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On design of finite-level quantization feedback control

Minyue Fu and Lihua Xie

Abstract— This paper studies quantized feedback control uses dynamic scaling in conjunction with a static quantizer
of discrete-time linear systems using a finite-level quantizer. That is, the input signal is pre-scaled so that its range
Motivated by the fact that most feedback communication s e suitable for quantization. Noticeable work along

channels allow a moderate bit rate, we are not particularly e o .
concerned with the problem of finding the minimum bit this line includes [11]-[14]. In [11], it is pointed out that

rate of feedback for a given control objective. Instead, we If @ system is not excessively unstable, by employing
assume that a moderate bit rate is available. We introduce a quantizer with various sensitivity a feedback strategy
a dynamic scaling method and combine it with a known can be designed to bring the closed-loop state arbitrarily
logarithmic quantization method. Using this approach, sat-  ~5se to zero for an arbitrarily long time. The idea of
isfactory control of linear systems can be achieved using a . . b . .
quantizer with a moderate number of quantization levels. guantlzer with Sens't'v'_ty IS eXtende.d In _[12] where it
Two main advantages of this approach are 1) it is very easy IS shown that there exists a dynamic adjustment of the
to implement, and 2) the closed-loop system behaves as if quantizer sensitivity and a quantized state feedback that
there was no limitation on the number of quantization levels asymptotically stabilizes the system. In the case of output

when the state of the system is within a *normal” operating  feeqhack, a local (or semi-global) stabilization result is
range. These features are important for practical applications obtained

of quantized feedback control.

. INTRODUCTION This paper is primarily inspired by the work of [6] but
also motivated by its limitations. Although it is shown in

. : - - . ] that stabilization of a linear system can be achieved by
are implemented using digital communication links,

lot of research has been devoted to quantized feedba q(edback with only a finite number of bits per sample and

control in recent years: see, e.g., [1]-[14]. In quamizeg“lls number is typically very small, the encoder-decoder

feedback control, the feedback signal is quantized and thgﬁheme u;eq for proving this result is impractical and non-
o ! . fobust. It is impractical because the encoder-decoder pair
coded for transmission. From the control design point a . . .
) . . IS a very nonlinear operator which would typically result
view, a fundamental problem is how to design a feedbac L
X - . . In a large overshoot, and it is non-robust because even a
controller and a quantizer jointly in order to achieve a L .
) S very small amount of noise in the system can drive the
certain control objective.

Two kinds of quantizers can be deployed in quantizealosed_IOOp unstable.
feedback design. A static quantizer is a memoryless non- In this paper, we propose a simptiynamic scaling

linear function, whereas a dynamic quantizer uses memor?{ethod for a logarithmic quantizer. A dynanszaling fac-

angl t_hus can be_ much_more C(_)mple_x and more powerfl.{(jr is simply adjusted up or down depending whether the
Existing work using static quantizers includes, e.g.,[A], input signal to the quantizer is too “small” or too “large”.

[3], [4], [5]. For quadratic stabilization of a linear syste : . . : ?
. s . . sing this dynamic scaling method, we show that a linear
using state feedback, it is shown in [1] that the optima . o . N
: . . - . . . system can be asymptotically stabilized using a logarithmi
static quantizer is dogarithmic quantizer. This result is : . - i
quantizer with only a finite number of quantization levels.

generalized in [3] to a number of output feedback prob-. . .
) .. This number turns out to be very moderate (typically a few
lems using a sector bound approach, where logarithmjc

. : its to a few bytes) and is usually very compatible to the
guantizers are also shown to be optimal. g ; . . ; .
) . . oo . minimum information rate given in [6]. The main advan-
When a dynamic quantizer is allowed, it is shown in .
o age of the proposed scheme is that the system behaves as
[6] (also see [7]) that stabilization of a SISO LTI system S ) o
(in some stochastic sense) can be achieved using onl |féhere were an infinite number of logarithmic quantization
L R . N9 ONY Fels when the initial state is “moderate” in size, i.eg th
finite number of quantization levels with the minimum : T
L .. 'state would converge exponentially. Only when the initial
number of quantization levels (also known as the minimum . . .
. . -~ state is very large, a transient period of overshoot can
feedback information rate) explicitly related to the unstable . .
. .~ be present. The region of exponential convergence can be
poles of the system. Another type of dynamic quantizers_ : . L
easily increased by using more quantization levels, and
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Motivated by the fact that more and more control design

2884



[1. INFINITE-LEVEL LOGARITHMIC QUANTIZATION quantization density if and only if the following auxiliary

Consider the following system: system:
Tk+1 = Az + Bug (1) T /ixkzli)w Al<§ 11
y, = Cuxg ) ve = (1+A)Cx, [A] < (11)

is quadratically stabilizable via (5)-(6). It follows thtte
largest sector bound,,, and the corresponding coarsest
guantization density;,¢ are given by

wherez, € R" is the stateu; € R is the control input,
yr € R is the measured output} € R**" B ¢ R"*!
and C € R are given. We will denote the transfer

function fromuy, to y; by G(z). Without loss of generality, Pint = 1 — dsup (12)
we assume thatl is unstable andA, B, C) is a minimal " 1+ Osup
realization. Sp = inf [|(1 = H(2)G(2)) " H(2)G(2)||(13)
The quantized feedback control problem is to design a H(z)
feedback quantizer where H (z) is the transfer function of the controller.
Furthermore, ifG(z) has relative degree equal to 1 and
v = Q(yr) (3) no unstable zeros, then the coarsest quantization dessity i
which takes values in given by
R VLV "
U={+u:i=0,+1,£2,---Yu{0} (4 Pint = T e 1 (14)
and a feedback controller of the form where \}" are the unstable eigenvalues 4f
Proof: See [3]. O
Tpp1 = AcZp + Bevg (5) Remark 2.1: The result above offers a very convenient
up = Co2p + Dovs (6) tool for studying quantized feedback control designs. The

. key point of the result is that quantization errors can be
such that the closed-loop system is stable and that the s@scribed using a sector bound (11) without any con-

called quantization density [1] is coarsest. The quantmat gervatism, This essentially converts a quantized feedback

density ofQ(-) is defined as follows: control problem into a robust control problem involving
#gle] a sector bound uncertainty. The latter has been studied
ng = limsup (7) in depth in the literature and solutions are known to be

e—0 —1 S ) .
0 me related to H., optimization. We also emphasize that this

where#g[e] denotes the number of quantization levels irapproach, known as the sector bound approach, can be

the intervalle, 1/¢]. used in many different settings for quantized feedback
The quantized feedback control problem for the systerontrol and can be extended to deal with performance

(1)-(2) is generalized from a quantized state feedback copentrol and control of systems with uncertain parameters.

trol problem in [1] and has been studied in details in [3]For more details, please see [3].

In particular, it is known [3] that the coarsest quantizatio

density for quadratic stabilization of the system above is ~ !!l- FINITE-LEVEL QUANTIZED FEEDBACK
achieved by a logarithmic quantizer. Such a quantizer is STABILIZATION
described by It is obvious that a logarithmic quantizer (9) has an

infinite number of quantization levels. This is certainly
not implementable practically. One simple approach is
to truncate the quantizer using a large saturator and a
small dead zone. This will allow the state of the system
to converge to a small neighborhood, provided that the
initial state is within a known bound. Due to the use

U= {+pug: i=0,+1,42,---YU{0}, ug >0 (8)

wherep € (0, 1). Since a smallep corresponds to a
smallerng, we can regarg as the quantization density
instead. The associated quantizg(-) is defined as fol-

lows: ] . ) , of logarithmic quantization, the number of quantization
puo, if ﬁPWO <y < thp'uo levels required is far less than required by using linear
Qy)=q 0, if y=0 (9)  quantization.
—Q(—y), if y<o. In this section, we show that it is possible to dynamically
where scale the input-output signals of the quantizer so that
1—p asymptotic stabilization can be achieved using a finitellev
- 1+p (10) logarithmic quantizer, even without knowing the bound

for the initial state. We define amiv-level logarithmic

Theorem 2.1: Consider the system (1)-(2). For a givenquantization with quantization density> pinr as

logarithmic quantization density > 0, the system is '
quadratically stabilizable via a quantized controllertwit U = {+p'up,i =0,1,2,--- ,N — 1}, ug >0 (15)
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The associated quantiz€)(-) becomes:

plug, if Fltgpiuo <y < t55ptug,
0<i< N
Qly) =< PV ug, it 0<y < 5oV o,
Uo, if y > %_6,07;11,0,
—Q(-y), ify<O.

(16)

We initialize gy to be any positive value and defipg,;
for any k > 0 as follows:

gk, 1 {Q(gryr)| = uo
Get1 =94 gr/v2, I [Q(geyr)| = p " ug (26)
Gk otherwise

Because of the flexibility ingy, we can normalize,, =
1 without loss of generality. We will also denote =

The basic idea of dynamic scaling is very simple: WhenN—1_ The choice ofy, does not affect stabilizability, but
the signaly, is outside of the quantization range, Wechoosing it according to an estimatelaf,|| helps improve

scale it back by acaling factor (or gain) g, > 0 before

quantization. The quantized signal is then scaled back by To help analyze the quantized feedback system,

gz ' That is, we use

v = g5 ' Q(gkyk) (17)

the transient performance.
we
consider the scaled state defined by

We assume that a controlléf(z) and an infinite-level and the associated Lyapunov functidifz) = 27 Pz. We
logarithmic quantizer with density > pi,s have been have the following result:

designed for quantized feedback stabilization. To simplif

Lemma 3.1: Suppose the scaled N-level logarithmic

bookkeeping, we assume, without loss of generality, thajuantizer (16), (17) and (26) is applied. Then, for any

H(z) is absorbed inta7(z), or H(z) = 1. Following the

sector bound approach [3], we can write the closed-loop

initial state zo and any k& > 0,
V(zkt1) = V(zk)

system as _
=03V (2k), if |Q(Cz)| =1
Tpp1 = A(Ap)zp = (A+ B(1+ Ap)C)x, (18) < L —nV(z), if £<]Q(Cz)| <1(28)
— 22 —z
Where m2V (z) +mac®, it |Q(Czy)| =&
Apye = Qyr) — Yk, |Ak[ <0 (19) where
represents the quantization error. Because (18) is quadrat 3 max{n, 1—77(1—n)} >0
ically stable, we have a quadratic Lyapunov function m = 75 1+ HBTPB. (29)

V(z) = 2T Pz with P = PT > 0 such that

V($k+1) — V(xk) = LL’%(A(A]C)TPA(A]C) — P)l‘k <0
(20)
for all nonzerox;, € R™ and admissiblel,. It is shown
in [3] that the above is equivalent to

AM)TPAA) —P <0, V |A] <6 (21)

Proof: The result for the case ¢f¥ ! < |Q(Cz.)| < 1
follows directly from (18), (22) andjx+1 = gx. For the
case of|Q(Czr)| =1, gk+1 = gr1- It follows that

Vi(zk+1) = V(z)
= ~}(Az, + Bop)T P(Az, + Boy) — 2l Pz,

whereoy, = sign(Cz;). Denote

Using the continuity argument, the above is equivalent to

AMTPAA)—P < —nP, ¥V |Al<S§ (22

for some0 < n < 1.

We now assume that ai-level logarithmic quantizer
with the same density and dynamic scaling (17) is
applied instead. We choose two positive scaling facto

0 < 71,72 < 1 such that
V2ATPA—P < - P (23)
and

Y5 2(14+7)A(A)TPA(A)—P < =P, Y| A] <6 (24)

for some0 < 71,12, 7 < 1. The latter is done by choosing

7, close to 1 and close to 0 so that, 2(1+7)(1—n) < 1
and taking
2 =1—732(L+7)(1—n) (25)

This ensures); > 0 and makes (24) equivalent to (22).

f(u) =~7(Azi, + Bu)" P(Az + Bu) — z} Pz

From (23),
f(0) < —mzf Pz

Sinceo, = Q(Cz), we haveo, = 6u; for some0l <

resg 1, whereu; = (14 A)Cz; is the unsaturated output

of the quantizer. Also from (22), we get
flur) = APz A(A)TPA(AR)2, — 2 Pz
< —(1 =1 =n)V (=)

Since f(u) is quadratic and convex (becaug@:) — +oo
when|u| — 0), it is clear that

V(zkt1) — V(zk)
= flox) <max{f(0), f(u1)}=-n3V(z)

For the case ofQ(Czy)| = &, gk+1 = gk/72. From (15)
and (18), we can write

Thy1 = A(Ak)xk + ng_1€k
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where|ey| < &. It follows that

V(zk+1) — V(2k)

= 5 2(A(Ar)zk + Beg)T P(A(AR)z, + Beg)
—z,?sz

= 73 2 A(Ak)PA(AR)2), — 2 Pz
+75 2(2ex B" PA(Ag)2, + 4 B" PB)

exponentially. When the state is sufficiently sma}l, will
increase gradually, causing the quantizer to bounce back
and forth between the dead zone and logarithmic region.
During this phase, the state also decays exponentially, but
at a lower rate.

IV. | LLUSTRATIVE EXAMPLE
In this section, we use an example to illustrate the pro-

< 752(1 + 1)z A(AR)PA(AL) 2, — 2} Pz posed dynamic scaling method. The example we consider
21+ Y2 BTPB aims at demonstrating the convergence rate of the dynamic
= TPy 4,22 scaling method.
T TRERTER TN Consider the system (1)-(2) with
This completes the p_ro_of. O 97 241 0.507 1
From Lemma 3.1, it is clear thaf(z;) converges to a _ 1 0 0 B=1o
bounded region. This bound can be computed by solving 0 1 0 ’ 0
0= —1Voo + 1’ C = [1 —05 0.04

which gives

Ve =15 "> (30)

Lemma 3.1 leads to the following result:

Corollary 3.1: Suppose the scaled N-level logarithmic
quantizer (16), (17) and (26) is applied. Then, for any
initial state xq, 2z = grxy Converges exponentially to the
ellipsoid

Zw={2: 2z€R",V(z) <V} (31)

The system is unstable with two unstable open-loop poles
at 1.2 + 0.5 but without unstable zero and the relative
degree is 1. It follows from Theorem 2.1 that

Ssup = |1.2£40.572 = 0.5917,  pins = 0.2565

Choosingd = 0.2, we can design the controllgt (z) by
solving the H., optimal control problem

51I(1 = G()H(2) " G(2) H(2)l|oo < 1

From (30) and the corollary above, it is clear that weas suggested by Theorem 2.1. This gives

can chooseN to be sufficiently large so that, whénis

sufficiently large Q(C'z;) will no longer be saturated. This

is achieved by choosingy such that
|Cz] <1 V2T Pz < nytyyp? V-V

Solving this givesN > N, where

log(ny "7, *(1+ 7~ 1) BT PBCP~'CT)
+

2log(p~1)

The analysis above yields the following main result:

Theorem 3.1: Suppose the scaled N-level logarithmic
quantizer (16), (17) and (26) is applied with N > N in
(32). Then, the state x;, converges to zero asymptotically.

Proof: From Corollary 3.1,z converges taZ,, expo-
nentially. This property and the choice &f, imply that

No=1 (32)

Q(Cz) will no longer be saturated after a finite numbe

of steps, sayky steps. This means that will be non-
decreasing fork > ko. Note that wheneveg,.1 = g,

V(z) decreases exponentially. If this continues enough

number of steps|Cz;| will be less thane, forcing g+1
to increase by factor of /v2. This means thag, cannot
converge to a constant. Hengg, — oo ask — oo. Since
z,, 1S bounded fork > kg, we conclude that;, — 0 as
k — oo. O

Remark 3.1: A typical behavior of the system is as
follows: If the initial state is very large, the feedback
signal tends to be saturated, forcipg to decrease fast.

This would result in a period of overshoot. Ongg is

sufficiently small, saturation will stop and the state decay

[ 0.1041 0.1615 —1.2342
A, = | 01031 02376 0.7151
| 0.0874 0.1875 0.1328
0.0015
B. = | —0.0007
| 0.0000
C. = [9526 18043 — 12946
D, = —1.9250

Using this controller, we can form the closed-loop matrix.
That is, we replaced in (23) with

- [ A BC.
=10 %]

For the closed-loop system, we obtajn= 0.5603 and

'with the Lyapunov matrix given by

5.2641 x 103 —1.2636 x 10* 8.8965 x 10°

—1.2636 x 10*  3.0331 x 10* —2.1355 x 10%

p_ | 88965x 10> —2.1355 x 10*  1.5036 x 10*

T | 4.8938 x 107 —1.1747 x 108 8.2708 x 107

5.5863 x 107  —1.3410 x 108  9.4412 x 107

—5.3009 x 108 1.2724 x 10° —8.9589 x 108
4.8938 x 107 5.5863 x 107  —5.3009 x 108
—1.1747 x 108 —1.3410 x 10%  1.2724 x 10°
8.2708 x 107 0.4412 x 107  —8.9589 x 108

—4.9281 x 102
—5.6254 x 1012
5.3381 x 1013

5.1942 x 10t
5.9300 x 10!
—5.6254 x 1012

4.5499 x 101
5.1942 x 10!
—4.9281 x 1012
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Fig. 1. State response of the closed-loop system
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Fig. 2. The scaling factogy

50

Since v, is lower bounded by/1 —n = 0.6632, we
choosey, = 0.8. This givesNy = 6.4256. SinceN =7
and N = 8 give the same bit rate (4 bits), we s¥t= 8.

Note that the minimal bit rate required for stabilizing this

system is 1 bit [6].

time

Fig. 3. State response for known initial state

the given initial condition, the transient performance is

improved significantly. The corresponding state response
is shown in Figure 3. Note that a similar improvement can

be achieved even when only a rough estimate of the initial
condition is available.

V. CONCLUSION

We have proposed a simple dynamic scaling method
for quantized feedback control. This allows us to achieve
asymptotic stabilization using a very moderate number
of quantization levels. The proposed control scheme is
easily implementable and has nice convergence properties.
The results in this paper represent only preliminary work
along this line. Two issues are under further investigation
now. One is to work out how to choose relevant design
parameters so that the number of quantization leietzan
be minimized. The second issue is to study the robustness
of the proposed method. Simulation results suggest that
the proposed method has good robustness properties with
respect to additive noises in the system. Some theoretical
analysis is needed to quantify this observation.
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