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Abstract— Recent studies have shown that a logarithmic
quantizer can provide the coarsest quantization for quadratic
stabilization of linear systems using quantized feedback. How-
ever, the coarsest quantizer has an infinite number of quanti-
zation levels, which is not implementable in practice. In this
paper, we investigate the quantized feedback control problem
for discrete-time linear systems using a finite-level logarithmic
quantizer. We introduce a dynamic scaling method for the
logarithmic quantizer and show that asymptotic stabilization
can be achieved with a moderate number of quantization
levels. Our approach is easily implementable. We also study
the quantized feedback stabilization problem for systems with
bounded stochastic noise inputs and show that the system state
can converge to a bounded region using a finite-level logarithmic
quantizer in conjunction with a proper dynamic scaling scheme.

I. INTRODUCTION

There has been a lot of resurgent interest in quantized
feedback control recently. Unlike previous research where
the interest was on the digital implementation of control
systems, the recent interest focuses on the use of digi-
tal communication channels for feedback control. In this
setting, the feedback signal is quantized and then coded
for transmission. From the control design point of view, a
fundamental problem is how to design a feedback controller
and a quantizer jointly in order to achieve a given control
objective.

The research on quantized feedback control can be cate-
gorized depending on whether the quantizer is static or dy-
namic. A static quantizer is a memoryless nonlinear function,
whereas a dynamic quantizer uses memory and thus can be
much more complex and potentially more powerful. Existing
work using static quantizers includes, e.g., [1], [2], [3], [14].
For quadratic stabilization of a linear system using state
feedback, it is shown in [1] that the optimal static quantizer
is a logarithmic quantizer. This result is generalized in [3] to
a number of output feedback problems using a sector bound
approach, where logarithmic quantizers are also shown to be
optimal.

When a dynamic quantizer is allowed, it is shown in [4]
that stabilization of a SISO LTI system (in some stochastic
sense) can be achieved using only a finite number of quanti-
zation levels, and the minimum number of quantization levels
(also known as the minimum feedback information rate) is
explicitly related to the unstable poles of the system. In this
setting, the dynamic quantizer effectively consists of two
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parts: an encoder at the output end and a decoder at the
input end.

Another type of dynamic quantizers uses dynamic scaling
in conjunction with a static quantizer. That is, the input
signal is pre-scaled so that its range is more suitable for
quantization. The scaling parameter is dynamically adjusted
(i.e., adjusted online). Noticeable work along this line in-
cludes [9]-[12]. In [9], it is pointed out that if a system
is not excessively unstable, by employing a quantizer with
various sensitivity a feedback strategy can be designed to
bring the closed-loop state arbitrarily close to zero for an
arbitrarily long time. The idea of quantizer with sensitivity is
extended in [10] where it is shown that there exists a dynamic
adjustment of the quantizer sensitivity and a quantized state
feedback that asymptotically stabilizes the system. In the
case of output feedback, a local (or semi-global) stabilization
result is obtained. We note that dynamic scaling is a very
popular idea in signal processing for reducing quantization
errors [13] but the key difference here is that we also need
to guarantee stability in control.

This paper is primarily inspired by the work of [4] but
also motivated by its limitations. Although it is shown in
[4] that stabilization of a linear system can be achieved by
feeding back only a finite number of bits per sample and this
number is typically very small, the encoder-decoder scheme
used for proving this result is impractical and non-robust.
It is impractical because the encoder-decoder pair is a very
nonlinear operator which would typically result in a large
overshoot, and it can be non-robust because even a very
small amount of noise in the system can drive the closed-loop
unstable. These problems are not present in a logarithmic
quantizer based feedback controller because the quantization
error can be modeled as a sector bounded uncertainty and the
closed-loop system is essentially linear. The main drawback
of the logarithmic quantizer is that it requires an infinite
number of quantization levels.

In this paper, we propose a simple dynamic scaling
method for a logarithmic quantizer based feedback controller.
A dynamic scaling factor is simply adjusted up or down
depending whether the input signal to the quantizer is “too
small” or “too large”. Using this dynamic scaling method,
we show that a linear system can be asymptotically stabilized
using a logarithmic quantizer with only a finite number of
quantization levels. This number turns out to be very mod-
erate (typically a few bits to a few bytes) and is usually very
compatible to the minimum information rate given in [4]. The
main advantage of the proposed scheme is that the system
behaves as if there were an infinite number of logarithmic
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quantization levels when the initial state is “moderate” in
size, i.e., the state would converge exponentially. Only when
the initial state is very large, a transient period of overshoot
can be present. The region of exponential convergence can
be easily increased by using more quantization levels, and
the number of feedback information bits grows only at a
log(log(·)) rate when the size of this region increases. Since
most digital communication channels can easily handle a
few tens of bytes per sample, the proposed scheme should
be very practical. We also show that the proposed scheme
is robust in the sense it can tolerate additive noises in the
system effectively.

II. INFINITE-LEVEL LOGARITHMIC QUANTIZATION

Consider the following system:

xk+1 = Axk + Buk, (1)

yk = Cxk, (2)

where xk ∈ R
n is the state, uk ∈ R is the control input,

yk ∈ R is the measured output, A ∈ R
n×n, B ∈ R

n×1 and
C ∈ R

1×n are given. We will denote the transfer function
from uk to yk by G(z). Without loss of generality, we assume
that A is unstable and (A,B, C) is a minimal realization.

The quantized feedback control problem is to design a
feedback quantizer

vk = Q(yk), (3)

which takes values in

V = {±µi : i = 0,±1,±2, · · · } ∪ {0}, (4)

and a feedback controller of the form

x̂k+1 = Acx̂k + Bcvk, x̂0 = 0, (5)

uk = Ccx̂k + Dcvk, (6)

with x̂k ∈ R
n, such that the closed-loop system is stable

and that the so-called quantization density [1] is coarsest.
The quantization density of Q(·) is defined as follows:

ηQ = lim sup
ε→0

#g[ε]
− ln ε

, (7)

where #g[ε] denotes the number of quantization levels in the
interval [ε, 1/ε].

The quantized feedback control problem for the system
(1)-(2) is generalized from a quantized state feedback control
problem in [1] and has been studied in details in [3]. In
particular, it is known [3] that the coarsest quantization
density for quadratic stabilization of the system above is
achieved by a logarithmic quantizer. Such a quantizer is
described by

V = {µi = ρiµ0 : i = 0,±1,±2, · · · } ∪ {0}, µ0 > 0, (8)

where ρ ∈ (0, 1). Since a smaller ρ corresponds to a smaller
ηQ, we can regard ρ as the quantization density instead. The

associated quantizer Q(·) is defined as follows:

Q(y)=

⎧⎨
⎩

ρiµ0, if 1
1+δ ρiµ0 < y ≤ 1

1−δ ρiµ0

0, if y = 0
−Q(−y), if y < 0,

(9)

where
δ = (1 − ρ)(1 + ρ)−1. (10)

It is further shown in [3] that the smallest ρ for which the
system (1)-(2) can be quadratically stabilized via a quantized
feedback controller (3), (5)-(6) is given by

ρinf =
1 − δsup

1 + δsup
, (11)

δ−1
sup = inf

H(z)
||(1 − H(z)G(z))−1H(z)G(z)||∞, (12)

where H(z) is the transfer function of the controller.

III. FINITE-LEVEL QUANTIZED FEEDBACK

STABILIZATION

It is obvious that a logarithmic quantizer (9) has an infinite
number of quantization levels. This is certainly not imple-
mentable practically. One simple approach is to truncate the
quantizer using a large saturator and a small dead zone.
This will allow the state of the system to converge to a
small neighborhood, provided that the initial state is within
a known bound. Due to the use of logarithmic quantization,
the number of quantization levels required is far less than
required by using linear quantization.

In this section, we show that it is possible to dynamically
scale the input-output signals of the quantizer so that asymp-
totic stabilization can be achieved using a finite-level loga-
rithmic quantizer, even without knowing the bound for the
initial state. We define an N -level logarithmic quantization
with quantization density ρ > ρinf as

V = {±ρiµ0, i = 0, 1, 2, · · · , N − 1}, µ0 > 0. (13)

The associated quantizer Q(·) becomes:

Q(y) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ρiµ0, if 1
1+δ ρiµ0 < y ≤ 1

1−δ ρiµ0,

0 ≤ i < N
ρN−1µ0, if 0 ≤ y ≤ 1

1+δ ρN−1µ0,

µ0, if y > 1
1−δ ρiµ0,

−Q(−y), if y < 0.

(14)

The basic idea of dynamic scaling is very simple: When
the signal yk is outside of the quantization range, we scale it
back by a scaling factor (or gain) gk > 0 before quantization.
The quantized signal is then scaled back by g−1

k . That is, we
use

vk = g−1
k Q(gkyk). (15)

Suppose an infinite-level logarithmic quantizer with den-
sity ρ > ρinf is adopted. Following the sector bound
approach [3], we can write the closed-loop system of (1)-
(2) and (5)-(6) as

ξk+1 = Ā(∆k)ξk, (16)

yk = C̄ξk, (17)
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where ξ = [xT x̂T ]T ,

Ā(∆k) = Ā + B̄(1 + ∆k)C̄, (18)

Ā =
[

A BCc

0 Ac

]
, B̄ =

[
BDc

Bc

]
, C̄ = [C 0].

Also,
∆kyk = Q(yk) − yk, |∆k| ≤ δ, (19)

represents the quantization error. Because (16) is quadrati-
cally stable, we have a quadratic Lyapunov function V (ξ) =
ξT Pξ with P = PT > 0 such that

V (ξk+1)−V (ξk) = ξT
k (Ā(∆k)T PĀ(∆k)−P )ξk < 0 (20)

for all nonzero ξk ∈ R
2n and admissible ∆k. It is shown in

[3] that the above is equivalent to

Ā(∆)T PĀ(∆) − P < 0, ∀ |∆| ≤ δ. (21)

Using the continuity argument, the above is equivalent to

Ā(∆)T PĀ(∆) − P ≤ −ηP, ∀ |∆| ≤ δ, (22)

for some 0 < η < 1.
We now assume that an N -level logarithmic quantizer

with the same density ρ and dynamic scaling (15) is applied
instead. We choose two positive scaling factors 0 < γ1, γ2 <
1 such that

γ2
1ĀT PĀ − P < −η1P, (23)

γ−2
2 (1 + τ)Ā(∆)T PĀ(∆)−P < −η2P, ∀‖∆‖ ≤ δ, (24)

for some 0 < η1, η2, τ < 1. The latter is done by choosing
γ2 close to 1 and τ close to 0 so that γ−2

2 (1+ τ)(1−η) < 1
and taking

η2 = 1 − γ−2
2 (1 + τ)(1 − η). (25)

This ensures η2 > 0 and makes (24) equivalent to (22).
We initialize g0 to be any positive value and define gk+1

for any k ≥ 0 as follows:

gk+1 =

⎧⎨
⎩

gkγ1, if |Q(gkyk)| = µ0,
gk/γ2, if |Q(gkyk)| = ρN−1µ0,
gk, otherwise.

(26)

Because of the flexibility in g0, we can normalize µ0 = 1
without loss of generality. We will also denote ε̄ = ρN−1.
The choice of g0 does not affect stabilizability, but choosing
it according to an estimate of ‖x0‖ helps improve the
transient performance.

To help analyze the quantized feedback system, we con-
sider the scaled state defined by

zk = gkξk (27)

and the associated Lyapunov function V (z) = zT Pz. We
have the following result:

Lemma 3.1: Suppose the scaled N -level logarithmic
quantizer (14), (15) and (26) is applied. Then, for any initial
state x0 and any k ≥ 0,

V (zk+1) − V (zk)

≤
⎧⎨
⎩
−η3V (zk), if |Q(C̄zk)| = 1,
−ηV (zk), if ε̄ < |Q(C̄zk)| < 1,
−η2V (zk) + η4ε̄

2, if |Q(C̄zk)| = ε̄,
(28)

where

η3 = max{η1, 1 − γ2
1(1 − η)} > 0,

η4 = γ−2
2 (1 + τ−1)B̄T PB̄. (29)

Proof: The result for the case of ρN−1 < |Q(C̄zk)| < 1
follows directly from (16), (22) and gk+1 = gk. For the case
of |Q(C̄zk)| = 1, gk+1 = gkγ1. It follows that

V (zk+1)−V (zk) = γ2
1(Āzk+B̄σk)T P (Āzk+B̄σk)−zT

k Pzk,

where σk = sign(C̄zk). Denote

f(u) = γ2
1(Āzk + B̄u)T P (Āzk + B̄u) − zT

k Pzk.

From (23),
f(0) ≤ −η1z

T
k Pzk.

Since σk = Q(C̄zk), we have σk = θu1 for some 0 < θ ≤ 1,
where u1 = (1 + ∆k)C̄zk is the unsaturated output of the
quantizer. Also from (22), we get

f(u1) = γ2
1zT

k Ā(∆k)T PĀ(∆k)zk − zT
k Pzk

≤ −(1 − γ2
1(1 − η))V (zk).

Since f(u) is quadratic and convex (because f(u) → +∞
when |u| → ∞), it is clear that

V (zk+1) − V (zk) = f(σk) ≤ max{f(0), f(u1)}
= −η3V (zk).

For the case of |Q(C̄zk)| = ε̄, gk+1 = gk/γ2. From (13)
and (16), we can write

xk+1 = Ā(∆k)xk + B̄g−1
k εk,

where |εk| ≤ ε̄. It follows that

V (zk+1) − V (zk)
= γ−2

2 (Ā(∆k)zk + B̄εk)T P (Ā(∆k)zk + B̄εk)
−zT

k Pzk

= γ−2
2 zT

k Ā(∆k)PĀ(∆k)zk − zT
k Pzk

+γ−2
2 (2εkB̄T PĀ(∆k)zk + ε2

kB̄T PB̄)
≤ γ−2

2 (1 + τ)zT
k Ā(∆k)PĀ(∆k)zk − zT

k Pzk

+γ−2
2 (1 + τ−1)ε̄2B̄T PB̄

= −η2z
T
k Pzk + η4ε̄

2.

This completes the proof.
From Lemma 3.1, it is clear that V (zk) converges to a

bounded region. This bound can be computed by solving

0 = −η2V∞ + η4ε̄
2,
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which gives

V∞ = η−1
2 η4ε̄

2. (30)

Lemma 3.1 leads to the following result:
Corollary 3.1: Suppose the scaled N -level logarithmic

quantizer (14), (15) and (26) is applied. Then, for any initial
state x0, zk = gkξk converges exponentially to the ellipsoid

Z∞ = {z : z ∈ R
2n, V (z) ≤ V∞}. (31)

From (30) and the corollary above, it is clear that we
can choose N to be sufficiently large so that, when k is
sufficiently large, Q(C̄zk) will no longer be saturated. This
is achieved by choosing N such that

|C̄z| < 1 ∀zT Pz ≤ η−1
2 η4ρ

2(N−1).

Solving this gives N ≥ N0, where

N0 = 1 +
log(η−1

2 γ−2
2 (1 + τ−1)B̄T PB̄C̄P−1C̄T )

2 log(ρ−1)
. (32)

The analysis above yields the following main result:
Theorem 3.1: Suppose the scaled N -level logarithmic

quantizer (14), (15) and (26) is applied with N ≥ N0 in
(32). Then, the state ξk converges to zero asymptotically.

Proof: From Corollary 3.1, zk converges to Z∞ exponen-
tially. This property and the choice of N0 imply that Q(C̄zk)
will no longer be saturated after a finite number of steps,
say k0 steps. This means that gk will be non-decreasing for
k ≥ k0. Note that whenever gk+1 = gk, V (zk) decreases
exponentially. If this continues for enough number of steps,
|C̄zk| be less than ε̄, forcing gk+1 to increase by factor of
1/γ2. This means that gk cannot converge to a constant.
Hence, gk → ∞ as k → ∞. Since zk is bounded for k > k0,
we conclude that ξk → 0 as k → ∞.

Remark 3.1: A typical behavior of the system is as fol-
lows: If the initial state is very large, the feedback signal
tends to be saturated, forcing gk to decrease fast. This would
result in a period of overshoot. Once gk is sufficiently small,
saturation will stop and the state decays exponentially. When
the state is sufficiently small, gk will increase gradually,
causing the quantizer to bounce back and forth between the
dead zone and logarithmic region. During this phase, the
state also decays exponentially, but at a lower rate.

Remark 3.2: We note that the number of bits required to
code an N -level logarithmic quantizer is

Nb = 	log2(2N)
, N ≥ 	N0
, (33)

where 	·
 is the integer round-up function. This is because
there are N levels for both positive and negative inputs.

We can also relate Nb to the region of exponential conver-
gence. Since the state xk converges exponentially inside V∞
and N is a logarithmic function of V∞, we know that the
number of required information bits grows at a log(log(·))
rate as the region of exponential convergence for the state
increases.

IV. NUMBER OF QUANTIZATION LEVELS

In this section, we try to analyze the number of quantiza-
tion levels needed for stabilization. Recall that for a given
controller (5)-(6) and an infinite-level logarithmic quantizer
with density ρ > ρinf that quadratically stabilizes the system
(1)-(2), this number is bounded by N0 in (32). This formula
is complicated because N0 depends on a number of design
parameters (η2, γ2, τ, ρ and P ) which are interconnected.

By minimizing N0 with respect to τ and η2, we obtain
(without showing the details)

η2 = 1 − γ−1
2

√
1 − η, τ =

γ2√
1 − η

− 1, (34)

which yields

N0 = 1 +
2 log(γ2 −

√
1 − η) − log(B̄T PB̄C̄P−1C̄T )

2 log(ρ)
.

(35)
Since γ2 < 1 is required, N0 is minimized by taking γ2

very close to 1. Although this minimizes N0, it will make
gk increase very slowly which in turn make ξk converge
to 0 very slowly. A good choice for γ2 should balance
the convergence rate of ξk and the number of quantization
levels; see Example 1 in Section VI. Once γ2 is chosen, the
parameters η and δ need to be optimized jointly. We propose
the following simple numerical search method for optimizing
N0: Start with any 0 < δ < δsup and 0 < η < 1. Find a
controller to satisfy the control objectives. If a satisfactory
controller is found, compute the corresponding matrix P and
then N0. Repeat the above for different values of δ and η
and retain the smallest value of N0.

V. ROBUSTNESS AGAINST ADDITIVE NOISES

Next, we consider the scenario where the system (1)-(2)
is subject to some bounded additive noise, i.e., we consider
the following system instead:

xk+1 = Axk + Buk + wk, (36)

yk = Cxk, (37)

where ||wk|| ≤ w̄ for some constant w̄ > 0.
In this case, it is obviously not feasible to drive the state

xk to zero. Instead, we want to drive the state to a bounded
region. Because of this, there is no need to drive gk to
infinity. It turns out that by saturating gk at some upper
bound, we can guarantee that the state is driven to a bounded
region. This is detailed in the next result (without proof).

Theorem 5.1: Consider the system (36)-(37) and the dy-
namically scaled logarithmic controller as given before. We
modify the scaling factor gk by saturating it at some ḡ > 1.
Then, both the closed-loop system state ξk and the scaled
state zk = gkξk are bounded when k → ∞.
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VI. ILLUSTRATIVE EXAMPLES

In this section, we use several examples to illustrate the
proposed dynamic scaling method.

Example 1: We consider a first order system:

xk+1 = axk + uk, (38)

yk = xk, (39)

where a > 1. It turns out that we can have a relatively simple
expression for N0. Indeed, to stabilize the system using
a logarithmic quantizer (9) with density ρ, the controller
H(z) = h a constant because of full state feedback. The
closed-loop system is given by

xk+1 = (a + h(1 + ∆k))xk, |∆k| ≤ δ,

where δ relates to ρ as in (10). Since it is a first order system,
we take V (xk) = x2

k, which gives

V (xk+1) = (a + h(1 + ∆k))2x2
k ≤ (|a + h| + δ|h|)2x2

k

with the right-hand side being the worst-case value. Mini-
mizing it gives h = −a and

V (xk+1) ≤ δ2a2V (xk). (40)

This gives the upper bound for δ to be a−1.
Now, for any δ < a−1, η in (22) is given by η = 1−δ2a2.

Applying it to (35), we obtain

N0 = 1 +
log(γ2a

−1 − δ)
log(1 − δ) − log(1 + δ)

, δ < a−1, (41)

which can be minimized numerically. The result is shown
in Figure 1, where two curves for the required bit rate (33),
one for γ2 = 1 and another for γ2 = 0.9, are compared with
the minimum bit rate 	log2(a)
 given in [4]. We see that the
difference is only a few bits even when a is taken up to 100.

Example 2: The second example we consider aims at
demonstrating the convergence rate and robustness of the
dynamic scaling method. Consider the system (1)-(2) with

A =

⎡
⎣ 2.7 −2.41 0.507

1 0 0
0 1 0

⎤
⎦ , B =

⎡
⎣ 1

0
0

⎤
⎦ ,

C = [1 − 0.5 0.04].

The system is unstable with two unstable open-loop poles at
1.2 ± i0.5 but without unstable zero and the relative degree
is 1. It follows from [3] that

δsup = |1.2 ± i0.5|−2 = 0.5917, ρinf = 0.2565.

Choosing δ = 0.2 and optimizing N0 using a search on η,
we obtain η = 0.41 and the corresponding optimal controller

Ac =

⎡
⎣ 0 0.5367 1.2080

0.1342 −0.2684 −0.7382
0.1929 0.4194 0.1678

⎤
⎦ ,

Bc =
[

1.0000; 1.0000; 0.3750
]
,

Cc = [0.12049 0.2293 − 0.1431] ,
Dc = −1.4955.
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Fig. 1. Bit Rate Comparison for a First Order System
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Fig. 2. State response of the closed-loop system

Since γ2 is lower bounded by
√

1 − η = 0.7681, we choose
γ2 = 0.8. This gives N0 = 11.015. Since N = 12 and
N = 16 give the same bit rate (5 bits), we set N = 16. Note
that the minimal bit rate required for stabilizing this system
is 1 bit [4].

It can be easily verified that (23) is satisfied if we
choose γ1 = 0.2. Let the initial state of the controller be
x̂0 = [0 0 0]T and the minimal level of the quantizer
be 1 (correspondingly, µ0 = 1/ρN−1). For the initial state
x0 = [250 −200 0]T and g0 = 1, the state response of the
closed-loop system is shown in Figure 2. The scaling gain
gk is shown in Figure 3.

If we have a good estimate x̃0 of the initial state x0, we
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Fig. 3. The scaling factor gk for the noise-free case
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Fig. 4. State response of the closed-loop system under input noise

may set the initial scaling gain g0 to improve the transient
performance. For example, if we set g0 = 1/|Cx0| for the
given initial condition, the transient overshoot is reduced by
approximately 35%.

Next, we study the robustness of the closed-loop system.
Let wk in (36) be a saturated Gaussian white noise with zero
mean and |wk| ≤ 100 and covariance matrix of 3I . We set
ḡ = 40. The state response of the closed-loop system with
x0 = [30 −30 0]T is shown in Figure 4. It can be observed
that the the final state converges to a bounded region. The
scaling factor gk has a similar initial response as in the noise
free case but gets bounded at the steady state.

VII. CONCLUSION

We have proposed a simple dynamic scaling method
for quantized feedback control. Using this, we show that
asymptotic stabilization for a linear system can be achieved
using a logarithmic quantizer with a very moderate num-
ber of quantization levels. The proposed control scheme is
easily implementable and has nice convergence and robust
properties. We emphasize that the proposed dynamic scaling
method can be applied to a much wider range of quantized
feedback control problems.
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