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A b s f r a c t I n  this paper, a new theoretical concept is 
introduced for polynomials: the Stepwise HunvitZ Proper@. 
Subsequently, it is shown how this concept can be used to sys- 
tematically achieve robust output feedback stabilization for 
large classes of uncertainty structures. A principal motivation 
for this paper is the fact that the state feedback controller 
Construction methods do not readily admit modifications to 
handle the output feedback case. One of the fundamental 
technical issues addressed in this paper involves the handling 
of poles and zeros at the origin. For example, high-gain 
control results which are available to robustly stabilize an 
uncertain minimum phase plant G(s ,q)  via output feedback, 
do not readily extend to plants of form s"G(s,q). 

1. Introduction 
The main results of this paper bear on the large body of 
literature involving construction of robustly stabilizing 
controllers for systems which include an uncertain 
parameters or nonlinear elements with known bounds. A 
principal motivation for this paper is the fact that results 
for robust stabilization via state feedback do not readily 
admit modifications to handle the output feedback case; 
e.g., for state feedback solutions, see [IO], [I], 1161, [20], 
[21], [I91 and for the case of linear systems and [3], [8], 
[9], [ I l l ,  [13], [14] and [I51 for the case of nonlinear 
systems. As far as the literature on robust output feedback 
stabilization is concerned, results for minimum phase 
plants are the benchmark against which the results this 
paper can be compared; e.g., see [2], [I81 and [22] where 
an input-output linear system description is the starting 
point and [6] and [I21 where lower triangular state space 
uncertainty structures are considered. 

By way of motivation, let q denote a finite-dimensional 
vector of uncertain parameters with known compact 
bounding set Q and take G(s,q) to be a plant transfer 
function with one-sign high-frequency gain, q entering 
continuously into its coefficients and having the form 

with N ( s ,  q )  and D(s,  q )  being uncertain polynomials. 
Notice that if N ( s ,  q )  is robustly Hunvitz and m = 0, this 
minimum phase uncertain system is readily stabilizable 
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via high-gain output feedback. On the other hand, 
with m > 0, it turns out that a naive high-gain approach 
will fail. 

The simple uncertainty structure above generalizes a 
number of uncertainty structures in the literature; see 
[I], [17], [19] and [21]. The structure is generated via a 
sequence of up and down augmentations. Special cases 
of this structure include the well-known lower-triangular 
structure and upper-triangular stmcture. By way of 
concrete illustration, the system 

6, = -41x1 +xz +q*x4; 

62 = x3; 
x 3  = 43x3 +x4; 

x 4  = -21 +U; 

Y = x3 

with 4 = ( q 1 , q 2 , q 3 )  does not admit a parameter- 
independent transformation taking it to a triangular form 
but has transfer function 

with d(s ,q )  being a second order polynomial. Now, 
with arbitrarily large uncertainty bounds 9,: 5 qi 5 q+ 
with q; > 0, the non-minimum phase zero at s = 0 is 
problematic as far as high-gain robust output feedback 
stabilization. However, for this system, since the sign of 
the low-frequency gain is positive, the results given in 
this paper lead to a systematic construction of a robust 
output feedback stabilizing compensator; see Section 3 
where this example is revisited. 

Analogous to the case above, when the transfer function 
has one-sign low-frequency gain and is of the form 

with D(s ,  q )  robustly stable, while zero feedback is needed 
when m = 0, the case with m > 0 and non-minimum 
phase becomes challenging. This provides a second exam- 
ple from the class of systems for which a robust stabilizer 
can he constructed using the results in this paper. 
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2. The Stepwise Hurwitz Property 
In this section, we introduce two new concepts: the Step- 
wise Hunvitz Pmperty and the notion of Robust Hunvitz 
inducibility, are introduced. 

2.1 Preliminaries for Polynomials: Let H denote 
the set of Hunvitz polynomials; i.e., polynomials 
with all roots in the strict left half plane. Now, 
iffo(s),f l(s) ,f2(2),  ...,fN( s) are polynomials a n d a  = 
(ai ,  012, ' .  . , a ~ )  E RN is fixed, we consider the param- 
eterized polynomial 

f(s) =fo(s)+aifi(s)+~zfz(s)+...a~f~(s). 
For given a E RN, this parameterized polynomial is said 
to have the Stepwise Hunvih Properry if f(s) E H and, 
for k = 0,1,. . ' ,  N - 1, the partial sums 

Fds) = f o ( ~ ) + ~ l f l ( ~ ~ + ~ z f z ( s ~ + ~ ~ ' ~ k f ' ~ ~ ~  

satisfy the following condition: For each k, there exists a 
non-negative integer ik such that 

s-i*Fk(s) E 7.1 

When such a selection of a exists, the polynomial se- 
quence { f k ( ~ ) } f = ~  is said to be (Stepwise) Hunvitz in- 
ducible and f o ( ~ )  is called the Hunvitz core. 

2.2 Remarks: In a control theoretic context, if we view 
the a, above as parameters which correspond to compen- 
sator coefficients, it is apparent that Hunvitz inducibility 
is equivalent to stabilizability. In the sequel, one of the 
main technical novelties associated with robust stabiliza- 
tion is our relabelling of the compensator coefficients ai 
so that the Stepwise Hunvitz inducibility is guaranteed. 
That is, the obvious ordering for selection of compensator 
parameters corresponding to the increasing or decreasing 
degrees of sk in N J s )  or D,(s) does not necessarily lead 
to satisfaction of the Stepwise Hurwitz Property. 

2.3 Example: To illustrate the concepts above, we consider 
the parameterized polynomial f(s) above with compo- 
nents fo(s) = s3 + s'; fl(s) = 2s4 - s' + s; fz(s) = 
s5 + s and f3(s) = s' - s + 3. Now, for the fixed 
choice of parameters a1 = a2 = 0.25, as = 0.05 
and indices io = 2, il  = iz = 1 and i3 = 0, a 
straightfonvard calculation leads to the s-'* shifted partial 
sums s-*Fo(s), s- 'Fl(s),  s-lFz(s) and F ~ ( s )  are 
readily verified to be Hunvitz polynomials. Hence, for 
this selection of the CY', the resulting polynomial has the 
Stepwise Hunvitz Property. 

2.4 Notation: Given a sequence of polynomials 
fi(s),fz(s), . . . ,~N(s), we define the associated 

sequence of partial polynomial vectors 

f'k'(s) [fo(s) fi(s). . . fk(s)]; k = 0,1, .  . .,N. 
We now define Ik, the maximum index of f(')(s), to be 
the maximum degree of the f, (s) comprising this partial 
vector; i.e., 

I k  m={degfi(s), degfds) ,  . . . , d e g f d s ) }  

We also define ik, the minimum index of f@)(s) as 
follows: Let sJi be the lowest power of s appearing in 
fi(s) with a non-zero coefficient. Then, 

ik = min{jl,jz,. . . , j k } .  

Note that 1' and i,+ are non-decreasing and non-increasing, 
respectively. We conclude this section by generalizing the 
discussions above to uncertain polynomials. 

2.5 Robustness Generalizations: For the case when the 
polynomials fk (s) have coefficients depending continu- 
ously on a vector q of uncertain parameters, we re- 
place f ( s ) , f k ( s )  and Fk(s) by their uncertain counter- 
parts f(s, q), fk(s, q)  and Fk(s,  q), respectively. Then, 
given a compact hounding set Q for the parameters q, we 
say that the Stepwise Hurwitz Property holds robustly if 
f(s, q )  E H for all q E Q and for each paaiaI mm Fk(s, q)  
with k < N ,  there exists a non-negaiw integer i k  such that 
s-'li F k  (s, q)  E 'H for all q E &. FidIx it should be noted 
that in this case, the maximum and minimum indices of the 
partial polynomial vector fl')(s, q), respectively denoted 
by &(Q) and zk(q) .  are functions of q. 

3. Robust Hunvitz Inducibility 
3.1 Theorem of Robust Hnnvitz Inducibility (see Sec- 
tion 4 for proof): Given the sequence of uncertain poly- 
nomials fk(s, q ) ,  q E Q ,  k = 0,1,. . . , N .  suppose the 
following conditions are satisfied: 

(i) The polynomial fo(s, q)  is a robustly Hur- 
witz with a positive highest degree coeflcient. 

(ii) The maximum and minimum indices of the par- 
tial uncertain polynomiaI vectors I(') (s, q)  are 
invariant, and thus denoted by I' and ik, respec- 
tively. 
As k increasesfram zem to N ,  for each transition 
of k 3 k + 1, I' (respectively, ik) can increase 
(respectively, decrease) by one at most. 

(iv) For k = N, the minimum index is iiv = 0. 
Then, the sequence {fk(s,q)}ts0 is robustly Hunvitz 
inducible. 

(iii) 

3.2 Motivating Example Revisited: To illustrate how the 
Stepwise Hunvitz Theorem applies to classes of systems 
which are not covered by the existing literature, we revisit 
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the motivating example given in Section 1. This example, 
while analyzed in somewhat of an ad hoc manner here, 
is addressed more formally in Section 5. Accordingly, the 
procedure below will be formalized as part of a step-by- 
step procedure. We begin with the plant transfer function 

4. + q l )  
,q  - G(s ) - s4 + (q3 - q1)s3 + (q2 - q1q3)sz - q2q3s + 1 '  

with its uncertain parameter bounds given by 1 5 q1 5 2, 
-1 5 q2 5 1, -1 5 43 5 1 and note that the analysis to 
follow could equally well be carried out with arbitrarily 
large uncertainty bounds with the the proviso that q1 > 0. 
We now specify a second order controller of the form 

nzsz + n l s + n o  - , N,(s) C(S) = -- 
dzs2 + d i s  + do D,(s)' 

To demonstrate that all hypotheses in the Stepwise Hunvitz 
Theorem are satisfied, we first consider the closed loop 
polynomial 

f(s,q) = s N ( s , q ) N c ( s )  + D ( s , q ) D c ( s )  
which is rewritten as 

f(s, 4)  = N ( s ,  q)Nc(s)+doD(s,  ~)+disD(s,  q ) + d d D ( s ,  q)  

We now claim that the hypotheses of the theorem are 
satisfied by taking N J s )  to be any positive coefficient 
Hurwitzpolynomial and letting fo(s,  q)  = s N ( s ,  q)N,(s),  
fi(s,d = sD(s,q),  fz(s,q) = o ( s , q )  and f d s , ~ )  = 
s*D(s,q). Now with io = 1 and recalling that q1 2 1, 
it is readily verified that S - ' ~ ~ O ( S )  = (s + ql )N, (s )  
is robustly Hunvitz. Also, the corresponding minimum 
and maximum indices io = il = 1, iz = is = 0, 
10 = 4, 11 = Iz = 5 and l3 = 6 and the associated 
coefficients satisfy the required invariance requirements of 
the theorem. It follows that the parameterized closed loop 
polynomial f(s, q)  is robustly Hunvitz inducible. Now, in 
accordance with the previous section, it is now possible 
to construct a robustly stabilizing compensator. Indeed, a 
lengthy but straightforward computation leads to a robust 
stabilizer given by 

S Z + S + l  

s2 + 5s + 5 '  
C(S) = 20 

4. Proof of Theorem 3.1 

4.1 Preliminaries: Given an n-th order polynomial 

p ( s )  = a,s" + a,-ls"-' +.  ' ,  ao 

with a, > 0, the associated Hunvitz matrix is denoted 
by H .  Note that the last column of H has zero entries 
except its last element and that p ( s )  is Hunvitz if and 
only if all the principal minors of H are positive. 

4.2 Proof of Theorem: We proceed by induction. That is, 
assuming 01 ,  ' .  . , a k  are chosen such that S - ~ *  Fk(s ,  q )  

is robustly Hunvitz, we need to prove that cyk+l can 
be chosen to make ~ - " * + ' F k + ~ ( s , q )  robustly Hunvitz. 
Adopting the shorthand notation cy = czk+l ,  go(s ,q)  
s-"+'Fk(s ,q) ,gl(s ,q)  = s-"L+'Fk+l(s,q) andg(s,q) 
~ - ~ t + l f ~ + ~ ( s ,  q )  and suppressing the (s, q )  arguments, 
we have g1 = go + cug. We now consider four cases 
corresponding to various combinations of Ik+l and ik+l. 

Case 1: Ik+l = Ik and = ik. In this case, go is 
robustly Hunvitz and deg go 2 deg g. It follows from 
continuous dependence of the roots of a polynomial on 
its coefficients that g1 is robustly Hunvitz for sufficiently 
small cy > 0. 
Case 2: 4 + 1  = I k  + 1 and i k + l  = ik. In this case, we 
observe that go is robustly Hunvitz, deg g = deg go + 1, 
and the highest degree coefficient of g, is positively 
invariant. Hence, for this special case, it follows from 
existing results in the literature (see [Z] or [IS]) that g 1  
is robustly Hurwitz for suitably small a > 0. 
Case 3: Ik+l = Ik and i k + l  = ik - 1. In this case, we 
define go = S-'kFk and observe that go = sijo and go are 
robustly Hurwitz. Furthermore, deg g 5 deg go, and the 
zeroth degree coefficient of g is positively invariant. We 
now reduce this situation to Case 2 as follows: Forming 
the reversed-order polynomial 4, by reversing the ordering 
of the coefficients of 91, it is straightforward to see that g1 
is robustly Hunvitz if and only if i1 is robustly Hunvitz. 
Now for 41, the problem of selecting a reduces to that in 
Case 2. 
Case 4: 4 1 1  = Ik + 1 and ik+l = i k  - 1. In this 
case, go = sgo, where go = s - { t F k  is robustly Hunvitz, 
deg g = deg go + 1, and both the highest and the zeroth 
degree coefficients of g are positively invariant. Letting 
n = deg Bo, it follows that deg g1 = deg g = n + 2.. 
Furthermore, expressing the highest and lowest coefficients 
of g1 as ag,+Z and ago respectively, it follows that these 
quantities are positively invariant when a > 0. It is now 
straightforward to verify that that the Hunvitz matrix for 
g1 is given by 

1 [ H i , z ( q , a )  w o ( d  

1 [ an; [an-z(d . ' . I  

H i , o ( d  + a H i , i ( q )  0 
H I ( ~ ,  q)  = 

where Hl,o(q) is the Hurwitz matrix of go when viewed 
as an (n  + 1)-th order polynomial; i.e., with an+l = 0, 
forming the Hurwitz matrix for a,+ls*+' + go. Also, in 
the expression above, Hl,l(q) is the part of the Hurwitz 
matrix for g with the last row and column deleted. Further 
examination shows that Hl,o(q) has the structure 

Hi,o(q) = 
Ho(4) 

where ao(q),al(q), . . . , a n ( q )  are the coefficients of go 
and Ho(y)  is its Hunvitz matrix. 
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In view of the structural properties above, we claim 
that all the leading principal minors of H l ( q , a )  are 
positively invariant for sufficiently small a > 0. To 
prove the claim, we consider the highest order minor 
detHl(q,a) ,  noting that a similar proof applies to the 
other lower order minors as well. Indeed, we write 

detf&(q, a)  = aso(q)(adq)detHo(q) + o(q,a)) 

where the term o(q, a) vanishes uniformly in q as a -t 0. 
That is, given any E > 0, there exists a suitably small 
a > 0 such that Jo(q,a)/ 5 B for all q E Q. Now 
using the properties of 30, we know that detHo(q) and 
a,(q) are both positively invariant. Therefore, for suitably 
small a > 0, det H l ( q , a )  is positively invariant. In 
view of this claim, we now conclude that g1 is robustly 
Hurwitz for suitably small a > 0. It follows by induction 
that a l ,  a2,. . . , a ~  > 0 can be selected recursively to 
make s-"F1(s,q), s-i22Fz(s,q), ..., s - " F ~ ( s , q )  ro- 
bustly Hurwitz with i~ = 0. 

5. Stabiliable Transfer Function Structures 
In this section, we provide robust stabilization results for 
the two transfer function structures discussed in Section 
1. As previously mentioned, poles or zeros at the origin 
preclude the use of simple high-gain or low-gain results. 

5.1 Pseudo-Minimum Phase Uncertain Plants: Recalling 
the discussion in Section 1, we consider a proper transfer 
function of the form 

where m 2 0, N ( s ,  q)  is an v-th order robustly Hurwitz 
polynomial with a positively invariant zeroth degree 
coefficient and D(s,q) is an n-th order uncertain 
polynomial with a positively invariant highest degree 
coefficient. When m > 0, it is further assumed that the 
zeroth order coefficient, do(q). of D(s,  q) ,  is sign-invariant 
so that there is no unstable zero-pole cancellation. Since 
the numerator of the plant bas its zeros at the origin 
and in the open left half plane, we refer to the plant as 
pseudo-minimum phase. 

Now for the non-trivial case when D ( s ,  q )  is non-Hurwitz, 
we apply a proper compensator C(s) = N,(s)/D,(s) and 
the objective is to select the coefficients of N,(s) and 
D,(s) to assure that the resulting closed loop polynomial 

f(s, 4 )  = s"'N(s,dNds) + D(s,  q)D,(s) 

is robustly Hurwitz When such a compensator exists, the 
system is robustly stabilizable via output feedback. 

5.2 Theorem: The pseudo-minimum phase uncertain plant 
G(s, q )  is robustly stabilizable via ouiput feedback. Fur- 
thermore, a robustly stabilizing proper controller C(s) = 
N,(s)/D,(s) can be chosen to be minimum phase and 
satisfying the following conditions: 
(i) When m = 0, 

deg N J s )  = deg D J s )  = T - 1; 
(ii) When m > 0 and do(q) > 0, 

deg N J s )  = m + T - 2;  

deg D.(s) = max{m - 1, m + T - 2}; 

(iii) When m > 0 and do(q) < 0, 

deg N J s )  = deg D.(s) = m + T - 1. 

Furthermore, the conholler C(s) can be designed using 
the following procedure: 

Step 1 : Choose N J s )  to be any Hunvitz polynomial 
with the degree as given above and take the 
Hurwitz core to be 

f o b ,  9)  = s"(s, q)Nc(s) 

Step 2 :  I fm = 0, for k = l , Z , .  . . ,T ,  let f k ( s , q )  = 
s"-'D(s,q), k = I, 2,. . . , T .  rfm > 0, take 

and 

f*+r-l (s, q )  = s"+r-2D(s, q ) ,  

Step 3 : Apply Stepwise Hunvitz Theorem to recursively 
select the ai. r f ~  5 1, take 

D J S )  = a l S m - l  + (22s"-2 + . , ' +a,  

D J S )  = a1sm-1 + a2s"-* + ' .  , + a, 
+a,+1sm + a,+zs*+l + ' ' .  
+a,+,-lSm+-2. 

When T > 1, let 

Then, D,(s) is given by 
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Proof. It is easy to verify that the specified dimensions 
guarantee that the controller C(s) is proper. Hence, it 
suffices to show that the f k  sequence, constructed via the 
procedure above, is robustly Hurwitz inducible. We first 
consider the case where m = 1 and do(q) is negatively 
invariant. In the design procedure above, for this case, we 
first modify D(s ,q)  by multiplying the factor (s - 1). It 
is straightforward to check that the resulting denominator 
D ( s ,  q )  has a positively invariant zeroth degree coefficient 
Thus, this case is reduced to the case where m > 0 
and do(q) is positively invariant but with a new degree 
ii = n + 1 and relative degree F = T + 1. Suppose the mod- 
ified uncertain transfer function s"N(s, q ) / s ( s ,  q )  can 
be robustly stabilized by a controller Nc(s)/Dc(s) with 
degN,(s) =m+p-ZanddegD,(s)=max{m-l,  m+ 
F - 2). Then it follows that the original uncertain transfer 
function N ( s ,  q ) / D ( s ,  q) can be robustly stabilized by 
N,(s)/D,(s) with D,(s) = b , ( s ) ( s  - 1). Because 7 = 
T + 1 and m 2 1, degN,(s) = degD,(s) = m + T - 1. 
Hence, in the sequel, we only need to consider the cases 
m = 0 and the case m > 0 with do(q).> 0. 

Note that io = m and s-'O fo(s, q )  is robustly Hurwitz with 
a positively invariant zeroth degree coefficient. For the case 
m = 0, we have i k  = 0 for all k and I k + 1  = I k  + 1. By 
Theorem 3.1, it follows that the f k  sequence is robustly 
Hunvitz inducible. For the case m > 0, we claim that il = 
io - 1 and I1 = 10 + 1. The first part of the claim is easy to 
see because f l ( s ,  q)  has a factor s"-' whereas f o ( s ,  q )  has 
a factor sm and both D(s,q)  and N ( s , q )  have positively 
invariant zeroth degree coefficients. To prove 11 = IO + 1, 
by noting that both D(s ,  q)  and N ( s ,  q )  have positively 
invariant highest degree coefficients, it follows that 

10 = deg s m N ( s )  + deg N J s )  
= (n - T) + (m +r  - 2) = n + m  - 2 

and 

11 = (m - 1) + deg D(s,  q)  = (m - 1) + n = Io + 1. 

Next, for k = 1,2,. . . ,m - 1, it is easy to verify that 
the specified dimensions guarantee that I k + l  = I k  and 
i k + l  = i k  - 1. A particular consequence of this fact is that 
i, = 0. Finally, if m + T - 2 > m - 1, we have 

1,+1 = I ,  + 1; i,+l = i, = 0; 

I m + 2  = 1"+1 + 1; i,+Z = i,+l = 0 .  

Continuing in an identical manner for any indices above 
I,+z, by Theorem 3.1, the f k  sequence is again robustly 
Hurwitz inducible. 

5.3 Pseudo-Stable Uncertain Plants: Recalling the dis- 
cussion in Section 1, we consider a proper transfer function 

where m > 0, D(s ,q )  is an n-th order robustly Hurwitz 
polynomial. Without loss of generality, we assume that 
D ( s ,  q )  has positively invariant coefficients. Finally, the 
uncertain polynomial N ( s ,  q )  is assumed to have a sign- 
invariant zeroth degree coefficient. The degree, v(q) ,  of 
N ( s , q )  is allowed to vary with q, provided that G(s,q) 
remains proper. Since the denominator has all its roots 
at the origin and in the open left half plane, we refer to 
the plant as being pseudo-stable. The result below follows 
easily from Theorem 3.1. 

5.4 Theorem: The pseudo-stable uncertain plant G(s, q )  
above is robustly stabilizable via output feedback. Fur- 
thermore, a robustly stabilizing proper controller C(s) = 
N,(s)/D,(s) can be chosen to be sfable satisfying 

deg N,(s) = deg D,(s) = m - 1 

and the controller can be designed using the following 
procedure: 

Step 1; Choose D,(s) to be any (m - 1)-th order 
Hurwifz polynomial and let the Hurwifz core be 

Step 2:  For k = 1 , 2 , .  . . ,m, let f k ( s , q )  = 
S " - ~ N ( S , Q ) S N ,  where SN is the sign of the 
zeroth degree coefficient o f N ( s ,  q). 

Step 3 : Apply Stepwise Hunvitz Theorem to recursively 
design the a'. Then, let 

f O ( %  4)  = s", P ) D C ( S ,  q) .  

N c ( S )  = S N ( a l S m - '  + a z S " - 2 f . . . + a , )  

5.5 Remark In Theorems 5.2 and 5.4, we specified the 
order of the stabilizing controller. It is easy to construct 
examples show that stabilizing controllers may not exist 
in general if the order is lower than those given in the 
theorems. 

6. Stabilizable State-Space Structures 
In this section, we show that the pseudo-minimum phase 
uncertainty structure given in the previous section cov- 
ers a large class of uncertain systems in the state-space 
framework. These systems admit a so-called the Stepwise 
Augmentation Structure which can be generated recur- 
sively using the so-called down augmenfafions and up 
augmentations. Such structures, first introduced in [I], 
were called the admissible shuffles. Later in [17], the term 
anti-symmehic stepwise configuration was used to describe 
a similar class of systems. For such systems, it is shown in 
[ I ] ,  [17] that a robust linear, time-invariant state feedback 
stabilizer can be constructed. Such structures were also 
studied recently in [ 5 ]  in the context of output regulation 
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control via state feedback. The purpose of this section is 
to prove that a large class of such structures is robustly 
stabilizable via output feedback, provided that a suitably 
chosen output is available. 

In the construction to follow, we begin with an uncertain 
system 

X = A(q)z+b(q)u 
Y = CT(+ 

where q E Q represents uncertain parameters as before, 
A(q)  is an n x n continuous matrix function, b(q)  and 
c(q) are n x 1 continuous vector functions, and U, z and y 
are the input, state and output of the system, respectively. 
We call C = (A(q) ,  b(q), c(q)) a generating system. 

6.1 Down-augmented Systems: Given a generating sys- 
tem C = ( A ( q ) ,  b(q) ,c(q)) ,  the system 

k = A(q)z+b(q)z,+i; 
en+1 = OT(q)z  + a(q)s*+1 + q q ) %  

Y = C T ( Q ) Z  

with n+l  state variables is said to be a down augmentation 
of C if the added vectors and scalars a(q), p(q) and O(q) 
depend continuously on p and B(q)  is sign-invariant. We 
call x,+1 the augmenting state variable. 

6.2 Up-augmented Systems: Given a generating system 
= (A(q), b(4,  c(q) ) ,  the system 

e, = P T ( q ) x ;  

Y = C T k J ) ”  

A(q)z + b(q)(a(dzo + U ) ;  

with n+ 1 state variables is said to be an up augmentation 
of C if the added vector and scalar a(q) and P(Q) depend 
continuously on q and the first entry of p(q) is sign- 
invariant. In this case, so is called the augmenting state 
variable. 

6.3 Stepwise Augmentation Structure: Let C = 
(A(q ) ,  b(q), c(q) )  be a generating system with a robustly 
minimum phase transfer function. Then, a system is said to 
be a stepwise augmentation structure if it is obtained from 
C via a sequence of up and down augmentations, and in 
addition, if up augmentations are involved, the A(q)-matrix 
of the augmented system is nonsingular for all q E Q. 

6.4 Examples: To illustrate the stepwise augmentation 
structure, we list some of the uncertain systems which fit 
into this framework. Using the notation 

M ( q )  M q )  I b(q)l 

we consider the four possible structures for M ( q )  associ- 
ated with 4-th order systems 

r o 0 0 1 0 1  r o e * * i o 1  

where t denotes entries that are arbitrary functions of 
q and 6’ denotes the entries which are sign-invariant. For 
each matrix, the underlined state variable corresponds to 
the generating system. For example, for the third matrix 
M ( q )  above, the generating system is described by 

X = B(q)u 

The sequences of augmentations for the structures above 
are respectively down-down-down, down-up-up, down-up- 
down and down-down-up. In all of the examples above, 
the generating system is a scalar system of the form 

X k  = 4 d z k  + w u ;  
Y = zk 

which is clearly robustly minimum-phase. It is also possi- 
ble to give examples which is somewhat more complicated 
in the sense that the order of the generating system is 
higher than one. 

6.5 Theorem: Let C = (A(q), b(q) ,  c (q) )  be a generating 
system. Then, a down augmentation does not introduce any 
new zems and each up augmentation introduces at most 
one zero at s = 0. Furthermore, ifm up augmentations are 
involved and thefinal A-matrix for the augmented system 
is nonsingular for all q E Q, then the augmented system 
has exactly m new zeros at s = 0. 

6.6 Corollary: A stepwise augmentation structure is m- 
bustly pseudo-minimum phase, and thus robustly stabiliz- 
able via output feedback. 

Sketch of Proof of Theorem 6.5: We suppress the depen- 
dence of the system on q and denote the transfer function 
ofthe generating uncertain system by C(s) = N ( s ) / D ( s ) .  
Taking Laplace transforms and expressing the transfer 
function pT(s I  - A)-’b as Np(s)/D(s), a calculation 
leads to 

Hence, the down augmentation does not introduce any 
new zeros. Now, the transfer function of the up-augmented 
system is similarly computed. We obtain 

Y ( s )  = s N ( s )  U ( s )  
sD(s )  - ~yNp(s )  

2679 



Hence, at most one new zero at s = 0 can be introduced 
by each up augmentation. Finally, if m up augmentations 
are involved (regardless of the number of down augmen- 
tations), the numerator of the augmented transfer function 
will be s"'N(s, 9). The new factors"' can not be cancelled 
if the denominator of the augmented transfer function has a 
sign-invariant zeroth degree coefficient. This is guaranteed 
if the A-matrix of the augmented system is nonsingular 
for all q E Q. 

Proof of Corollary 6.6: By 'definition, the generating 
system of a stepwise, augmentation structure is robustly 
minimum phase. By Theorem 6.5, down augmentations do 
not introduce new zeros and, if m up augmentations are 
involved, m new zeros at s = 0 are introduced because 
the A(q)-matrix of the augmented system is nonsingular 
for all q E Q. This implies that the denominator of the 
augmented transfer function has a sign-invariant zeroth 
degree coefficient. Therefore, the transfer function of a 
stepwise augmentation structure is a robustly pseudo- 
minimum phase system, and thus robustly stabilizable via 
output feedback, according to Theorem 5.2. 

7. Conclusion and Future Research 

In this paper, we introduced the Stepwise Hunvitz 
Property as a means for extending a number of robust 
stabilization results from the full state feedback case to 
the output feedback case. Via the techniques introduced in 
this paper, it becomes possible to address large classes 
of uncertain systems falling into the pseudo-minimum 
phase or pseudo-stable categories. The results of this 
paper suggest some directions for future research. Most 
notably, the recursive design approach offered in this 
paper is a frequency domain approach, which is applicable 
to time-invariant parameters. If the uncertain parameters 
are time-varying, an analogous recursive method in the 
state-space domain is needed. In this regard, the concept 
of quadratic stabilization, which employs a parameter- 
independent quadratic Lyapunov function, is particularly 
useful. In fact, the state feedback design methods in [l], 
[191, [I71 and [21], involve uncertainty structures similar 
to the Stepwise Augmentation Strncture but with time- 
varying uncertainties. It would be important to investi- 
gate the extent to which OUT frequency domain approach 
also has a Lyapunov function interpretation. This sort of 
Lyapunov function interpretation would also be a stepping 
stone to output feedback stabilization of nonlinear systems 
with similar structures. 
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