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On Walsh Filtering Method for Decoding
of CPM Signals

Minyue Fu, Graham Wade, Jun Ning, and Robert Jakobs

Abstract—Walsh filtering has been used as a method to reduce
receiver complexity in several coding and modulation systems,
especially in continuous phase modulation systems. In this paper,
we show that its lowpass filtering ability is poor and alias compo-
nents arising from an adjacent channel can significantly degrade
the maximum-likelihood decoding. Instead, a lowpass filtering
method is more robust against adjacent channel interference and
thus gives less decoding errors than the Walsh filtering method.

Index Terms—Continuous-phase modulation (CPM), max-
imum-likelihood detection, signal detection, Walsh filters.

I. INTRODUCTION

THE Walsh filtering method is attractive for receiver com-
plexity reduction, especially in continuous-phase modu-

lation (CPM) systems [1], [2]. The method is depicted in Fig.
1, where the received signal is first converted to two quadra-
ture baseband signals and . Each of them is integrated
over a sample interval and then used to form the Walsh co-
efficients for decoding. In this letter, we analyze the sensitivity
of the Walsh filtering method to adjacent channel interference
(ACI). This problem is important for applications where ACI
is commonly present. We show that the Walsh filtering method
is quite sensitive to ACI. In contrast, a simple lowpass filtering
method turns out to be more robust against ACI and requires a
lower oversampling rate than the Walsh filtering method.

II. WALSH FILTERING METHOD

We first explain briefly how the Walsh filtering method works
when applied to a CPM system. An -ary CPM signal at carrier
frequency with an adjacent channel at can be expressed as

(1)

for , where represents the time difference
between wanted signal and the ACI

(2)
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and is similarly defined. Here

are data symbols, is the modulation index, is the symbol
period, and is the phase response, which is the integral of
a frequency pulse of duration symbols. The term de-
notes and all previous symbols. For an introduction on CPM,
the reader is referred to [3]. In this paper, we study a typical
CPM signal with parameters ,
and being the raised cosine (RC) function.

Assuming that the wanted signal and the ACI are originated
from the same location (as in the case of the downlink of a cel-
lular system), we can set . Under the assumption of per-
fect carrier and symbol timing recovery, quadrature demodula-
tion, followed by wideband lowpass filtering to remove high fre-
quency components, gives the in-phase component (see Fig. 1):

(3)

for , where is a noise component,
normally assumed to be white, and
is the wanted component. An ideal CPM receiver would use a
large bank of matched filters to process the and signals
[3]. This would require a huge amount of computations be-
cause the CPM decoding complexity is in the order of ,
where is the number of possible phases of the CPM system
at each symbol interval, which depends on the given CPM pa-
rameters. Instead, the Walsh filtering method approximates the

and signals by projecting them onto a reduced signal space
to reduce the receiver complexity. This is done by first over-
sampling the integrator output at rate and gener-
ating partial integrals , over the range

, giving

(4)

Then, the Walsh coefficients are computed by

(5)

where is a -th order Walsh matrix. For

(6)
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Fig. 1. Walsh filtering method for CPM Detection.

III. ANALYSIS OF WALSH FILTERING

We remark on two points about the Walsh filtering method.
The first point is that the Walsh transformation is actually
redundant. Indeed, since is orthonormal, we have

(7)

Hence the mapping in (5) is linear and preserves the Euclidean
norm. This implies that both and the integrator output are
equivalent for decoding.

Our second point is that a Walsh filter is a lowpass filter with
a poor stopband attenuation. Consider the first partial integral

. Its lowpass behavior is seen by applying a single tone
, giving response

(8)

which is a poorly designed lowpass filter. ACI components near
, with an integer , are particularly troublesome since they

will be folded back into the wanted signal. In the absence of
specific lowpass filtering, the only way to avoid the effect of the
adjacent channel is to increase the oversampling factor . To
explain this point further, we show in Fig. 2 the frequency re-
sponses of the Walsh coefficients and for .
The normalized frequency is used, where
is the bit period. Considering , given an ACI carrier at

Hz (i.e., ) from the wanted carrier at , the
ACI sidebands at will only be attenuated by some
13 dB relative to the wanted CPM signals at . This
can significantly degrade . Similarly, the ACI components
near can significantly degrade . Fig. 3 shows the
simulated filter outputs for the composite signal in (3), assuming

and . The four curves are the RMS values of
the Walsh filter coefficients as functions of the ACI component
which is dB relative to the wanted signal and is located at

. Fig. 3 shows a significant increase in coefficient levels as
the ACI frequency is reduced, which illustrates the inadequate
lowpass filtering property of the Walsh filtering method. In prac-
tice, a relatively large value is required to combat the ACI.

IV. LOWPASS FILTERING METHOD

The forgoing analysis has shown that the effective lowpass
filtering associated with Walsh space is generally inadequate in
the presence of ACI. Clearly, the solution is to use better lowpass
filtering. Let an ideal lowpass filter, bandwidth , re-

Fig. 2. Frequency responses of Walsh Coefficients I (n) (solid) and I (n)
(dotted).

Fig. 3. Walsh coefficients as functions of ACI frequency (K = 4).

place each filter/integrator combination in Fig. 1. Nyquist sam-
pling of the filter output, yielding samples , gives the ex-
pansion

(9)
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where

(10)

and . The filtered signal is then oversam-
pled to obtain the signal for decoding. The system still approx-
imates to ML decoding as is increased, and an oversampling
factor of 4 is generally sufficient. Since the basis is no longer
rectangular, the value of required to adequately represent the
signal is generally smaller compared to that for the Walsh basis.
Indeed, the required value is determined by the Nyquist sam-
pling rate of the filtered signal and is independent of the ACI.
For practical implementation, the filter should be near-linear
phase over the effective CPM bandwidth with ,
where is a small guard band. Any residual ACI above
would then be folded to be orthogonal to the CPM signal and ig-
nored during decoding.

V. SIMULATION

We have compared the BER performance of the Walsh fil-
tering method with that of lowpass filtering for the CPM pa-
rameters given in the introduction. The effective normalized
bandwidth of the CPM signal (taken at the 30-dB point in the
power spectrum) is found to be at , corresponding
to Hz. For the lowpass filtering method, the oversam-
pling frequency is therefore Hz.
Note that is sufficient by the Nyquist sampling crite-
rion. But sampling frequencies of 2 and 3 Hz are tested here.
The 20-dB cutoff frequencies for the corresponding lowpass
filters were selected to be Hz and Hz, respectively.
Their transfer functions chosen to be fifth-order Chebyshev(2)
filters, given by

(11)

(12)

respectively. The reason for choosing the cutoff frequency of
Hz for the first filter is that, when is used,

the alias can only occur above Hz, thus orthogonal
to the CPM signal. It is verified that the second filter has an ap-
proximately linear phase response over the CPM bandwidth, but
even the first filter performs well (i.e., the filtered CPM wave-
form being almost identical to the original signal). The BER

Fig. 4. Tolerance of Walsh and lowpass filtering methods to ACI.

simulation in Fig. 4 used dB and an ACI com-
ponent at 10-dB relative to the wanted signal together with
Viterbi decoding. This level of ACI is not uncommon in mobile
wireless systems. When the ACI is void, the corresponding BER
is roughly 4 10 . As expected, the Walsh filtering method
is sensitive to ACI, whereas the lowpass filtering method is
much more robust. Also, the difference between 2 Hz sampling

and 3-Hz sampling is negligible for the low-
pass filtering method. Because a lower value is required for
the lowpass filtering method, it offers more complexity reduc-
tion than the Walsh filtering method.

VI. CONCLUSION

The Walsh filtering approach for reducing receiver com-
plexity (simple integrators and -times oversampling) has
been shown to be susceptable to ACI. Due to the absence
of specific lowpass filtering, adjacent channel frequencies
close to with an integer can significantly degrade the
performance of a ML or MAP decoder. The use of lowpass
filtering with the same (or lower) oversampling rate removes
the ACI while still approximating to ML decoding.
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