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Abstract: This paper studies the problem of quantized feedback control for sampled-data
systems which employ a quantizer to transmit feedback signals at a given sampling rate.
The so-called static (memoryless) quantizers are considered. Given a continuous-time
system, the design objective is to stabilize the system or to achieve certain performance
using the coarsest quantization density. We study the possible advantages of over-
sampling where the input/output signals of the system are sampled at a faster rate than the
quantizer. Our first result is for stabilization, and it shows that the coarsest quantization
density achievable using quantized state feedback can be generically achieved using
output feedback with any over-sampling ratio. Our second result provides a solution to
the quantized feedback H∞ problem for both with and without over-sampling.Copyright
c©2005 IFAC
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1. INTRODUCTION

Control using quantized feedback has been an impor-
tant research area for a long time as seen in Kalman’s
pioneer work (Kalman 1956), which studied the effect
of quantization in a sampled data system. Recently,
there is a new line of research on quantized feedback
control where a quantizer is regarded as an informa-
tion coder; see, e.g., (Baillieul 2001), (Brockeet and
Liberzon 2000), (Elia 2000), (Elia and Mitter 2001),
(Nair and Evans 2003), (Fu and Xie 2003a, 2003b)
and references there in. The fundamental question of
interest is how much information needs to be commu-
nicated by the quantizer in order to achieve a certain
control objective including stabilization.

In (Elia and Mitter 2001), the problem of quadratic
stabilization of discrete-time single-input systems us-

1 This research was partially supported by Australian Research
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and Technology Agency).

ing quantized feedback is studied, where the quantizer
is assumed to be static and time-invariant (i.e. memo-
ryless and with fixed quantization levels). They proved
that the best quantizer is the so-called logarithmic and
that the coarsest quantization density is given explic-
itly in terms of the system’s unstable poles. The results
have been generalized to the multi-input systems by
sector bound approach in (Fu and Xie 2003a).

However, most of the results on quantized feedback
control are for discrete-time systems only. In this pa-
per, we study the problem of quantized feedback con-
trol for sampled-data systems. In such a system, a
continuous-time plant is controlled by a digital com-
pensator with AD/DA converters through a commu-
nication network channel or quantizer. There are two
important issues to be investigated for the sampled-
data case which do not appear in the discrete-time
case. One is the inter-sample behaviors which have to
be taken into account to evaluate the control perfor-
mance. The other is the extra freedom of designing
sample and hold schemes, which may improve the
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control performance significantly. Note that modern
approaches to sampled-data systems such as lifting
techniques are quite powerful to treat the inter-sample
behaviors reasonably; see, e.g., (Chen and Francis
1995) and references there in. However, most of the
results ignore the quantization effects.

The work in this paper is concerned with the use of
static (memoryless) quantizers. Given a continuous-
time system with a certain quantization sampling rate,
the design objective is to stabilize the system or to
achieve certain performance using the coarsest quanti-
zation density. The main focus of the paper is to study
the possible advantages of over-sampling where the
input/output signals of the system are sampled at a
faster rate than the quantizer. Two main results are
obtained. The first one is for quantized feedback sta-
bilization, and it shows that the coarsest quantization
density achievable using state feedback can be gener-
ically achieved using output feedback with any over-
sampling ratio. The second result provides a solution
to the quantized feedback H∞ problem for both with
and without over-sampling.

2. PROBLEM FORMULATION

The type of sampled-data systems we consider in this
paper is depicted in Figure 1. The continuous-time
plant G(s) has the following realization:

ẋc(t) = Acx(t)+B1cwc(t)+B2cuc(t)
zc(t) = C1cxc(t)+D11cwc(t)+D12cuc(t)
yc(t) = C2cxc(t)+D21cwc(t)+D22cu(t)

(1)

where xc(t) ∈ IRn is the state, wc(t) ∈ IRm1 is the pro-
cess noise, uc(t)∈ IRm2 is the control input, zc(t)∈ IRp1

is the output used for measuring the performance,
yc(t) ∈ IRp2 is the output used for control feedback.
For simplicity, we only consider the single-input,
single-output case, i.e., m2 = p2 = 1.

-wc(t) zc(t)

uc(t) yc(t)

x( k) v(k)

G(s)
-

-

?

S
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H1(z)

H

66

H2(z)

6
Q ¾

Fig. 1. Sampled-Data System

In Figure 1, Q is a quantizer, and S and H represent
generalized sampling and hold functions, respectively.

It is assumed that the quantizer operates with sampling
period T , whereas S and H operate with sampling pe-
riod h = T/q for some integer q ≥ 1. More precisely,
S takes a sample every h time interval and every q of
these samples are stacked up together as the input to
H1(z) which produces an output v(k) to the quantizer
Q every T time interval. The quantized signal x(k ) is
sent to H2(z) every T time interval to produce q out-
puts to H which is a zeroth-order hold (ZOH) with the
time interval of h. It is further assumed that the process
noise wc(t) is constant within each sampling period h
(See Remark 4 about relaxing this assumption).

We will call T = qh the quantization sampling period,
h the input-output sampling period and q the over-
sampling ratio. The transfer functions H1(z) and H2(z)
will be referred to as pre-quantizer controller and
post-quantizer controller, respectively.

In order to develop the sampled-data model for the
system in Figure 1, we first find the sampled-data
model corresponding to T = h (i.e., q = 1). It is easy
to verify that this model is given by

x(k +1) = Ax(k)+B1w(k)+B2u(k)
z(k) = C1x(k)+D11w(k)+D12u(k)
y(k) = C2x(k)+D21w(k)+D22u(k)

(2)

where

x(k) = xc(kh); w(k) = wc(kh)
u(k) = uc(kh); y(k) = yc(kh)

and z(k) is related to zc(t) by

‖z(k)‖2 =

(k+1)h∫

kh

‖zc(t)‖2dt

The matrices in (2) are given by

A = exp(Ach);

Bi =
h∫

0

exp(Ac(h− t)d tB ic, i = 1,2

C2 = C2c, D21 = D21c, D22 = D22c

[C1 D11 D12] =





h∫

0

M(t)M T (t)d t





1/2

M(t) =




C1c exp(Act )

D11c +C1c

t∫

0

exp(Ac(t − θ)) dθB 1c

D12c +C1c

t∫

0

exp(Ac(t − θ)) dθB 2c




Now we return to the case where T = qh,q ≥ 1. The
sampled-data system (2) can be rewritten using the
standard lifting technique as follows:

x(k +1) = Ax(k)+B1w(k)+B2u(k)
z(k) = C1x(k)+D11w(k)+D12u(k)
y(k) = C2x(k)+D21w(k)+D22u(k)

(3)
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where

w(k) = [w(qk) w(qk +1) . . . w(q(k +1)−1)]T

and u(k), z(k) and y(k) are similarly defined but

x(k) = x(qk)

The matrices in (3) are given by

A = Aq; Bi = [Aq−1Bi Aq−2Bi . . . Bi]

Ci =




Ci
CiA

...
CiAq−1


 ; Di j =




Di j 0 . . . 0

CiB j Di j 0
...

...
...

. . . 0
CiAq−2B j . . . CiB j Di j




for i, j = 1,2.

--
w(k) z(k)

u(k) y(k)

x( k) v(k)

G(z)
--

--
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Fig. 2. Discrete-Time Model

The general setup of the sampled-data system we
consider in this paper is depicted in Figure 2. In this
setup, G(z) is the transfer function corresponding to
(3), the transfer functions, H1(z) and H2(z), are to be
designed and they are of the form

H1(z) = [h11(z) h12(z) . . . h1q(z)];
H2(z) = [h21(z) h22(z) . . . h2q(z)]T

Also, H1(z) and H2(z) must be chosen such that the
mapping from y(k) to u(k) is causal. The block Q is a
quantizer mapping from v(k) to x (k). In this paper, we
only consider static quantizers, i.e.,

x( k) = f (v(k))

for a static nonlinear function f (·). In view of the work
in (Elia and Mitter 2001) and (Fu and Xie 2003a), we
consider logarithmic quantizers. More precisely, let

U = {±u(i) : u(i) = r iu(0), i =±1,±2, · · ·}
∪{±u(0)}∪{0}, 0 < r < 1,u(0) > 0

(4)

The associated quantizer f is defined as follows:

f (v) =





ui, if
1

1+ δ
ui < v≤ 1

1− δ
ui

0, if v = 0
− f (−v), if v < 0.

(5)

where
δ =

1− r
1+ r

(6)

The parameter r above can be regarded as the quanti-
zation density. Note that a smaller r corresponds to a
coarser quantizer.

A quantized feedback problem can be loosely formu-
lated as follows: Given the continuous-time system
(1), quantization sampling period and over-sampling
ratio, find the coarsest quantization density such that
there exists pre- and post-quantizer controllers to ei-
ther stabilize the system or to meet certain perfor-
mance requirement.

The main objective of the paper is to study the pos-
sible benefits of over-sampling in quantized feedback
control. We will study four scenarios:

S1: No Over-sampling. This corresponds to

H1(z) = [h11(z) 0 . . . 0]

H2(z) = h21(z)[1 1 . . . 1]T

S2: Over-sampling at Input Only. This corresponds
to

H1(z) = [h11(z) 0 . . . 0]

S3: Over-sampling at Output Only. This corresponds
to

H2(z) = h2q(z)[z−1 . . .z−1 1]T

(Note that the delay terms are there to ensure
causality of the controller.)

S4: Over-sampling at both Input and Output. This is
the general case.

3. STABILIZATION

In this section, we study the problem of quantized
feedback stabilization. In this problem, the process
noise w(t) (or w(k)) is set to zero, z(t) (or z(k)) is void,
and G(z) reduces to G22(z). The goal is to achieve
stabilization with a minimum quantization density.

We first introduce a benchmark scenario depicted in
Figure 3 so that we can compare the four scenarios
discussed earlier against it. In the benchmark scenario,
the full state x̃(k) is measured, where

x̃(k) = [xT (qk) xT (qk +1) . . . xT (qk +q−1)]T

G̃22(z) is the transfer function from u(k) to x̃(k), and
K(z) is a dynamic state feedback controller.

u(k) x̃(k)

x( k) v(k)

G̃22(z)--

??

K(z)H2(z)

Q ¾

Fig. 3. State Feedback Model

For the special case where q = 1, K(z) is static and
H2(z) = 1, the benchmark scenario was first studied in
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(Elia and Mitter 2001) which showed that the coarsest
quantization density is given by

r inf =
1− δ sup

1+ δ sup
(7)

with

δ −1
sup = Õ

i
|λ u

i (A)|= exp

(
T å

i
λ u

i (Ac)

)
(8)

where λ u
i (A) (resp. λ u

i (Ac)) denotes the unstable
eigenvalues of A (resp. Ac).

The result below shows that the same result holds in
general.

Theorem 1. Consider the benchmark scenario in Fig-
ure 3. The coarsest quantization density is given by
(7)-(8) and this can be achieved by taking

K(z) = [K1 0 . . . 0]; H2(z) = [1 1 . . . 1] (9)

That is, over-sampling does not improve the coarsest
quantization density.

Proof: It is obvious that the particular choice for K(z)
and H2(z) coincides with the special case discussed
above, and hence the value of r inf in (7)-(8) can be
achieved. It remains to show that this value cannot be
reduced by using other K(z) and H2(z). Given H2(z),
it is known (Fu and Xie 2003a) that the corresponding
δ sup is maximized when the full state of G̃22(z)H2(z)
is available for feedback and in the case,

δ −1
sup = Õ

i
|λ̃ u

i |

where λ̃ u
i are the unstable poles of G̃22(z)H2(z). So

δ sup is maximized by taking H2(z) = [1 1 . . . 1]T . This
case is the same as q = 1 and thus, it suffices to choose
a static K(z) as in (9).

Now, we consider the four scenarios in Figure 2.

Theorem 2. Consider the Scenario S1 in Figure 2. The
coarsest quantization density is given by (7) with δ sup

given by

δ sup =
1

infh(z) ‖Gh(z)‖∞
(10)

where

Gh(z) = (1−h(z)g1(z))−1h(z)g1(z) (11)

with

g1(z) = [1 0 . . . 0]G22(z)[1 1 . . . 1]T

Furthermore, if g1(z) has relative degree equal to 1 and
no unstable zeros, then the coarsest quantization den-
sity for Scenario S1 matches that for the benchmark
scenario.

Proof: Note that in Scenario S1,

H1(z)G22(z)H2(z) = h21(z)h11(z)g1(z)

Therefore, it is without loss of generality to take
h11(z) = 1. Denoting h(z) = h21(z), then this revised
quantized feedback stabilization problem has been
studied in (Fu and Xie 2003a) and the results in the
theorem are directly cited from (Fu and Xie 2003a).

Remark 1. What is implied in Theorem 2 is that for
any given r > r inf, a stabilizing controller can be
constructed by taking h11(z) = 1 and solving h21(z)
such that

‖Gh(z)‖∞ < δ −1 (12)

where δ and r are related as in (7).

Remark 2. There are two special cases where we can
obtain the analytical expressions for infh(z) ‖Gh(z)‖∞
by applying the solution of the Navanlinna-Pick inter-
polation problem.

• Suppose g1(z) is minimum phase and its relative
degree is one. Then we have

inf
h(z)
‖Gh(z)‖∞ =

Np

Õ
i=1
|λ u

i |

where λ u
i ,1≤ i≤Np , are unstable poles of g1(z).

This corresponds to the state feedback case.
• Suppose g1(z) has only one unstable pole λ and

non-minimum phase zeros z j,1≤ j≤Nz , and its
relative degree is n ≥ 1. Then we have

inf
h(z)
‖Gh(z)‖∞ = |λ| n

Nz

Õ
j=1
| z jλ −1

λ − z j
|

Remark 3. It is well-known that g1(z) has relative
degree equal to 1 generically. However, g1(z) is not
minimum phase in general. Therefore, it is seen from
Remark 2 that Theorem 1 also implies that Scenario
S1 is in general inferior to the benchmark scenario.
See Section 5 for an example.

Theorem 3. The coarsest quantization density achiev-
able by Scenario S2 in Figure 2 is generically identical
to that of the benchmark scenario for any q > 1. In
particular, this can be achieved by choosing

H1(z) = [1 0 . . . 0]

and H2(z) such that H1(z)G22(z)H2(z) is minimum
phase and having relative degree equal to 1, which is
generically possible.

Proof: It is well-known that H1(z)G22(z) has relative
degree 1 with co-prime elements generically. There-
fore, it is generically possible to choose H0

2 (z) such
that g1(z) = H1(z)G22(z)H0

2 (z) is minimum phase
and has relative degree equal to 1. Hence, by taking
H2(z) = h(z)H0

z (z), the desired result is obtained by
applying Theorem 2 (Part 2) to g1(z) and h(z).

Theorem 4. The coarsest quantization density achiev-
able by Scenario S3 in Figure 2 is generically identical
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to that of the benchmark scenario for any q > 1. In
particular, this can be achieved by choosing

H2(z) = [z−1 . . . z−1 1]T

and H1(z) such that H2(z)G22(z)H1(z) is minimum
phase and having relative degree equal to 1, which is
generically possible.

Proof. The proof is similar to that of Theorem 3.

Since both Scenarios S2 and S3 can do as well as
the benchmark scenario, there is no need to consider
Scenario S4 for quantized feedback stabilization.

4. H∞ CONTROL

In this section, we study a quantized feedback H∞
control problem for the system in Figure 2. More pre-
cisely, given an H∞ performance bound γ > 0 and a
quantization density r, find, if it exists, a stabilizing
controller pair, (H1(z),H2(z)), such that the closed-
loop system in Figure 2 has ‖Gzw‖∞ < γ . When a solu-
tion to this problem is available, the coarsest quantiza-
tion density can be found by using a simple bisection
algorithm.

Following the sector bound technique in (Fu and Xie
2003a), we can write

x(k ) = (1+ ∆ (v(k)))v(k) (13)

where

|∆ (v(k))| ≤ δ, δ = (1− r) /(1+ r) (14)

That is, the quantization error lies in a sector of size δ .

--
w z

u y
G(z)

-- γ−1I --

-- H1 - tδ ---H2-i-

6

1−t
-

w̄
+

+
x

v

z̄

Fig. 4. Auxiliary System for H∞ Control

We introduce an auxiliary system in Figure 4, where
t > 0 is a scaling parameter to be searched. If we write
G(z) = {Gi j(z)}, i, j = 1,2, then it is easy to verify
that the transfer function from w̄ to z̄ is given by

Ḡ(z) =




1
γ
(G11 +G12H2HH1G21)

1
tγ

G12H2H

(tδ)H H1G21 δ H1G22H2H


(15)

where

H(z) = (1−H1(z)G22(z)H2(z))−1 (16)

We have the following result:

Theorem 5. Given γ > 0 and r > 0, the quantized
feedback H∞ control problem for the system in Fig-
ure 2 is solvable if there exists a controller pair
(H1(z),H2(z)) and a scaling parameter t > 0 for the
system in Figure 4 such that

‖Ḡ(z)‖∞ < 1 (17)

Proof: It is straightforward to see that (17) implies
that the transfer function from w to z in Figure 5 has
an induced L2-norm less than γ for any |∆ (k)| ≤ δ. It
then follows from the sector bound approach in (Fu
and Xie 2003a) that the latter is equivalent to that the
quantized feedback H∞ control problem for the system
in Figure 2 is solvable for the given γ and r.

--
w z

u y
G(z)

--

-- H1

¾∆( k)

--H2-i-

6

+
+
x

v

Fig. 5. Auxiliary System for H∞ Control

Now we remark on the design of H1(z),H2(z) and t.
From (15)-(16), it is clear that for a fixed t, if H1(z)
(resp. H2(z)) is given, the design of H2(z) (resp. H1(z))
is a standard H∞ optimization problem. However, un-
like the quantized feedback stabilization problems,
H1(z) and H2(z) can not be designed jointly, even for
scenarios S1, S2 and S3. Moreover, it is even not clear
whether the optimal H1(z) and H2(z) has the same
order as Ḡ(z).

To get around this difficulty, we propose to take either
H1(z) or H2(z) as a constant vector. The idea is this
vector is used to assign the zeros of Ḡ22(z). We assume
below that H1(z) = H1 is constant below although the
proposed algorithm below works either way. Once H1

is given, H2(z) and t can be optimized. For a fixed t,
solving H2(z) is a standard H∞ optimization problem.
The parameter t is then searched numerically. We
caution that the minimum ‖Ḡ(z)‖∞ is not necessarily
a convex function of t. In addition, because the over-
sampling ratio is typically small, H1 can be found
through a numerical search. To summarize, we use the
following iterative algorithm.

Iterative Design Algorithm for H∞ Control:

(1) For fixed H1 and t, use any H∞ optimization
algorithm on H1(z) to minimize ‖Ḡ(z)‖∞ .

(2) Search numerically for an optimal t.
(3) Search numerically for an optimal H1.

Remark 4. We now comment on the assumption of
wc(t) being constant for each input-output sampling
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period. This assumption can be easily relaxed. If wc(t)
is relaxed to be constant for each sub-sampling period
h0 = h/q0 for some integer q0 > 1, then a discrete-
time model similar to Figure 2 can be developed
using the lifting technique. The resulting model has
the same state dimension, but the dimension for w(k)
will be increased by q0 times. Other than this change,
the result in Theorem 5 still applies. Furthermore,
assumptions on wc(t) can be totally avoided by taking
q0 → ∞ in which case matrices related to w(k) become
infinite-dimensional linear operators.

5. SIMULATION EXAMPLE

To demonstrate the results in previous sections, we
consider an example of system (1) with

Ac =
[

1 0
0 2

]
; B1c =

[
1
−1

]
; B2c =

[
1
1

]

C1c =
[

1 0.5
0 0

]
; D11c =

[
0
0

]
; D12c =

[
0
1

]

C2c = [1 1]; D21c = 0; D22c = 0
We take T = 0.4 and q = 2.

Firstly, we consider is quantized feedback stabiliza-
tion in Scenario S1. For this case, we have

g1(z) = [1 0]G22(z)
[

1
1

]
=

1.105(z−1.8181)
(z−2.2246)(z−1.4924)

Using Theorem 2, we know that δ sup is given by (10),
which is computed to be

δ sup = 0.0132

In comparison, the value of δ sup for the quantized state
feedback is given by (8) which equals to

δ sup =
1

2.2246×1.4924
= 0.312

Secondly, we consider quantization feedback stabi-
lization with Scenario S2 and take

H1(z) = [1 0]; H2(z) = h(z)[1 −1.32]T

which yields

[1 0]G22(z)
[

1
−1.32

]
=

0.02042(z−0.7076)
(z−2.2246)(z−1.4924)

which is minimum phase and has relative degree 1.
The corresponding δ sup coincides with that in the state
feedback case above, as predicted by Theorem 3.

Finally, we consider the H∞ control problem for both
Scenarios 1 and 2. The result is shown in Figure 6.
The two vertical lines correspond to the two values
of δ sup as mentioned above. It is clear that the design
corresponds to S2 can tolerate a much larger δ .

Remark 5. The simulation example above confirms
that there is significant improvement by using over-
sampling. However, we point out that the improve-
ment given by over-sampling is not simply due to fast
sampling. In fact, if we take q = 1 and T = 0.2 for
stabilization, it gives δ sup = 0.2 only.

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
0

10
1

10
2

10
3

δ

γ

H
1
(z)=[1 0], H

2
(z)=h

21
(z)[1; 1]

H
1
(z)=[1 0]; H

2
(z)=[h

21
(z); h

22
(z)]

Fig. 6. Simulation for δ vs. γ

6. CONCLUSION

In this paper, we have studied two quantized feedback
control problems for sampled-data systems: stabiliza-
tion and H∞ control. We have shown that the use of
over-sampling can provide a significant improvement
in achieving the coarsest quantization density. This is
shown in Theorems 1-4 and a simulation example.
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