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The Sector Bound Approach to Quantized
Feedback Control

Minyue Fu, Fellow, IEEE, and Lihua Xie

Abstract—This paper studies a number of quantized feedback
design problems for linear systems. We consider the case where
quantizers are static (memoryless). The common aim of these de-
sign problems is to stabilize the given system or to achieve certain
performance with the coarsest quantization density. Our main dis-
covery is that the classical sector bound approach is nonconser-
vative for studying these design problems. Consequently, we are
able to convert many quantized feedback design problems to well-
known robust control problems with sector bound uncertainties. In
particular, we derive the coarsest quantization densities for stabi-
lization for multiple-input–multiple-output systems in both state
feedback and output feedback cases; and we also derive condi-
tions for quantized feedback control for quadratic cost and
performances.

Index Terms— control, linear quadratic control, quadratic
stabilization, quantized feedback, sector bound approach.

I. INTRODUCTION

CONTROL using quantized feedback has been an impor-
tant research area for a long time. Even as early as in

1956, Kalman [1] studied the effect of quantization in a sam-
pled data system and pointed out that if a stabilizing controller
is quantized using a finite-alphabet quantizer, the feedback
system would exhibit limit cycles and chaotic behavior. Most
of the work on quantized feedback control concentrates on
understanding and mitigation of quantization effects; see, e.g.,
[2]–[4].

A simple classical approach to analysis and mitigation of
quantization effects is to treat the quantization error as uncer-
tainty or nonlinearity and bound it using a sector bound. By
doing so, robustness analysis tools, such as absolute stability
theory (see [5] and [6]), can be applied to study the quantiza-
tion effect. Further, control parameters can be optimized to min-
imize the quantization effect. We will call this the sector bound
method.

There is a new line of research on quantized feedback control
where a quantizer is regarded as an information coder. The fun-
damental question of interest is how much information needs to
be communicated by the quantizer in order to achieve a certain
control objective. Noticeable works include [7]–[20]. In [16],
the problem of quadratic stabilization of discrete-time single-
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input–single-output (SISO) linear time-invariant (LTI) systems
using quantized feedback is studied. The quantizer is assumed
to be static and time-invariant (i.e., memoryless and with fixed
quantization levels). It is proved in [16] that for a quadrati-
cally stabilizable system, the quantizer needs to be logarithmic
(i.e., the quantization levels are linear in logarithmic scale). Fur-
thermore, the coarsest quantization density is given explicitly
in terms of the system’s unstable poles. Note that the required
quantizer has an infinite number of quantization levels because
of its time-invariance nature. When a finite number of quantiza-
tion levels are available, the so-called practical stability is ob-
tained where there is a region of attraction in the state and the
steady state converges to a small limit cycle. One can think of
many ways to scale the dynamic range of the quantizer to in-
crease the region of attraction and reduce the size of the limit
cycle.

When the quantizer is allowed to be dynamic and time-
varying, it is obviously advantageous to scale the quantization
levels dynamically so that the region of attraction is increased
and the steady state limit cycle is reduced. This is indeed the
basic idea behind [10]–[15]. In fact, it is shown in [12] that
stabilization of a SISO LTI system (in some stochastic sense)
can be achieved using only a finite number of quantization
levels. In addition, the minimum number of quantization levels
(also known as the minimum feedback information rate) is
explicitly related to the unstable poles of the system, under the
assumption of noise free communications. In this setting, the
dynamic quantizer effectively consists of two parts: an encoder
at the output end and a decoder at the input end. The problem of
minimum feedback information rate is studied in more details
in [13] by analyzing the structures of the encoder and decoder.
We do caution that many results on quantized feedback with
dynamic quantizers may be impractical due to three problems:
1) Most results are for stabilization only rather than for perfor-
mance control; 2) the transient response is typically very poor
due to the lack of good control design algorithms; 3) as pointed
out in [15], the capacity results are in general not valid for
practical communications channels which are not noise free.

The most pertinent work to this paper is [16]. In fact, this
paper stems from the following motivations. First, the results
in [16] (also those in [12]) are for SISO systems and for stabi-
lization only. We want to know how to generalize their results to
multiple-input–multiple-output (MIMO) systems and to control
design for performances. Secondly, the technique used in [16],
although being novel, does not seem to have a simple interpre-
tation. This is perhaps why the generalization of their results
appears to be difficult.
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In this paper, we first review the key result in [16] which is
on quadratic stabilization of SISO linear systems using quan-
tized state feedback. We show that coarsest quantization density
can be simply obtained using the sector bound method. This
not only gives a simpler interpretation of the result, but also
provides the basis for generalization of the result. Further, the
coarsest quantization density is directly related to an op-
timization problem, which is better than relating it to an “ex-
pensive” control problem as done in [16] because the optimal

control shares the same linear feedback gain with that of
the quantized feedback having the coarsest quantization den-
sity. Second, we study the output feedback stabilization of SISO
systems. Two cases are considered: observer-based quantized
state feedback and dynamic feedback using quantized output.
We show that the coarsest quantization density in the former
case is the same as in quantized state feedback, whereas the
latter case is related to a different optimization problem and
in general requires a finer quantization density. Third, we gen-
eralize the quadratic stabilization problem to MIMO systems
and show that quadratic stabilization with a set of logarithmic
quantizers is the same as quadratic stabilization for an associ-
ated system with sector-bounded uncertainty. Because the latter
problem has been well studied, the technical difficulty for the
first problem is clearly revealed. A sufficient condition is then
given, in terms of an optimization problem, for the quan-
tizers to render a quadratic stabilizer. As in the SISO case, both
state feedback and output feedback are considered. Finally, we
generalize the results to performance control problems. Both
linear quadratic performance and performance problems
are studied and conditions are given for a set of quantizers to
render a given performance level.

II. STABILIZATION USING QUANTIZED STATE FEEDBACK

In this section, we revisit the work of Elia and Mitter [16] on
stabilization using quantized state feedback and reinterpret their
result using the sector bound method.

The simplest and most fundamental case considered in [16] is
the problem of quadratic stabilization for the following system:

(1)

where , , is the state and is the control
input. We assume that is unstable and is stabilizable
and consider quantized state feedback in the following form:

(2)

(3)

In the above, is the unquantized feedback law, and is
a quantizer which is assumed to be symmetric, i.e.,

. Note that the quantizer is static and time-invariant.
The set of (distinct) quantized levels is described by

(4)

Each of the quantization level (say ) corresponds to a segment
(say ) such that the quantizer maps the whole segment to this
quantization level. In addition, these segments form a partition
of , i.e., they are disjoint and their union equals to .

Denote by the number of quantization levels in the in-
terval . The density of the quantizer is defined as
follows:

(5)

With this definition, the number of quantization levels of a quan-
tizer with a nonzero, finite quantization density grows logarith-
mically as the interval increases. A small corre-
sponds to a coarse quantizer. A finite quantizer (i.e., a quantizer
with a finite number of quantization levels) has , and a
linear quantizer has .

A quantizer is called logarithmic if it has the form

(6)

The associated quantizer is defined as follows:

if ,
if
if

(7)

where

(8)

It is easily verified that for the logarithmic
quantizer. This means that the smaller the , the smaller the

. For this reason, we will abuse the terminology by calling
(instead of ) the quantization density in the rest of this paper.
The logarithmic quantizer is illustrated in Fig. 1. In contrast, a
nonlogarithmic quantizer is illustrated in Fig. 2.

For the quadratic stabilization problem, a quadratic Lyapunov
function , , is used to assess
the stability of the feedback system. That is, the quantizer must
satisfy

(9)

The coarsest quantizer is the one which minimizes subject
to (9). But the coarsest quantizer is in general not attainable
because the constraint in (9) is a strict inequality.

The required density of the quantizer depends on (or
), and . This raises the key question: What is the

coarsest density, , among all possible and ? It is shown
in [16] that the answer is the logarithmic quantizer with
given by

(10)

where are the unstable eigenvalues of .
We see from Figs. 1 and 2 that a quantizer can be bounded

by a sector. For a logarithmic quantizer, the sector bound is de-
scribed by a single parameter which is related to the quantiza-
tion density by (8). In contrast, for a nonlogarithmic quantizer,
two parameters, and , are needed to describe the sector
in general. For both finite quantizers and linear quantizers, a
default output value, , is needed when the input is smaller
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Fig. 1. Logarithmic quantizer.

Fig. 2. Nonlogarithmic quantizer.

than some minimal threshold (in magnitude). If , then
; otherwise, .

In the theorem that follows, we use the sector bound method
to study the quantized state feedback problem for the system (1).
In particular, we reveal a strong connection between the quan-
tized state feedback stabilization problem and a state feedback
quadratic stabilization problem with sector bound uncertainty.
This connection leads to an alternative proof for the coarsest
quantization density result (10).

Theorem 2.1: The following results hold.

1) If the system (1) is quadratically stabilizable via quantized
state feedback (2)–(3), then the coarsest quantization den-
sity can be approached by taking a logarithmic quantizer
and a linear unquantized feedback law.

2) Given a logarithmic quantizer with quantization density ,
the system (1) is quadratically stabilizable via quantized
linear state feedback if and only if the following uncertain
system:

(11)

is quadratically stabilizable via linear state feedback,
where and are related by (8).

3) The largest sector bound for (11) to be quadratically sta-
bilizable via linear state feedback is given by

(12)

Consequently, the coarsest quantization density for
(1) is given by (10).

Four lemmas are needed for the proof of Theorem 2.1.

Lemma 2.1: Consider quadratic stabilization for the system
in (1) using quantized state feedback (2)–(3) and a given Lya-
punov matrix . Then, the coarsest quantization
density can be approached by taking a linear state feedback

(13)

and a logarithmic quantizer.
The proof is given in Appendix.
Lemma 2.2: Given a constant vector , a constant

matrix , a vector function , a
scalar , and a scalar function with the
following property: For any , there exists
such that . Define the following matrix function:

(14)

Then

(15)

if and only if

(16)

Proof: It is obvious that (16) implies (15). To see the con-
verse, we assume (15) holds but (16) fails. Then, there exists
some and such that

(17)

We claim that . Indeed, if , then

(18)

by (14) and (17), which contradicts (15). So, . Because
of the property of , there exists a scalar such that

. Define . Then

which violates (15). Hence, (15) implies (16).
Lemma 2.3: Consider the uncertain system in (11). Define

(19)

Then, the supreme of for which quadratic stabilization is
achievable is given by

(20)

Proof: It is well-known [22]–[24] that the quadratic stabi-
lization for (11) is achievable if and only if

Taking the limit in the above yields (20).
Lemma 2.4: The solution to (20) is given by (12).
The proof is given in Appendix.
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Proof of Theorem 2.1: Part 1) follows from Lemma 2.1.
Part 3) follows from Part 2) and Lemmas 2.3–2.4. To show
Part 2), by taking into consideration of Part 1), we can assume

for some and that is a logarithmic quantizer
with quantization density for some . Define the quantization
error by

(21)

Then

(22)

with in (8). We can model the quantized feedback system as
the following uncertain system:

(23)

The corresponding quadratic stabilization condition becomes

(24)

Define

(25)

where is independent of the state. Note that the inverse map-
ping of in (21) is a multi-branch continuous function (ex-
cept at ). Hence, for any , there exists some

such that . By Lemma 2.2, (24) is equiva-
lent to

However, the latter is the condition for the system (11) to be
quadratically stabilizable via linear state feedback.

Remark 2.1: It is shown in [16] that the coarsest quantization
density is related to the solution to the so-called “expensive”
linear quadratic control problem

subject to closed-loop stability with

(26)

More specifically, the optimal can be solved using the solution
to the Riccati equation for the “expensive” control problem.
However, the optimal control gain for the quantization
problem is different from the optimal control gain for the
“expensive” control problem (This is also pointed out in [16] ).
From the proofs above, we see that it may be more aesthetically
pleasing to interpret the coarsest quantization problem as an

optimization problem (20) because they share the same
optimal control gain.

Remark 2.2: We have seen that logarithmic quantizers are
essential for quadratic stabilization via quantized feedback if a
coarse quantization density is required. Nonlogarithmic quan-
tizers such as finite quantizers and linear quantizers are unsuit-
able. For this reason, we will consider logarithmic quantizers
only in the rest of this paper.

III. STABILIZATION USING QUANTIZED OUTPUT FEEDBACK

We now show how to generalize the technique for state
feedback to quantized output feedback. Consider the following
system:

(27)

where and are the same as before and .
We consider two possible basic configurations for quantized

output feedback which may lead to other more complicated
settings.

4) Configuration I: The control signal is quantized but the
measurement is not.

5) Configuration II: The measurement is quantized but the
control signal is not.

In both configurations, we assume that the controller is linear
time-invariant with a finite order. It turns out that the two con-
figurations result in different quantization density requirements.

Configuration I: This is an easy case which has an inter-
esting result.

Theorem 3.1: Consider the system (27) with quantized
control input. Suppose is an observable pair. Then, the
coarsest quantization density for quadratic stabilization by state
feedback can also be achieved by output feedback. In particular,
the corresponding output feedback controller can be chosen as
an observer-based controller

(28)

where is the quantizer as before, is the state feedback
gain designed for any achievable quantization density via quan-
tized state feedback, and is any gain which yields (28) a dead-
beat observer.

Proof: Let be any state feedback gain that achieves any
given quantization density. Choose such that the observer is
deadbeat, i.e., only for a finite number
of steps . This can be always done because is observ-
able. Then, after steps, the output feedback controller is the
same as state feedback controller. Hence, the system is quadrat-
ically stabilized after steps. Finally, it is a simple fact (al-
though we do not give the details) that if a (nonlinear) system is
quadratically stable after steps and that the state is bounded
in the first steps [which clearly holds for the system (28)], it
is quadratically stable.

Configuration II: In this case, the controller is in the form

(29)

where is the quantizer as before.
It is straightforward to verify that the closed-loop system is

given by

(30)
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where , is the same as in (22) and

(31)

and

(32)

The problem of concern is to find the coarsest quantizer for
quadratic stabilization of the closed-loop system. This can be
solved by generalizing the idea for the state feedback case. The
result is given here.

Theorem 3.2: Consider the system (27). For a given quanti-
zation density , the system is quadratically stabilizable via
a quantized controller (29) if and only if the following auxiliary
system:

(33)

is quadratically stabilizable via

(34)

where and are related by (8).
The largest sector bound (which gives ) is given by

(35)

where is defined in (31) and

(36)

where and
.

Further, if has relative degree equal to 1 and no unstable
zeros, then the coarsest quantization density for quantized state
feedback can be reached via quantized output feedback.

Proof: The proof is similar to the proof of Theorem 2.1.
The sector bound for the quantization error is done as in (21)–
(22). For the given , the quadratic stability of the closed-loop
system (27)–(29) requires the existence of some
such that

(37)

for all and . Using Lemma 2.2, the above
is equivalent to

The latter is the same as requiring the system (33)–(34) to
be quadratically stable. Since the transfer function of (33) is

and that of (34) is , the closed-loop system
(33)–(34) is the same as a closed-loop system with the open-
loop block equal to
and feedback block equal to . It follows that the solution to

comes from the equivalence between quadratic stability
and optimization [22]–[24].

Suppose has relative degree 1 and no unstable zeros.
Write . From the proof of Theorem 2.1, we
know that the state feedback case corresponds to optimiza-
tion of in (109). If we choose . Then,

in (36) becomes . Hence, the quantization density
for the quantized state feedback can be achieved by quantized
output feedback.

Now, we give an example to show that using quantized output
requires a higher quantization density than using quantized state
feedback.

Example 3.1: The system is given by (27) with
. Using quantized state

feedback, and . For
quantized output feedback, computing (35) yields and

.
Remark 3.1: In [16], output feedback control design is done

in two steps. In step 1), coarsest quantization is solved for state
estimation, which is a dual problem to the state feedback stabi-
lization problem. In step 2), the separation principle is applied,
i.e., optimal state feedback is combined with optimal state esti-
mation. The main result is that logarithmic quantization is suf-
ficient for output feedback stabilization.

The drawback of the approach in [16] is that the physical
meaning of the state estimation quantizer is not clear. Indeed,
the problem of quantized state estimation is formulated to be

(38)

where is the state estimation error and
is the state estimation quantizer. What is unsatisfactory in this
formulation is that the quantizer needs to know both and its
estimate . If the control signal is generated at the mea-
surement end, there is obviously no need to use quantized .
If the control signal is generated elsewhere using a quantized

, it is difficult to imagine why its estimate needs to be sent
back to the measurement end to form for quantization.
Hence, the validity of this formulation seems to be questionable.

IV. STABILIZATION OF MIMO SYSTEMS USING

QUANTIZED FEEDBACK

Quantized feedback control for MIMO systems has been
studied in a number of papers; see, e.g., [17]–[19]. In these
papers, state feedback is assumed but the input is multidimen-
sional. Instead of using a separate quantizer for each input,
the approach in [17]–[19] uses a single quantizer by jointly
quantizing the multiple-input space. The main advantage of
this approach is that a much coarser quantization density is
required in comparison with separate quantization, as shown
in [17]. The main disadvantage of this approach, however, is
that it is a centralized process. That is, the quantizer requires
the information about the whole input vector or even the whole
state. This may not be practical in many output feedback
control problems where different output channels need to
be quantized separately without additional communications
among them. Another disadvantage of the joint quantization
approach is that the partitioning of the input or state space is
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computationally intensive. In fact, the results in [17]–[19] are
limited to two-input systems only.

In this section, we generalize the quantization results in Sec-
tions II and III to MIMO systems with multiple quantizers. For
simplicity, the number of quantizers is assumed to equal to the
number of inputs, although this can be easily relaxed. The quan-
tizers are assumed to be static and independent. As in the SISO
case, two configurations are treated. Configuration I considers
quantized inputs, whereas in Configuration II quantized outputs
are used.

Configuration I: The system is still as in (27) except that we
now allow , . Suppose

(39)

where is the th component of and is a quantizer of the
form (6) but with quantization level . The feedback
law for is assumed to be linear, i.e.,

(40)

where is the feedback gain matrix which may or may not
be subject to some structural constraints. For example, in the
case of decentralized static output feedback design, the output

may be partitioned into sub-vectors, , with
for some constant matrix , . In this

case, for some row vector , , i.e.,

Because we have more than one quantizer, the notion of
coarsest quantization is not well-defined. Instead, we ask
the following question: Given a vector of quantization levels

, does there exist an quantized feedback
controller that quadratically stabilizes the system (27)? The
main result is given here.

Theorem 4.1: Given the system in (27) and a quantization
level vector , consider the following auxiliary system:

(41)

where for all and , and
are converted from using (8), and is a control input.
Suppose the auxiliary system is quadratically stablizable via the
state feedback law (40), then (27) is quadratically stabilizable
via quantized state feedback with the same state feedback law.
Conversely, suppose the system (27) is quadratically stabilizable
via quantized state feedback with the state feedback law (40)
and, in addition, suppose are irrational numbers for
all when . Then, for any (arbitrarily small) ,
the auxiliary system (41) with is quadratically
stabilizable via the same state feedback law (40).

Furthermore, the auxiliary system is quadratically stabiliz-
able via state feedback (40) if

(42)

for some diagonal scaling matrix , where

(43)

In particular, any that renders (42) is a solution to either
quadratic stabilization problem.

Remark 4.1: It is obvious that if a given does not satisfy
the condition that are irrational for , we can
make it so by perturbing the slightly. Therefore, if a quan-
tized state feedback controller is designed to quadratically sta-
bilize (27) for a given and we require this controller to remain
quadratically stabilizing when is perturbed slightly, then it is
necessary that the auxiliary system (41) with is
quadratically stabilizable via state feedback for some arbitrarily
small .

Three technical lemmas are required for the proof of the result
above.

Lemma 4.1: For the quantizer (6) and any , the in-
verse function for is not unique, and is given by

(44)

Proof: The results follow directly from the definition of
in (22).

Lemma 4.2: Let , be a set of quantizers
as in (6) but with (possibly different) values and

. Suppose the ratios are irrational numbers for all
(This condition is void if ). Then,

given any pairs of vectors with and ,
, and any scalar (arbitrarily small), there

exists a scalar such that

(45)

where is as defined in (21)–(22). That is, as varies from
0 to , the vector covers the hy-
perrectangle densely.

Proof: Note that each is periodic in
with the period and that within each

period the mapping between and is
one-to-one. Therefore, it suffices to show that as varies,

covers densely. This is equiv-
alent to that
covers densely.

Let be any given vector. We need to
find such that is arbitrarily close to . The assumption that

are irrational implies that quantizers and ,
, do not share a common period (in the logarithmic scale),

which is the key to the analysis that follows. If , we can
simply take

(46)

as a solution with any integer . If , we keep
as in (46) but let vary. Because and do not
share a common period, as the integer varies from
to , will cover the set densely.
Let and be the infinite sequences of and the corre-
sponding , respectively, which make the corresponding set of

sufficiently close to . For , because
, and do not share a common period pair-wise,
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there is an infinite sequence for (a subsequence of )
which generates the corresponding infinite sequence for
(a subsequence of ) and infinite sequence for such that

is also sufficiently close to . This process
can continue for . Hence, we have proved the needed
result.

Lemma 4.3: Let , , be a set of quantizers
satisfying the conditions in Lemma 4.2. Given constant matrices

and , and a matrix function
, define

(47)

Suppose is strictly convex. Then

(48)

if

(49)

Conversely, (48) implies

(50)

for any .
Proof: It is obvious that (49) implies (48). To see the con-

verse, we assume (48) holds but (49) fails. Then, there exists
some and with ,

, such that

(51)

If such is only a boundary point, i.e., for some ,
then, (50) holds for any . In the sequel, we assume that
is an interior point.

We claim that . Indeed, if , then

(52)

by (47) and (51), which contradicts (48). So, .
Because of the strict convexity of , there exists with

, , for some small such that

(53)

Because this is continuous in , we may perturb slightly
such that (53) still holds and every element of is nonzero.

Now, using Lemma 4.2, we know that covers
densely as varies from to

. Hence, there exists such that

Define , we get

which contradicts (48). That is, cannot be an interior point.
Hence, (48) implies (50).

Proof of Theorem 4.1: The “equivalence” between the
quantized feedback problem and the quadratic stabilization

problem for the auxiliary system (41) follows from Lemma 4.3.
The condition for the latter comes from [23].

Configuration II: If the output measurements are quantized
directly, we have the following result.

Theorem 4.2: Given the system in (27) and a quantization
level vector , consider the following auxiliary system:

(54)

where for all and , and are
converted from using (8), and is the output available for
feedback. Suppose the auxiliary system is quadratically stabliz-
able, then (27) is quadratically stabilizable via (29). Conversely,
suppose the system (27) is quadratically stabilizable via (29)
and, in addition, suppose are irrational numbers for
all when . Then, for any (arbitrarily small) ,
the auxiliary system (54) with is quadratically
stabilizable.

Furthermore, the auxiliary system is quadratically stabiliz-
able if the following state feedback control has a solution

for some diagonal scaling matrix :

(55)

where is given in (43). In particular, any that renders
(42) is a solution to either quadratic stabilization problem.

Proof: The “equivalence” between the quantized feed-
back problem and the quadratic stabilization problem for the
auxiliary system (54) follows from Lemma 4.3. The proof
for the relation to optimization is similar to the proof of
Theorem 3.2.

V. QUANTIZED QUADRATIC PERFORMANCE CONTROL

The purpose of this section is to extend the results in the pre-
vious sections to include a quadratic performance objective.

Consider the system in (27). Suppose the output needs
to be quantized. We now want to design a controller in (29) such
that the following performance cost function:

(56)

is minimized in the sense that follows:

(57)

In this, is assumed to be a white noise with covariance
for some .

Because the state of the closed-loop system is , we may
rewrite the performance cost as

(58)

where

(59)
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Suppose we want the closed-loop system to be quadratically
stable. Let , , be the associated
Lyapunov function. Define

(60)

Then, using (30), the performance cost is given by

(61)

where

(62)

For the case without quantization, i.e., , it is well-
known (and easy to see from above) that the optimal solution
for is such that for all , which leads
to and minimization of . In the
presence of the quantizer, we can formulate the performance
control problem as follows: Given a performance bound
and , find , , if exist, such that

(63)

subject to

(64)

This problem will be called quantized quadratic performance
control (QQPC) problem. The solution to this problem is related
to the so-called guaranteed-cost control (GCC) problem for the
auxiliary system (27) and (54), i.e., we want to find , such
that (63) holds subject to

(65)

where and are related by (8).
Theorem 5.1: Consider the system in (27), the performance

cost in (56), the controller structure in (29), some performance
bound and quantization level vector . Suppose
the GCC problem has a solution. Then, there exists a solution to
the QQPC problem. Conversely, if the QQPC problem has a so-
lution and in addition (when ), are irrational
numbers for all , then, given any (arbitrarily small ),
the GCC problem for (65) has a solution for .

Proof: The proof is similar to that of Theorem 4.1. The
key is to show the relationship between (64) and (65). Obvi-
ously, (65) implies (64). The fact that (64) implies (65) but
with is proved using Lemma 4.3. The details are
omitted here.

When quantized state feedback is used instead, we have the
following result.

Theorem 5.2: Consider the system (1) with
and quantized state feedback as in (2)–(3), where

with given quantization levels
. Given the performance cost function

in (56) and a performance bound , the QQPC problem
becomes to finding and , if exist, such that

(66)

subject to

(67)

where and

(68)

The related GCC problem becomes to finding and
, if exist, such that (66) holds subject to

(69)

Further, the GCC problem has a solution if the following LMIs:

(70)

(71)

have a solution for some , , and a diagonal
scaling matrix , where , is given in (43),
and denotes the symmetric part in the matrix. Also, and
are related to and as follows:

(72)

Proof: The relationship between the QQPC and GCC
problems is easy to check. We proceed to verify (71) as a
sufficient condition for the GCC problem. Indeed, (69) holds if
and only if

(73)

for all . Using (72), this becomes

(74)

which is equivalent to

(75)
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Taking to be any diagonal scaling matrix, (75) holds if

(76)

which is equivalent to (71) using Schur complement.
In the single-input case, we have a better solution that follows.
Corollary 5.1: In the single-input case, the aforementioned

QQPC problem for a given performance bound and quantiza-
tion density has a solution if and only if there exists
a solution to (70) and

(77)

In this situation, the solution to is given by

(78)

Proof: In view of Theorem 5.2, it suffices to show that
for all if and only if (77)–(78) hold. It is

straightforward to verify that can be rewritten as

where and

(79)

By the Schur complement, the previous inequality is equivalent
to

(80)

By applying the -procedure [25], the above is equivalent to

(81)

Applying the Elimination lemma to remove , the above is
equivalent to , and

The optimal scaling is such that . Hence, the pre-
vious conditions is the same as

(82)

Returning to (81), implies the solution for in
(78). Using (79) and Schur complement, (82) is the same as

(83)

or yet

Multiplying this from the left and right by and applying Schur
complement, we obtain (77).

Remark 5.1: It is clear from (83) that if for some ,
(77) has a solution , then for any , (77)
admits a solution as well. Hence, the largest or the coarsest
quantization density for a given performance can be obtained
by maximizing subject to (70) and (77).

VI. QUANTIZED CONTROL

Here, we extend the quantization results to control. For
simplicity, only quantized state feedback is considered. This
problem in the single-input setting has been studied in [20]. Our
main purpose is to show that the sector bound approach can be
easily generalized to quantized feedback control.

The system of interest is as follows:

(84)

where , , , and the control
signal is in the form of (2)–(3). Given a quantization level vector

and performance bound , the design objective is to
find such that the induced -gain from to is less than .

It is easy to verify that the closed-loop system is given by

(85)

As in the quadratic performance control problem, we con-
sider the following relaxed control problem which will be
called quantized performance control (QHPC) problem:
Find and such that

(86)

where

(87)

(88)

and .
The motivation for formulating the previous problem is as

follows: When , is a necessary and sufficient
condition for the norm of the transfer function from to
to be less than . When , (86) recovers the condition for
stabilization. When is finite and represents a sector bound
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uncertainty, the condition corresponds to the robust
control problem studied in [23].

Theorem 6.1: Consider the given system (84), controller
structure (2)–(3), quantization level vector and a perfor-
mance bound . Suppose there exist and such
that (86) holds, then the induced -norm from to is less
than .

Further, for any and , (86) holds if
for all , where are related to by (6). Conversely,
if (86) holds, for all , where is
arbitrarily small.

In addition, there exist and such that
for all if and the following

LMI:

(89)

has a solution for and diagonal scaling matrix ,
where

and and the relationship between and are the
same as in Theorem 5.2. In the single-input case, the LMI in
(89) is also necessary.

Proof: The relationship between quantized control
and robust control can be checked as before. We now show
that the existence of a solution to (89) provides a sufficient con-
dition for quantized control. First, it is straightforward to
verify that (87) can be rewritten as

(90)

where . Applying the matrix inversion
lemma, (90) can be rewritten as

Setting and applying Schur complement, the above
is equivalent to

(91)

Using the -procedure [25], the above holds when

(92)
for some positive diagonal scaling matrix . Note that in the
single-input case, is a scalar and the conversion above is also
necessary [25]. Multiplying (92) from the left and the right by

and noting , we obtain (89).
Corollary 6.1: As , the LMI condition (89) is equiv-

alent to the condition (42) in Theorem 4.1.
Proof: When , , , and

(89) implies

By Schur complement and letting , we have

This is equivalent to [21]

Letting and noting that both and are diagonal
matrices, the above can be rewritten as

which is (42) in Theorem 4.1.
Remark 6.1: As we mentioned earlier, the quantized

control problem has been studied in [20]. We now comment on
the connection between Theorem 6.1 and a related result in [20]
(Theorem 5.1: Discrete-time). The problem formulation in [20]
is more restrictive because it treats the single input case and as-
sumes , and . The coarsest quanti-
zation density given in [20] can be written as

where is the optimal solution to the following problem:

subject to (93)

where

It can be shown that, by setting , this condition is equiv-
alent to the condition in Theorem 6.1, when specialized under
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the assumptions on and (The proof is similar to that
for Corollary 5.1). That is, Theorem 6.1 generalizes the result in
[20]. Moreover, we provide a clear interpretation of the result in
the single-input case, i.e., the condition in (89), or ,
is necessary and sufficient for the QHPC problem.

VII. CONCLUSION

We have shown that the classical sector bound method can
be used to study quantized feedback control problems in a non-
conservative manner. Various cases have been considered: quan-
tized state feedback control, quantized output feedback control,
MIMO systems, and control with performances. In all these
problems, the key result is that quantization errors can be con-
verted into sector bound uncertainties without conservatism. By
doing so, quantized feedback control problems become well-
known robust control problems.

For quadratic stabilization of SISO systems (using ei-
ther quantized state feedback or quantized output feedback),
complete solutions are available by solving related opti-
mization problems. For MIMO systems or SISO systems with
a performance control objective, the resulting robust control
problems usually do not have simple solutions, thus sufficient
conditions on quantization densities are derived. These con-
ditions are expressed either in terms of optimization or
linear matrix inequalities. Note that these conditions are for
a given set of quantization densities. However, because these
conditions are convex in the sector bounds associated with the
quantization densities, optimal quantization densities can be
easily computed numerically.

Finally, we note that the use of the sector bound method also
explains why it is difficult to find the coarsest quantization den-
sities in the cases of MIMO stabilization and/or performance
control problems. More precisely, the difficulties are the same
as finding nonconservative solutions to the related robust con-
trol problems, which are known to be very difficult.

APPENDIX I
PROOF OF LEMMA 2.1

We will prove that the coarsest quantization density can be
achieved by taking

(94)

and the logarithmic quantizer (6) with

(95)

where

(96)

and

(97)

To prove this, let the quantized state feedback (2)–(3) quadrat-
ically stabilize (1) with as the associated Lya-
punov function. We rewrite (9) as

(98)

where and are given in (94) and (97), respectively.
Noting that is unstable and is stablizable, must be
a nonzero column vector and hence . Since
is a Lyapunov function for (1), we must have . It follows
from (98) that if and only if with

We can always decompose into [16]

(99)

where is a scalar and is a vector orthogonal to .
With this decomposition, we can rewrite and as

Note that because otherwise
for any nonzero , which would imply that quadratically
stabilizes the system (1), violating the assumption that is un-
stable.

Let in (4) be the set of quantization levels corresponding
to the quantized state feedback (2)–(3). Then, for any in
(99), there exists such that

(100)

In particular, when , there must exist some for
each such that

(101)

Due to the fact that is minimal when , we know
that if of satisfies (101), it automatically satisfies (100).
That is, the quantized state feedback (2)–(3) quadratically stabi-
lizes (1) if and only if the corresponding of satisfies (101).

Now for each , we can define the range of values,
for which (101) holds. For , we have

where is defined in (96). It is obvious that the coarsest se-
lection for , , is to take such that

for all . This means

(102)

Comparing (102) with (6), we see that the optimal must be
logarithmic with when . For , it can be
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shown similarly that the same conclusion holds. Therefore, the
optimal quantizer must be logarithmic.

It remains to argue that the coarsest quantization density can
be approached by taking . It suffices to consider
the case as the case is similar. Let
be any logarithmic quantizer with quantization density .
By choosing appropriately, we can guarantee that

Since

we know that when . It follows that

Similarly, we have

Using the fact that

we conclude that quadratically stabilizes (1). Since
can be arbitrarily close to , the coarsest quantization density
can be approached by taking .

APPENDIX II
PROOF OF LEMMA 2.4

Without loss of generality, we take to be of the form:

(103)

where has all its eigenvalues inside the unit disk
and has all its eigenvalues either on or outside
the unit circle, and is of a controllable canonical form.

We first claim the following.
Claim 1: Suppose is unstable and there exists a such

that is stable and

(104)

Then, .
To prove the claim, we first note that is stable and

(104) holds if and only if [21]

for some . The two inequalities shwon previously
are equivalent to

Defining , the last two previous in-
equalities become and

(105)

Denoting

the inequality (105) can be rewritten as

Using and

it follows that

Using Schur complement, the above is equivalent to

Using and defining , we get
and

(106)

Note that if is stable, the above inequality exists a solution
for any .

Now, let be partitioned in conformity with (103)

Then, (106) with implies

(107)

and .
Now, using the fact that for any two symmetric matrices

and with , , (107) leads to

Since , it follows that

(108)
where is the upper left block of

. Also, since , we have

or, equivalently
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Substituting this into (108) and noting that , we
have

Thus, we have verified Claim 1.
We now show that the solution to (20) is indeed given by (12).

To this end, we consider three cases.

Case 1) is strictly anti-stable. In this case, simply take
be of a controllable canonical form, it is

clear that

(109)

where
and

is the control polynomial.
We claim that choosing

(110)

leads to . This
together with Claim 1) implies that the solution
in (110) is the optimal solution. The second claim
above holds because (110) comes from solving the
all-pass requirement for

(111)

for some . Replacing by , (111) becomes

(112)

Combining (111)–(112) yields

(113)

Setting the th order coefficient of to zero re-
sults in . It is straightforward to verify
that (113) is the same as (110). It remains to show
that is stable, which is the same as showing
that is strictly antistable. To see this, we rewrite
(113) as

Because is antistable, and
for any , for

any . Hence, is strictly antistable.
Case 2) is marginally anti-stable. In this case, we first

replace by which is a strictly antistable
polynomial obtained from by slightly per-
turbing the marginal zeros. From Case 1), we can
choose such that , where

and are the perturbed versions of and
. By the continuity of (with respect to the

perturbation), it is clear that .

Case 3) has a stable factor. In this case, we can write
, where and are

the stable and unstable factors. Taking
yields

Then, we have reverted to Case 2). Again, we ob-
tain (12).
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