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Abstract— Turbo codes and low density parity check codes
are two classes of most powerful error correcting codes. What
makes these codes so powerful is the use of the so-called
iterative decoding or turbo decoding. Roughly speaking, an
iterative decoding process is an iterative learning process for
a complex system where the objective is to provide a good
suboptimal estimate of a desired signal. Iterative decoding is
used when the true optimal estimation is impossible due to
prohibitive computational complexities. Despite that iterative
decoding algorithms are known to be very successful, there is
no satisfactory understanding of their “magical” power. In fact,
the behavior of iterative decoding is a big mystery in the coding
theory. The aim of this presentation is to show how to model
and analyze an iterative decoding process using a system-theory
based approach. More specifically, we can view the iterative
decoding process as a feedback system. With this view, we
propose a stochastic framework for dynamic modeling and
analysis of iterative decoding. By using appropriate statistical
parameters to describe the signals in an iterative decoding
process, we show that the process can be adequately approx-
imated by a two-input, two-output nonlinear dynamic model.
We have discovered that a typical decoding process is much
more intricate than previously known, involving two regions
of attractions, several fixed points, and a stable equilibrium
manifold at which all decoding trajectories converge. This new
modeling approach is useful in gaining new knowledge on
iterative decoding and devising better decoding algorithms.

I. INTRODUCTION

Control and digital communications are two important
disciplines in electrical engineering. Control theory stud-
ies modeling, analysis, design, and control of dynamical
systems, and digital communications theory studies reliable
transmission of digital information. The two disciplines seem
to employ different mathematical tools because control the-
ory deals with continuous (or analog) signals whereas digital
communications theory deals with finite-alphabet signals.
Nevertheless, there is a longstanding history of interdisci-
plinary research between the two. Notable examples include
channel equalization, system modeling and identification,
signal analysis (temporal, spectral, and spatial), and signal
detection.

Recently, the interplay between control and digital com-
munications has been further strengthened by important
developments in at least two specific areas. The first area is
the control of dynamical systems over communication links
[1]-[11]. Traditional control theory assumes that the feedback
channel is analog and solely dedicated to control purposes.
However, more and more industrial systems are controlled
via digital communication links such as Fieldbus, local area
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Fig. 1. Feedback Control over Communications Links

networks and even the internet. These communication links
are shared with other network functions. Moreover, feedback
signals must be sampled and quantized. This scenario is
depicted in Figure 1.

The second area is digital signal decoding and detec-
tion. Traditional maximum likelihood (ML) decoding and
detection algorithms aim to find an optimal solution from
a given finite set of possible solutions. In more compli-
cated detection scenarios, such as multi-user and space-
time communications, ML is no longer a viable detection
strategy because it becomes computationally too expensive.
A tremendous amount of research has been conducted on
iterative algorithms, which can offer a performance close to
that of ML at a significantly reduced computational cost
[12]-[16]. When applied to turbo codes and low-density-
parity-check (LDPC) codes, iterative algorithms are capable
of approaching Shannon’s channel capacity bound within a
very small margin [12], [14]. The key to the design of itera-
tive algorithms is that every iteration produces probabilistic
measures for all possible solutions. These measures are then
fed back and used as input to the next iteration. Because
every iteration accepts continuous-valued input and produces
continuous-valued output, these algorithms are often referred
to as soft decision algorithms.

Despite that iterative decoding algorithms are known to be
very successful, there is no satisfactory understanding of their
“magical” power. In fact, the behavior of iterative decoding
is a big mystery in the coding theory.

This presentation is concerned with modeling and analysis
of iterative decoding for turbo codes. Our aim is to show
how to model and analyze an iterative decoding process
using a system theory based approach. More specifically,
we can view the iterative decoding process as a feedback
system. With this view, we propose a stochastic framework
for dynamic modeling and analysis of iterative decoding.
By using appropriate statistical parameters to describe the
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signals in an iterative decoding process, we show that the
process can be modeled by a two-input, two-output nonlinear
dynamic system. We have discovered that a typical decoding
process is much more intricate than previously known,
involving two regions of attractions, several fixed points,
and a stable equilibrium manifold at which all decoding
trajectories converge. This new modeling approach enables
us to gain new understanding of iterative decoding processes
and to devise better decoding algorithms. The material for
this presentation is mostly based on [26], [27].

The rest of the presentation is organized as follows. In
Section 2, we give a brief introduction to the turbo codes.
In Section 3, we introduce iterative decoding algorithms.
Section 3 is the main body of the presentation where
stochastic modeling is introduced. In Section 4, we discuss
some possible applications. Concluding remarks are given in
Section 5.

II. TURBO CODES

Ever since Shannon published his famous channel coding
theorem [28] in 1948, the advances in the field of commu-
nications theory can in one way be viewed as a painstaking
pursue for discovering practical coding and decoding algo-
rithms which enable us to approach the Shannon capacity
limit. A major breakthrough in communications theory since
the pioneering work of Shannon has been the invention of
parallel concatenated convolutional codes, also known as
turbo codes [12]. The bit error performance of these codes
is only a fraction of dB away from Shannon’s capacity limit,
yet the decoding complexity is well within today’s computing
power. The invention of turbo codes also inspires the re-
discovery of the so-called low-density parity check (LDPC)
codes [14] which are even more powerful (0.01dB off the
Shannon limit) and more suitable for applications such as
digital storage.

In this section, we introduce the turbo codes. To help
understand these wonderful codes, we first need to review
some basics of channel coding. Figure 2 represents a typical
digital communications system. The source signal u is a
sequence of finite alphabet data, typically binary. Error
correcting coding (or encoding) is applied to u to introduce
adequate redundancies so that possible transmission errors
can be corrected at the receiver end. The coded signal c
is modulated before being transmitted to the channel. The
received signal r is first demodulated and its output y is
then decoded to give û, an estimate of u. The source signal
u can be either a finite sequence or an infinite sequence. In
the former case, the error correcting code (or code for short)
is called a block code. Both turbo codes and LDPC codes
are block codes, although the block size is typically very
large (e.g., thousands to hundreds of millions bits) in order
to achieve a good performance.

A turbo code is illustrated in Figure 3. It is a binary code,
consisting of two constituent encoders G1(z) and G2(z), an
interleaver (or called permutator), and an optional punctuator.
The two constituent encoders are typically the same and will
be denoted by G(z). In a turbo code, G(z) is a recursive
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Fig. 2. Typical Digital Communications System
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Fig. 3. Turbo Code

convolutional code, i.e., G(z) is a rational function of a
given degree. The so-called systematic codes are used in a
constituent encoder. This means that the source signal u is
a part of the coding output denoted by xs and that the extra
data from the encoder form the so-called a parity sequence,
which is denoted by xp1 and xp2 for the two constituent
encoders, respectively. The two constituent encoders share
the same systematic sequence xs. The primary role of the
interleaver is the randomize the source sequence so that the
two parity sequences xp1 and xp2 have as little correlation
as possible. The punctuator is used to reduce the data size of
the parity sequences. Without the punctuator, the coding rate
is 1/3 because of the two parity sequences. If this rate is too
low, the parity sequences can be punctured to give a higher
rate. For example, by puncturing out the even symbols of
xp1 and odd symbols of xp2, the coding rate is increased
to 1/2. By convention in digital communications, we assume
that the binary 0 and 1 are mapped to physical values of +1
and −1 by the modulator.

Figure 4 shows the schematic diagram for an constituent
encoder. In this example, G(z) = N(z)/D(z) with D(z) =
1 + z−1 + z−3 and N(z) = 1 + z−2 + z−3. Since only
binary coefficients are used, it is common to use the octal
representation of the coefficients of G(z). For this example,
the binary coefficient sequences for D(z) and N(z) are 1101
and 1011, respectively. Their octal representations are 15 and
13. Therefore, it is common to denote G(z) = (15, 13).

Turbo code design is a big research area by itself. For
our purposes, it suffices to understand some basic rules and
features of turbo code design. A turbo code is a linear code
in the sense that the sum (i.e., exclusive-or) of any two codes
is still a codeword. For a linear code, analysis can be done
by assuming that the all-zero codeword is transmitted. Then,
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Fig. 4. Systematic Recursive Convolutional Encoder with G(z) = (15, 13)

the probability that this codeword will be mistaken by the
receiver as another codeword is related to the weight of the
later. The weight of a codeword is the number of 1’s in the
codeword. A low weight code is “bad” because it can be
easily mistaken as the all-zero code (the transmitted one).
The quality of a code is measured by the distribution of
the weights of the codewords. A good linear code should
have very few low weight codewords. Turbo codes achieve
this property by using recursive constituent encoders and an
interleaver [12], [14].

We now try to understand the design of constituent en-
coders. A codeword consists of three sequences, xs, xp1 and
xp2. Recall that a “bad” codeword has a low weight, i.e. it is
such that xs, xp1 and xp2 all must have low weights. We first
consider the case xs has weight equal to 1. We note that xp1

cannot have a low weight unless the non-zero element in xs

is close to the tail. This is because G(z) is recursive. More
specifically, if xs is weight-1, then xp1 is a non-terminating
sequence. So it must have a high weight, unless the non-
zero element in xs starts very late. If the non-zero element
in xs is close to the tail, it is mostly likely not close to
the tail after interleaving. This implies xp2 is mostly likely
a high weight sequence. The upshot of the above analysis
is that a weight-1 xs is unlikely to produce a low-weight
codeword. Secondly, we consider the case of weight-2 xs. If
a weight-2 xs is such that G(z)xs has low weight, then the
interleaved version, x̃s, has a very small probability to give
xp2 = G(z)x̃s a low weight. Finally, it can be argued that
for higher weight xs, the probability that both xp1 and xp2

have a low weight is much smaller than the weight-2 case.
Furthermore, the probabilities for a weight-1 and weight-2
xs to give a low weight code diminishes to zero as the block
size increases to infinity. This is a powerful observation and
it also suggests that turbo codes are most effective when the
block size is large.

We see from the above that the interleaver plays a crucial
role in turbo code design. For a small to median block size,
the interleaver needs to be carefully designed to ensure that
the minimum weight of the code is maximized. For a large
block size, the choice of the interleaver is not crucial, as
long as it provides sufficient randomization. Consequently,
it usually suffices to use a pseudo-random interleaver.
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Fig. 5. Turbo Decoding

III. ITERATIVE DECODING

A key for turbo codes to achieving excellent performances
is the use of iterative decoding algorithms. In this section,
we introduce the iterative decoding algorithm used in turbo
codes. This algorithm is also referred to as the turbo decoding
algorithm.

The turbo decoding algorithm is depicted in Figure 5. The
input data to the turbo decoder are ys, yp1 and yp2, which
are the the noisy version of xs and xp1 or xp2, coming
from demodulation. Two constituent decoders, Decoder 1 and
Decoder 2, are at work. In each iteration of turbo decoding,
either Decoder 1 or Decoder 2 is employed and they take
turns. Decoder 1 takes the relevant parts of the demodulated
signal, i.e., ys and yp1 as inputs. In addition, some prior
information regarding u, denoted by L̃e

21, is also taken
as an input. This prior information is called the extrinsic
information and it is void for the first iteration or comes
from Decoder 2 through de-interleaving for other iterations.
Decoder 2 works the same as as Decoder 1, except that ys

and Le
12 (the extrinsic information about u from Decoder 1)

are interleaved before being used.
Each constituent decoder produces an produces a soft

estimate of u based on the given inputs. Traditional decoding
processes typically apply a maximum likelihood algorithm
such as the Viterbi algorithm to produce an optimal estimate
of u which has the highest probability to generate the given
inputs. This decoding process is referred to as hard decoding.
Such an approach is inappropriate for turbo decoding because
it does not yield sufficient information for the proceeding
iterations. Instead of using hard decoding, the so-called soft
decoding is used. The result is not an optimal estimate of u.
Instead, it gives a soft estimate, which is nothing but the a
posteriori probability (APP) value in [0, 1], for each bit of
u to be 1 or 0. If the current iteration is the final one, a hard
estimate of u can be obtained by rounding the APP value.
If more iterations are required, the extrinsic information is
generated using the soft estimate. This process continues
until some stopping criterion is met.

The output extrinsic information generated by each con-
stituent decoder is simply obtained from the APP value by
deducting the input extrinsic information. In other words,
the output extrinsic information represents the additional
information given by the associated constituent decoder.

The soft decoding algorithm used in turbo decoding is
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Fig. 6. Trellis Diagram for G(z) = (7, 5): (a) From k to k +1; (b) From
k − 1 to k + 7

the so-called maximum a posterior (MAP) algorithm. This
algorithm is also called BCJR algorithm, named after the four
authors who first gave the algorithm in early 1970s [29]. In
comparison with the well-known Viterbi algorithm, the BCJR
algorithm is twice as complex computationally, but it outputs
APP values (soft estimates) instead of an optimal estimate (a
hard estimate). Therefore, it suits well for iterative decoding
purposes.

The MAP algorithm uses the state transition diagram, also
known as the trellis diagram, of the constituent encoder.
Figure 6 illustrates the trellis diagram for G(z) = (7, 5). In
this example, D(z) = 1 + z−1 + z−2 and N(z) = 1 + z−2.
Therefore, the order of G(z) is 2 and there are 4 possible
states at each symbol time, as shown in Figure 6(a). For each
possible state, there are two possible branches depending
on the input symbol. The brackets on the left of the trellis
indicate the systematic and parity bits corresponding to each
branch of the trellis.

We now describe the MAP algorithm [29], following the
tutorial paper [30]. Note that this algorithm is applied to each
constituent decoder. Without loss of generality, we consider
Decoder 1 in Figure 5. From Figure 5, we see that the inputs
include ys, yp1 and the extrinsic information. To aid the
description of the MAP algorithm, we denote by n the block
size of the code and introduce the following notation:

yk = (ys,k, y1p,k); yj
i = (yi, y2, . . . , yj); y = yn

1

where ys,k is the k-th element of ys, and y1p,k is similarly
defined.

The MAP algorithm is concerned with computing the so-
called a posteriori probability (APP) ratio of u, as defined
below:

R(uk) =
P (uk = +1|y)
P (uk = −1|y)

(1)

where uk is the k-th symbol of u. Since this ratio ranges from

0 to ∞, it tends to cause numerical underflows and overflows
easily. For this reason, it is common to consider the log a
posteriori probability (LAPP) ratio below, also known as the
log-likelihood ratio (LLR):

L(uk) = log
(

P (uk = +1|y)
P (uk = −1|y)

)
(2)

The associated decoding algorithm is often referred to as the
Log-MAP algorithm.

It is clear that both of the a posteriori probabilities
P (uk = +1|y) and P (uk = −1|y) can be computed from
L(uk) because of the constraint

P (uk = +1|y) + P (uk = −1|y) = 1

The computation of L(uk) relies on the trellis diagram
of the constituent encoder. We consider the transition of the
state of the code from (k−1)-th symbol to the k-th symbol.
Denoting the set of all possible states by S and the state at
the k-th symbol by sk, we can partition S into two subsets at
each k: S+ (respectively, S−) is the set of all state transitions
from sk−1 to sk caused by uk = +1 (respectively, uk = −1).
Now using the Bayes rule, we have

L(uk) = log
(∑

S+ P (sk−1 = s′, sk = s, y)/P (y)∑
S− P (sk−1 = s′, sk = s, y)/P (y)

)
(3)

It is clear from above that P (y) can be canceled and we only
need to find a way for computing P (sk−1 = s′, sk = s, y),
or P (s′, s, y) for short. By breaking y into (yk−1

1 , yk, yn
k+1)

and applying the Bayes rule again, we can write

P (s′, s, y) = αk−1(s′)γk(s′, s)βk(s) (4)

where

αk−1(s′) = P (sk−1 = s′, yk−1
1 ); (5)

γk(s′, s) = P (sk = s, yk|sk−1 = s′); (6)

βk(s) = P (yn
k+1|sk = s) (7)

These terms can be computed recursively using the Bayes
rule again. More precisely,

αk(s) =
∑
s′∈S

αk−1(s′)γk(s′, s) (8)

with the initial conditions

α0(s = 0) = 1; α0(s �= 0) = 0

where s = 0 is the known initial state for the code. Similarly,

βk−1(s) =
∑
s∈S

βk(s)γk(s′, s) (9)

with the terminating conditions

βn(s = 0) = 1; βn(s �= 0) = 0

if s = 0 is the known terminating state for the code. If the
code is not terminated, βn(s) is usually set equally.

It remains to compute γk(s′, s), for which we have

γk(s′, s) = P (s|s′)P (yk|s′, s) = Pa(uk)P (yk|uk, xp1,k)
(10)
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where the values of uk and xp1,k correspond to the transition
from s′ to s. The term Pa(uk) is the a priori probability of uk

which is related to the extrinsic information L̃e
21 as follows:

L̃e
21,k = log

(
Pa(uk = +1)
Pa(uk = −1)

)
(11)

i.e., the k-th element of L̃e
21 is the log a priori probability

ratio for uk.
The term P (yk|uk, xp1,k) in (10) is the conditional prob-

ability of yk knowing the state transition. This depends on
the channel characteristics and is assumed to be known for
decoding. For example, if the channel is an additive Gaussian
white noise (AGWN) channel with noise variance σ2, then
ys,k and yp1,k are independent and we have

P (yk|uk, xp1,k)
= P (ys,k|uk)P (yp1,k|xp1,k)

= C exp
[
− (ys,k − uk)2

2σ2

]
exp

[
− (yp1,k − xp1,k)2

2σ2

]
(12)

with a constant C which does not affect L(uk).
From the above, we can see that L(uk) can be computed

by first calculating all γk(s′, s) using (10)-(12), then re-
cursively calculating all αk(s) and βk(s) using (8)-(9) and
finally calculating L(uk) using (3)-(4).

If we want to produce a hard estimate of uk, we simply
take

ûk = sign(L(uk)) (13)

If we want to compute the extrinsic information Le
12 for

further iterations, we simply subtract the input extrinsic
information from L(uk), i.e.,

Le
12,k = L(uk) − L̃e

21,k (14)

We remark that the actual implementation of the MAP
algorithm is usually different from what has been described
above for numerical reasons; see [30].

IV. STOCHASTIC MODELING

The precise reason for the power of iterative decoding
algorithms remains one of the mysteries in communications.
Much research has been devoted to this problem [17]-
[24]. There are two approaches: deterministic and stochastic.
The deterministic approach [17]-[20] treats decoding as a
deterministic process and aims to characterize the behavior
of the decoder for each instance of the received signal. It can
be used to analyze the existence, stability, and uniqueness of
fixed points. However, this approach is mostly qualitative
and fails to explain the behavior of specific codes and
decoders. The stochastic approach, on the other hand, views
the input and output of a decoder as random processes
and tries to characterize their statistics. The most prominent
feature of the stochastic approach is that these statistics
are easily computable using realizations (or instances) of
the random processes. Notable examples of the stochastic
approach include [21]-[24], which model the decoder in
every iteration as single-input-single-output (SISO) with just
one statistical parameter. This parameter is either mutual

�ys, yp1

�
Decoder 1

�

�
Decoder 2

ys, yp2

Le
12

Le
21

Fig. 7. Feedback View of Turbo Decoding

information or the signal-to-noise ratio (SNR). Using SISO
models, [21]-[24] are able to explain a number of important
features of turbo decoding, including the well-known step-
like (waterfall/error floor) performance of turbo decoding
and fixed points at low SNR. In particular, the so-called
Extrinsic Information Transfer (EXIT) chart of [24] is found
to be particularly useful in understanding and quantifying the
dynamics of turbo decoding. However, the SISO model also
suffers from a number of drawbacks. In particular, it fails to
model the probability distribution of the input-output signals
properly and it does not provide a good prediction of the
dynamic behavior of the iterative process [26].

We present a more rigorous approach to stochastic mod-
eling of turbo decoding based on the systems theory. In-
deed, we can actually redraw the turbo decoding process in
Figure 5 as a feedback loop in Figure 7 by absorbing the
interleavers and de-interleaver into the constituent decoders.
This feedback view automatically prompts the need for a
suitable simple model for each constituent decoder that can
capture the dynamic behavior of the loop.

We first show that, when the received signal is subject to
additive Gaussian white noise (AGWN) and the interleaver
is chosen randomly, the turbo decoding output for each
iteration approaches an ergodic random process when the
block size is very large. We then show that decoding output
for each iteration, when expressed using a scaled logarith-
mic likelihood ratio (SLLR), is well approximated using
a Gaussian distribution. Combining the two results above,
we can model a turbo decoder using two input parameters
and two output parameters (corresponding to the means and
variances of the input and output). Using this model, we
have discovered that a typical decoding process is much
more intricate than previously known, involving two regions
of attractions, several fixed points, and a stable equilibrium
manifold at which all decoding trajectories converge.

V. ERGODIC PROPERTIES

A. Scaled Log-likelihood Ratios

We first introduce the notion of scaled log-likelihood ratio
(SLLR). Given any signal s which is a noisy version of a
binary signal x with elements xi ∈ {−1, 1}, recall that its
LLR, denoted by Ls, is defined as

Ls,i = log
P (si|xi = 1)

P (si|xi = −1)

15



Its SLLR, denoted by S, is defined as

Si =
xi

2
Ls,i

When a (received) signal r is subject to AGWN, it can be
shown that its SLLR has a Gaussian distribution with mean
and variance satisfying a unique relationship: μr = σ2

r .
However, as we will see later, the relationship above no

longer holds for extrinsic signals (and the a prior signals in
later iterations). Because of this, we introduce the notion of
mean-to-variance ratio (MVR):d = μ/σ2.

B. Log-MAP Decoding

As we explained earlier, the Log-MAP decoding algorithm
[12] takes the extrinsic information (a priori information)
and a received signal, and produces an extrinsic signal and an
a posteriori signal. For this section and onwards, we change
the notation and denote these four signals by a, r, e and d,
respectively. Their SLLR expressions are denoted by A, R,
E and D respectively. We also denote the mean and variance
of A by μa and σ2

a, etc.
Without loss of generality, we assume that u is an all-

one sequence (i.e., all-zero in binary). Using the SLLR
expressions, it is shown in [26] that E can be written in
the following form:

E = ln

(
1 +

T1∑
t=1

exp(−C
(1)
t A − C

(2)
t R)

)

− ln

(
T2∑
t=1

exp(−C
(3)
t A − C

(4)
t R)

)
, (15)

where C
(i)
t are row vectors with 0’s and 1’s and T1, T2 ≥ 0.

Following from (14), we also have

D = A + E

C. Asymptotic Behavior of Log-MAP Decoding

From the analysis above, it is clear that the output signal
of MAP decoding can be modelled as a random process.
The key question we now ask is how to model this random
process when the code block size is very large.

It follows that the input and output signals in each de-
coding iteration are random processes. In order to be able
to model the decoding process using stochastic parameters,
it is necessary that these random processes are ergodic.
It is somewhat surprising to realize that many stochastic
models for decoding processes (including many listed in
the reference list) are established without a formal study
of ergodicity. To illustrate the danger of not checking the
ergodicity, we point out the fact that the ergodicity of a
random process can be easily destroyed after common linear
operations on the signal. These operations include down-
sampling, up-sampling, addition and linear filtering. See
details in [27]. Therefore, it is important that ergodicity of
signals in a turbo decoder is analyzed.

Our first main result on turbo decoding is given below.
Theorem 1: Given a convolutional code with an infinite

block size, suppose the SLLR of the received signal R and

the SLLR of the a priori signal A are ergodic, and R and
A are both independent by themselves and independent of
each other. Then, the outputs of the Log-MAP decoder (i.e.,
D and E) are both ergodic random processes.

The implications of the property above are important:
When the received signal is subject to AWGN (which is
ergodic) and A is ergodic, the result above says that the
statistics of Ek are independent of k and can be computed
using a single realization of E, i.e., solving only a single
(but long) Log-MAP decoding.

D. Stochastic Modelling of Turbo Decoding

We now want to generalize the ergodicity result in Theo-
rem 1 to turbo decoding. Again, we assume n → ∞.

From the above analysis of Log-MAP decoding, we un-
derstand that if the received signal is subject to AGWN and
the SLLR of the a priori signal, A, is an independent ergodic
random process, then the SLLR of the extrinsic signal, E, is
also ergodic. In turbo decoding, we start with A = 0, which
is Gaussian with μa = σa = 0. Therefore, it is natural to
conjecture that the SLLR of the extrinsic signal in every
iteration is an ergodic random process. It turns out that this
is generally incorrect because the extrinsic signal is “locally”
correlated. It is easy to imagine that a non-stationary A is
possible if a “bad” interleaver is used.

Fortunately, the correlation in E decays. Therefore, if the
interleaver has a “good” spreading property, the interleaved
extrinsic signal, which becomes the a priori signal, should
be no longer correlated “locally.” Since Ek depends only on
those Ai which are “local” to k, the interleaved extrinsic
signal is effectively an uncorrelated signal.

To understand how well an interleaver works, we introduce
the notion of a spreading factor. Given an interleaver T of
size n, its spreading factor ST is given by:

ST = min
S

{S : 1 ≤ i, j ≤ n; |i − j| ≤ S ⇒ |Ti − Tj | > S}
Lemma 1: Given any S > 0, if an interleaver T of size n

is chosen randomly, then

P (ST ≥ S) → 1, as n → ∞. (16)
The lemma above leads us to our second main result.
Theorem 2: Given a turbo code with block size n, suppose

a random interleaver T is used and the received signal is
subject to AWGN. Denote by E(�, n) the SLLR of the
extrinsic signal from the �-th iteration of Log-MAP decoding.
Then, for any � ≥ 1, E(�, n) approaches an ergodic random
process as n → ∞.

In the above, the number of iterations refers to the number
of Log-MAP decoding processes, rather than the number of
turbo cycles.

To demonstrate the ergodicity of μe(�, n), we simulate a
1/3-rate turbo code with G(z) = (7, 5), Eb/N0 = 0.5dB and
pseudo-random interleaver. For each n and �, many runs of
μe(�, n) are simulated. These values are used to compute a
lower bound and upper bound for μe(�, n). The lower bound
is the average of these μe(�, n) values minus their standard
deviation, whereas the upper bound is the the average of
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these μe(�, n) values plus their standard deviation. The size
of the gap between the lower and upper bound shows how
well μe(�, n) converges as n → ∞. The simulation results
are shown in Fig. 8. It is clear that the gap between the lower
and upper bound curves converge as n becomes larger.

We note that a somewhat different version of the ergodicity
result can be found in [20].

VI. GAUSSIAN APPROXIMATIONS

In this section, we study Gaussian approximations for Log-
MAP decoding and turbo decoding.

A. Log-Sum of Lognormal Distributions

Given a set of Gaussian-distributed random variables Xi

with means μi and variances σ2
i , i = 1, 2, . . . , n, we define

Z = ln
n∑

i=1

exp(Xi)

Then, each exp(Xi) is a lognormal distribution and exp(Z)
is a sum of lognormal distributions (SLND). We will call Z
a log-sum of lognormal distributions (LSLND).

The statistical properties of SLND have been well studied.
It is well known that the distribution of a SLND can be
closely approximated using a lognormal distribution when
Xi are independent with the same mean and variance.
Correspondingly, Z is well approximated by a Gaussian
distribution. Although no closed-form description is given
on the distribution of a SLND or LSLND, a number of
methods are available for computing the mean and variance
(or equivalently the first and second moments) of Z; see,
e.g., [25] for a summary. The Gaussian approximation works
well when Xi are weakly correlated and their statistical
parameters are not significantly different.

B. Gaussian Approximations for Log-MAP Decoding

We now analyze the distribution of E (the SLLR of the
extrinsic signal) for Log-Map decoding. Consider the expres-
sion Ek from (15). Recall that R is a vector of (independent)
Gaussian distributions when the received signal r is subject
to AGWN. Suppose A is also Gaussian distributed. Then, E
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Fig. 9. Normalized CDF of Extrinsic Signal (SLLR)

is the difference between the two LSLNDs. This observation
is summarized below:

For a convolutional binary code with an infinite block size,
if the received signal is subject to AGWN and the SLLR of
the a priori signal is a Gaussian distribution, then the SLLR
of the extrinsic signal can be well approximated using a
Gaussian distribution.

Although the result above says that the SLLR of the extrin-
sic signal can be approximated using a Gaussian distribution,
its MVR is no longer equal to 1 in general. Therefore, it
is insufficient to characterize the output signal by its SNR.
Instead, two parameters, the mean and variance of the SLLR
need to be used. We conclude the following:

A Log-MAP decoder can be approximated as a mapping
M from (μr, μa, σa) to (μe, σe). If μr is suppressed, the
decoder is simply a mapping from (μa, σa) to (μe, σe).

To illustrate the behavior of Log-MAP decoding, we con-
sider the simple 1/2-rate, 4-state, systematic convolutional
code G(z) = (7, 5) (in octal). The received signal is subject
to AWGN with Eb/N0 = −1.2609dB.

Fig. 9 shows the normalized CDFs of E for different
values of μa but with da = 1. It is observed that for very low
values of μa, E is only roughly approximated using Gaussian
distributions. As μa increases, the approximation becomes
very accurate. When μa is very high, the approximation
becomes slightly off again.

Fig. 10 plots μe vs. μa. It is observed that μe exceeds
μa for low values of μa. However, for high values of
μa, the converse is true. The crossover point, which is
seriously affected by the MVR, is critical in determining
the convergence of turbo decoding.

C. Gaussian Approximations for Turbo Decoding

From the analysis of Log-MAP decoding, we understand
that if A and R are independent Gaussian white noises,
then E is well approximated using a stationary process with
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a Gaussian distribution. In turbo decoding, we start with
A = 0. Therefore, E from the first iteration is well approxi-
mated using a Gaussian distribution. If a random interleaver
is used, A for the next iteration will become effectively
independent when the block size is large. Hence, Gaussian
approximations can continue, i.e., E in every iteration is well
approximated using a Gaussian distribution.

To formalize our analysis, we define the Gaussian approx-
imation model for a turbo decoder as follows:

For each decoding iteration, the SLLR of the a priori
signal is well approximated using an uncorrelated Gaussian
distribution and the SLLR of the extrinsic signal is well
approximated using a (locally correlated) Gaussian distri-
bution.

To check the validity of the Gaussian approximation
model, we compare it to turbo decoding using a 1/3-rate
turbo code with G(z) = (13, 15), n = 500, 000, and a
pseudo-random interleaver. We take Eb/N0 = 0.3dB. Twelve
iterations are used. For the method using the Gaussian
approximation model, A in each iteration is chosen to be
a Gaussian distribution with the same mean and variance as
those for the A fed into the corresponding iteration of the
turbo decoding. Fig. 11 compares the means and variances
of E in the two cases. It is clear from the figure that the
Gaussian approximation model gives a very good match to
turbo decoding. However, there are some small but noticeable
errors due to the fact that Gaussian approximations are
slightly skewed when μa is either small or very large, as
we pointed out earlier.

VII. DYNAMICS OF TURBO DECODING

It is known [18] that the outputs of turbo decoding typi-
cally “converge” at either some constant values or a quasi-
periodic trajectory as the number of iterations increases.
Occasionally, a seemingly convergent decoding trajectory
may suddenly “diverge” and move into a different trajectory.

These behaviors, however, are the consequences of having
a finite code block size n. Recall that when n → ∞,
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the decoding output for each iteration becomes an ergodic
random process. Each decoding instance is a realization
of the random process and the decoded signal has the
same statistics (with probability 1). As n → ∞, the state
of the decoded signal either converges at a finite stable
fixed point or diverges. The former scenario occurs only
at a low SNR value, leading to a large BER. In contrast,
the latter scenario leads to an ever increasing SNR and
thus arbitrarily low BER. However, when the block size is
finite, this trend can not be sustained indefinitely. As the
number of iterations increases, the spreading property of the
(de)interleaver becomes less effective, causing the decoding
process to converge at a high SNR point.

Turbo dynamics is in fact much more complex than
indicated by the two stable fixed points. The complete picture
is illustrated in Fig. 12. The turbo code used here is a 1/3-
rate code with G(z) = (7, 5), Eb/N0 = −0.1dB, n = 106,
and a pseudo-random interleaver. We see from the figure
that there is a stable equilibrium manifold at which every
turbo decoding trajectory converges, regardless of the initial
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point. On this manifold, there is a stable fixed point with
a low SNR which is paired with an unstable fixed point
above it. The whole state space (i.e., the space of (μa, σ2

a))
is divided into two regions by a stability boundary which
intersects the unstable fixed point. When the initial state is
to the left of the stability boundary, the decoding trajectory
quickly moves to the stable equilibrium manifold and then
converges at the stable fixed point with a low SNR. When
the initial state is to the right of the stability boundary, the
decoding trajectory again approaches the stable equilibrium
manifold very quickly, then moves to the right right along
the manifold for a while but eventually converges at a stable
fixed point or region with a high SNR.

The scenario in Fig. 12 happens when Eb/N0 is below a
certain threshold. If Eb/N0 exceeds this threshold, the stable
and unstable equilibrium points coalesce and disappear. In
this case, the decoding trajectory always converges at a stable
fixed point or region with a high SNR.

VIII. CONCLUSIONS

In this presentation, we have discussed a systems theory
approach to stochastic modeling and analysis of turbo de-
coding. Two key results, ergodicity and Gaussian approx-
imations, have been established which lead to some new
understanding of turbo decoding. In particular, we are able to
build a simple dynamic model for turbo decoding and reveal
the intricate behavior of turbo decoding unknown previously.
We expect that this model is useful in understanding and
improving turbo decoding. Indeed, it has been illustrated in
[26] about how to devise decoding algorithm faster than the
MAP algorithm.
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