a = (A, B, 
C )  E X:, define the observability Gramian 

7 ,  

u/ r (~ ,  a) 4 1 eA*(Ki)W‘CeA*(Kih d~ (4.0.1) 
0 

and the scalar function 

p i (7 ,  a) 4 A,,[ Wi(7, a)-1/2eA*(Ki)rWi(7, a)eA*(KifiWi(7, u)-I/2] 

where denotes the operation of taking the largest 
(smallest) eigenvalue. 
Step3:ForeachfixediE{1,2,-~-,f}andeachu=(A,B, 

C )  E E:, we claim that pi(7, a) -+ 0 as 7 -+ w. To this end, for 
fmed u = (A,  B, C )  E C:, we first notice that 11 Wi(7, u))II = 
X,,[ Wi(7, u)] is nondecreasing. Also, sinceA*(Ki) is asymptoti- 
cally stable, 11 Wj(7, a)ll is bounded with respect to 7. Hence, for 
any fixed 7o and 7 2 TO, we use norm inequalities and Lemma 3.1 
to obtain 

pi(7, a) = 11 ~ ~ ( 7 ,  0)- I/2eA &(xi), ~ ~ ( 7 ,  a)  112 11 2 

111 Wi(~o, u ) ~ ~ - 1 ~ ~ e A * ( K ~ ) 7 ~ ~ 2 ~ ~  W j ( w ,  u))II 

5 1 1  Wi(70, a ) ~ ~ - l ~ ~  Wi(w, U ) ) I I M $ ~ - ~ ~ ~ .  

From this inequality, it follows that pi(7, a) + 0 as 7 -+ 03. Now, 
we further bound p i ( 7 ,  a) independently of u. That is, 

p j ( 7 ,  u ) s  max {I1 ~ ( 7 0 ,  u)II-III WAw, ~ ) l l } M 2 * e - ~ ~ ‘ .  
U E E f  

I <  . .. -. 

sets { Kn, l ,  K,,,2, e ,  K,,f(,)} as n ranges from 1 to nm,. Now, for 
- ,* 

c 
Using this bound, we conclude that for each i E { 1, 2, e ,  f }, 
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there exists a finite constant T~ > 0 such that 

1 > max  pi(^^, a) P p i .  (4.0.2) 

Step 4: The generation of the controller is accomplished by 
defining a switching index h(t) and an associated sequence of 
switching  instants to, t l ,  - , tp . First, using the available output 
y(t) ,  the controller generates the signal 

aEZf 

d(t)  P I I ~ ( f ) l l ~ .  (4.0.3) 

Next, we define 

V(t ,  7 )  4(t)-G(t-T) (4.0.4) 

for t E [0, w) and T E [0, t ]  and initialize the controller by 
taking to A 0. Now, f o r i  = 1, 2, - - a ,  f - 1 ,  define 

ti P sup ( t  : tzti-1+27i; V( t ,  ~ ~ ) s p ~ V ( t - ~ ~ ,  T ~ ) }  (4.0.5) 

and the switching index 

h ( t )  P i (4.0.6) 

for t E [ti- I ,  t i ) .  Subsequently, the control is recursively 
generated using the formula 

u(t)  Kb(t)y(t)* (4.0.7) 

In case ti = 00 for some i < f - 1, the generation of ti is 
terminated and the control gain matrix K h ( r )  remains constant at 

Remark 4.1: In effect, the control u(t) given by (4.0.7) is a 
piecewise linear time-invariant feedback. In Section V below, our 
objective is to show that the control u(t) above leads to an 
exponential rate of convergence (hence, Lyapunov stability) for 
the closed-loop system. 

Ki-1. 

V. MAIN RESULT 

We are now prepared to state and prove the main result of this 
paper- 

Theorem 5.1: Consider  the  set  of  possible  systems C in 
(2.0.1) with  control u(t) given by (4.0.7). Then  there  exist 
constants M > 0 and X > 0 such  that for all (A,  B ,  C )  E C, all 
initial  conditions x(0) = (x(O), z(0)) and  all t E [0, w), it 
follows that 

I l x ( t ) l 1 2 ~ ~ e - ~ I I X ( 0 ) I 1 2 .  (5.1.1) 

Proof: Let LT = (A,  B, C) E C be any possible system with 
arbitrary initial condition x(0) and note that in accordance with 
Lemma 3.1, u E CT for some i I f .  Our  first claim is that the 
switching index h(t) converges to some p I i. This claim is 
established by noting that if h(t) = i, then for all t L t i - ,  + 2~~~ 
we have 

V(t,  Ti) = dJ(t) - $(t-  T i )  

= j1 IIY(7)l12 4 
I - -T i  

=X'(t-Ti)Wj(Ti, U)X(t-Ti) 

(5.1.2) 

In view  of this inequality and the defiition of the switching 
instants, it follows that ti = w and h(t) = i for all t 2 ti-1. 
Hence, let t I ,  t2, * - a ,  tp denote the finite set of switching instants 
which result and note that p I i and tp = 00. 

The next step of the proof involves bounding the state x(t). 

Indeed, with a E CT as above and j 5 p - 1, we consider the 
time interval 

For t E q, we use control u(t) = Kjy(t)  and consider two cases 
whose results will be combined at  the  end. 

Case I :  t E In this case, it  is apparent that 

where 

Note that Oj is finite because [0, T ~ ]  and the X i  are compact and the 
matrix exponential is continuous with respect to a and q .  

Case 2: t E T , , 2 .  In order to bound x(t) ,  we first bound V(t,  
T~). To this end, select the integer p 2 1 such that 

and let 

6 P t - t j - , - ( p + l ) ~ j .  (5.1.5) 

By definition of p ,  it follows that 6 E [o, 7,). Recalling 
expressions (4.0.1) for W,(T,, a) and (4.0.4)  for V(t, T i ) ,  we 
obtain a bound 

where 

X& P max X,[ W,(T,, a)]; XZin P minXmi,[ W j ( T j ,  a)] .  
oEZ oEZ 

Note that X&x and X:in are positive (by invariance of observability 
under output feedback) and finite (by compactness of C and 
continuity of W ( T ~ ,  a) with respect to a). Now using the state 
bound (5.1.4) and the bounds on V(t,  T ~ )  in (5.1.2) and (5.1.6), 
we obtain 

V(t,  T j )  X*. nun 

(5.1.7) 

To complete the analysis for Case 2,  we note that p i  E (0, 1) 
makes  it possible to choose Xj > 0 such that 

Hence, (5.1.7) becomes 

(5.1.8) 

Now using the definition of 6 in ( 5 .  l S ) ,  we can further bound the 
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When the full state x(t )  is available for feedback, we use a static 
compensator (of dimension I = 0) and can therefore omit 
boldface notation when referring to system and compensator 
matrices. Since C = I for all possible systems, we  now use the 
notation ( A ,  B) instead of (A ,  B, C ) .  First, it  is  noted that we can 
extend Lemma 3.1 and generate a finite number of gain matrices 
K 1 ,  K2, . . . , K f ,  a finite number of compact sets ET, E;, . * . , 
Cjf , and a finite number of Lyapunov matrices PI ,  P2, * - . , P, 
such that for each (A ,  B) E E?, the following condition holds: 

( A  + BK;)’Pi+ P;(A + BK,)< - I .  (6.1 . l )  

Hence, for each ( A ,  B) E C:, the Lyapunov  function defined 
by 

V,(x)  G x’P;x (6.1.2) 

decreases along state trajectories when control u(t) = Kix(t) is 
used. Next, analogous to Section IV, the function V,(x(t)) can be 
used instead of V(t, 7;) in the construction of the switching 
control. Indeed, for any arbitrarily small desired waiting period 7, 
define the switching instants 

ti 6 sup ( t  : t> t i - l+7;  Vi (x( t ) )<piV;(x( t - r ) ) )  (6.1.3) 

f o r i  = 1, 2, e . . ,  f - 1, where 

pi 2 e-(”X m a  [p;l). (6.1.4) 

Then, it can be shown that with the switching index given by 
(4.0.6) and switching control given by (4.0.7), we obtain 
Lyapunov stability with exponential convergence rate as in 
Theorem 5.1. 

state; i.e.$ 

and recalling that 6 5 T ~ ,  we finally obtain 

where 

(5.1. IO) 

Combining Cases 1 and 2: We claim that the state bound in 
(5.1.9) is actually valid over all of T, even though it was only 
developed for t E q,2. To see this, note that XhXlX&,  > 1 and 
that t - ti- < 2rj for t E q,l. Consequently: if t E q,l ,  we can 
further bound the state in (5.1.3). Namely, 

I lx( t>l12~Pf l l~( t j -~) l12 

= M j e - A j ( r - r j - ~ ) ~ ~ x ( ~ j ~ l ) ~ ~ 2 .  (5.1.11) 

Finally, to complete the proof of the theorem, let 

M p M,M2 . . . Mf ; 
X min {X,, X2, . . e ,  X,}. 

Now, given any t E [0, a), it follows that t E TJ for somej 5 p .  
By using (5.1.1 l ) ,  we obtain 

IIx(t)l12sMje-h(r-r  J-1)llx(tj-l)l12 

~MjMj- l e -X(r - rJ -Z)I I~( t j -~ ) I12 .  

Continuing recursively in this manner and noting  that each M, 
exceeds unity by (5.1.10) and (5.1.4), it follows that 

VI. EXTENSIONS 

In this section, we briefly indicate two extensions of the theory. 
First, the results are strengthened for the special case of full state 
feedback. Second, the theory is extended to deal with additive 
measurement noise. 

A .  Full State Feedback 

One of the key ideas underlying the switching control (4.0.7) is 
the construction of the function V(t ,  7) which provides informa- 
tion making it possible to decide when to stop switching, i.e., to 
decide if  the controller is using the “right” gain matrix. Note, 
however, that the controller “waits”  for  a period 27; before 
deciding whether to switch from K; to Ki+ and also recall that the 
T~ were chosen to guarantee the decreasing property of V( .  , 7,) 
which is essential to attainment of the main result. In  view  of these 
remarks, it  is  of interest to know under what conditions one can 
reduce the waiting period 27, so as to “speed up“ the system 
response. We claim that under the strengthened hypothesis of full 
state feedback, the “waiting period” can in fact be made 
arbitrarily small. For brevity, we omit a rigorous proof and only 
provide a sketch of the main ideas behind this extension to the 
theory. 

B. Modification for  Measurement Noise Rejection 

We  now provide a brief sketch indicating how the controller 
can be modified to handle measurement noise as discussed in 
Section I. In this case, the switching index h(t) in (4.0.6) may 
never converge because V(t ,  7;) may be dominated by noise when 
Ily(f)II is small. Therefore, the decreasing property (5.1.2) of V(t ,  
7;) may  be destroyed and the switching index may keep jumping 
indefinitely leading to instability. To overcome this problem, we 
modify the switching index in such a way that: 

1) the state tends to a bounded neighborhood of the origin if the 
measurement noise is bounded; 

2) the size of the neighborhood in 1) to which the state is 
eventually confined vanishes as the noise amplitude vanishes. 

This modification is simply accomplished by reinitializing h(t)  
to 1 whenever h(t) exceeds f .  The basic idea behind this type of 
modification can be heuristically motivated. First, note that the 
measurement noise will  not affect the decreasing property of V(t, 
7,) when Ily(t)II is sufficiently large.  Therefore,  for outputs with 
large norm, the modified switching rule leads to a  “good” 
compensator gain matrix and IIx(f)ll is reduced until it reaches the 
point  that  it is “comparable” to the amplitude of the measurement 
noise. It can be readily shown that the size of the neighborhood to 
which the state converges can be bounded in norm by M’ema 
where M’ > 0 is a constant and E,,, is the upper bound on the 
norm  of the measurement noise. 

VII. EXAMPLES AND SIMULATIONS 

Two examples are provided in this section to illustrate the 
behavior of systems subjected to the switching control (4.0.7). In 
the first example, we indicate a typical construction of the 
controller and provide sample state trajectories for various 
possible plants in the given collection. In the second example, we 
return to system (1.2) and consider the problem of measurement 
noise rejection recalling the motivating instability problem de- 
scribed in Section I. Using the modification of the switching 
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control as prescribed in Section VI, it is seen that the state 
trajectories are no longer unbounded. As a matter of fact, the state 
tends to a bounded neighborhood of the origin whose sue  is 
comparable to the amplitude of measurement noise. 

Example 1: Consider the  set of possible systems C described 
parametrically by the state equation 

r 

y( t )  = [1 O]x(t); t E [O, 03). (7.1.1) 

It is straightforward to verify that for each triple (A,  B ,  C) E 
E, the system is controllable and observable. Also, the system 
order is fixed at n = 2 and Ez is compact by inspection. Hence, 
Theorem 5.1 applies and we can use the recipe in Section IV to 
obtain a stabilizing compensator. First, we  need to generate a 
finite number of compensator gain matrices 4 ,  Kz, * * , Kf as 
prescribed in Lemma 3.1. To this end, we construct a reduced- 
order Luenberger observer (parameterized in 4); we assign the 
poles of the state x(t) at - 1 and - 2 and the pole of the observer 
at -4. It turns out that an appropriate compensator gain matrix 
has the form 

-31+30q -5+6q 
-150q2+ 185q-56 -30q2+31q-9 1 ‘ 

Now, to satisfy the requirements of Lemma 3.1, we take y = 
0.30, and perform a lengthy but straightforward calculation and 
verify that the requirements of Lemma 3.1 are satisfied by takingf 
= 5 and 

Now, to satisfy the requirement on the pi [see (4.0.2)], we 
increase the 7; and find that for 71 = 2.1, 72 = 1.8, 7 3  = 1.6, 71 
= 1 . 2 , a n d ~ ~ =  1 .2 ,wehavep;C  l for i=   1 ,2 ,3 ,4 ,5 .Hence ,  
the parameters of the switching control in (4.0.7) are now 
completely specified. Figs. 3-5 are obtained by computer 
simulation using different values of the parameter q E Q. Sample 
state trajectories and the switching behavior of the control are 
indicated. 

Example 2: We consider system (1.2) for LI = 1 and q E 
{ - 1, 1 )  with additive measurement noise. Again, the compact- 
ness of the set of possible plants and boundedness of the state 
dimension are trivially verified. The state feedback control 
derived in Section VI-A is used since the output and the state are 
the same. To satisfy the requirements of Lemma 3.1 for any y < 
1 ,  we use two compensator gains K I  = 2 and K2 = - 2. The 
simple Lyapunov function 

V(X)  P x2 

is chosen to satisfy the condition (6.1.1). The “waiting period” is 
taken to be T] = 72 = 0.5. 

4.0! 

XI ( t  I 

4 .O 

XI ( t  I 

0.0 

X J O 1  = 1.0; XJO) = 2.0; 

q = -0.5 
x*( t 1 

-4.0 * 
0.0 15 .o 30.0 t 

0.0 

X J O 1  = 1.0; XJO) = 2.0; 

q = -0.5 
x*( t 1 

-4.0 * 
0.0 15 .o 30.0 t 

Fig. 3. Sirnulation for Example 1: q = -0.5. 

Fig. 4. Simulation for Example 1: q = 0.125. 

Fig. 5. Simulation for Example 1: q = 0.5. 
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’I = 1.0; T = 0.5 

0 .o 
0.0 16.0 t 

Fig.  6. Simulation for Example 2. 

To illustrate the behavior of the closed-loop system, the same 
destabilizing disturbance ~ ( f )  = 0.25 sin 1OOt which we previ- 
ously considered is added once again. This time, however, the 
system is compensated by the modified switching control de- 
scribed in Section VI-B. The simulation result given in Fig. 6 
indicates that the state no longer “blows up.” In fact, x(t) settles 
into a small neighborhood about zero  as predicted by the theory. 

VIII. CONCLUSION 

Theorem 5.1 strengthens recent results on adaptive stabilization 
to include a guarantee of Lyapunov stability with  an exponential 
rate of convergence for the state. Furthermore, using the 
modification of  the control law described in Section IV, the state 
remains bounded in the presence of measurement noise and the 
norm bound on the system state tends to zero as noise bound tends 
to zero. We do, however, pay a price for this “more practical” 
controller. That is, to obtain stronger results, we have to impose 
additional requirements, beyond those in [8], on the set C of 
possible plants: compactness and an a priori upper bound nm on 
the order of plants in C. 

From an implementation point of view, the switching controller 
in (4.0.7) has the desirable feature that  it  is a piecewise linear 
time-invariant feedback. Moreover, after a finite number of 
switches, the controller becomes a classical linear time-invariant 
feedback and remains as such thereafter. On the other hand, there 
is one potential “stumbling block” when performing numerical 
computations. Namely, the construction of the gain matrices K,, 
IC2, . . - , Kf (see Lemma 3.1) may be computationally prohibitive. 
As indicated in the proof of the lemma, these gain matrices are 
obtained by extracting a finite subcovering from a specially 

constructed open covering of E. In view of this limitation, it is felt 
that future research should be aimed at developing alternatives to 
Lemma 3.1. In other words, it would be worthwhile investigating 
alternative procedures for construction of the controller while 
preserving the desirable properties obtained for the closed-loop 
system. The stability result established here should really be 
viewed as a benchmark against which to compare new control 
schemes. 
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