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Alrstract--We consider the robust stability problem for a 
class of uncertain neutral time-delay systems where the 
characteristic equations involve a polytope ~ of quasipolyn- 
omials of neutral type. Given a stability region D in the 
complex plane our goal is to find a constructive technique to 
verify the D-stability of ~ (i.e. to verify whether the roots of 
every quasipolynomial in ~ all belong to D). We first show 
that, under a certain assumption on the stability region D, 
is D-stable if and only if the edges of ~ are D-stable. Hence, 
the D-stability problem of a higher dimensional polytope is 
reduced to the D-stability problem of a finite number of 
pairwise convex combinations of vertices. Based on this 
result, we then give an effective graphical test for checking 
the D-stability of a polytope of quasipolynomials of neutral 
type 

1. Introduction 
THE GENERAL problem of robust stability can be roughly 
formulated as follows: Given a family of linear systems S¢ 
and a set D in the complex plane, provide computationally 
tractable techniques for determining the D-stability of 5 ~, i.e. 
checking whether the eigenvalues of the systems in 5¢ stay 
within D. The most pertinent results to the problem we are 
addressing here are those by Bartlett et al. (1988), Fu and 
Barmish (1989) and a recent paper by the authors (Fu et al., 
1989). Bartlett et al. 1988 presented what is now widely 
known as the "Edge Theorem." In Fu et al. (1989), this edge 
Theorem was generalized to handle the D-stability problem 
for a class of uncertain delay systems, and an effective 
graphical test was proposed. One fundamental assumption of 
Fu et al. (1989) is that the characteristic equation of the 
time-delay system should not have a neutral term. This 
assumption was technically needed so that the leading 
coefficient (see Section 2 for definition) does not vanish. But 
it fails for the interesting class of systems called neutral time 
delay systems (Hale, 1977; Kolmanovski and Nosov, 1986). 
These systems are analogous to such distributed parameter 
systems as the undamped wave equation and the lossless 
transmission line. In fact, the solution to the classical wave 
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equation in one space dimension can be shown to satisfy a 
neutral differential-difference equation; see Kolmanovski and 
Nosov (1986 Chapter 1). 

In this paper, we consider the D-stability problem for the 
polytope of quasipolynomials associated with an uncertain 
neutral time-delay system. Under a mild assumption on the 
set D, we prove that the Edge Theorem is also valid. That is, 
the polytope of quasipolynomials ~ of neutral type is 
D-stable if and only if the edges of ~ are D-stable. In 
addition, when the set D is any open left half plane we 
provide a simple test which permits us to determine whether 
the neutral term introduces instability. More specifically, in 
order for ~ to be D-stable, it is necessary that the 
subpolytope ~N corresponding to the neutral terms is 
D-stable. Since this subpolytope is usually of much lower 
dimension than ~,  it is advantageous to perform the simple 
test first because the failure of this test will eliminate further 
computation. Furthermore, both ~ and ~N can be examined 
by using the Edge Theorem and a graphical test similar to 
that given in (Fu et al., 1989). 

We consider the class of neutral time-delay systems 
described by 

l I 

Fix(t - *i) - ~ Aix( t  - ti) = 0 (1) 
i = 0  i =0  

where the trajectory vector x(t)  e R n, Ai and F/are real (or 
complex) system matrices with F0 nonsingular, and 
0=T 0<31<~2 < ' ' "  <z t  represent the time delays. The 
characteristic equation of (1) is given using an nth order 
quasipolynomial of the form 

I 

i = 0  

where p(s)  can be written as 

) p(s)  = aike -h~ s ~-i (2) 
i = 0  \ k = 0  / 

and aik=trlk+Jflik; trig, f l l k • R  are constants, aoo#:0 is 
called the leading coefficient, and 0 = h 0 < h t < h 2 < .  • • < h N 

N 
are integer combinations of ri. The term ~ aoke -h~ is 
called the neutral term. k=o 

Definition 1. Given a set D in the complex plane, the delay 
system (1) is called D-stable if the zeros of the characteristic 
quasipolynomial p(s)  in (2) stay in D. If so, p(s)  is called 
D-stable. In particular, p(s)  is called stable if there exists 
some • > 0 such that p(s)  is D-stable for D = {s : Re (s) < 
- e} .  [The latter case corresponds to exponential stability of 
solutions to (1) with suitable initial functions; (see Bellman 
and Cooke (1963) and Hale (1977).] [] 

Suppose the coefficients of p(s)  in (2) involve uncertain 
parameters, then it is of interest to determine the D-stability 
of the system for all admissible parameter perturbations. 
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Mathematically, we consider a family of nth order (real or 
complex quasipolynomiais 

~ -  p ( s ) -  Z aike h~) s " - i :  
i = 0  X k = 0  

(a0o, ao~ . . . . .  aoN . . . . .  anN) e ~:}, aoo 4:0 (3) 

for some , ~ • b  ~"+°tN+l) characterizing the parameter 
perturbations. Given a set D in the complex plane, we want 
to determine the D-s tab~ty  of ~ ,  i.e. whether p(s) is 
D-stable for all p(s) • ~. For the family of quasipolynomials 
9 ~ in (3), we define the subpolytope of neutral terms 

9N -~ aOk e-hid : (aoo, ao~ . . . . .  aoN . . . . .  anN) e ~ . (4) 
~ k = 0  

In this paper, we consider a special family of 
quasipolynomials for which ~ is a polytope generated by the 
convex combinations of a number of nth order quasipolyno- 
mials p~(s), pE(s) . . . . .  p~(s) as in (2), i.e. 

=" cony {pa(s), pz(s) . . . . .  pr(S)} (5) 

and for which every member of 9 does not have vanishing 
leading coefficient ao0. 

We denote by E[X] the set of all edges of a polytope X;  
recall that an edge of a polytope is its one-dimensional face 
(Brondsted, 1983). The end points of an edge are called 
vertices. 

Remark 1. The requirement that the leading coefficient aoo 
of every member  of 9 does not vanish is equivalent to the 
assumption that the set of the leading coefficients of the 
generators p~(s) are on one side of some line through the 
origin in the complex plane. For the case of real parameters,  
this requires that the leading coefficients of p~(s) are of the 
same sign. [] 

For the nth order quasipolynomial p(s) given in (2), we 
denote its coefficient vector by 

p = [aoofloo no, flo~ - • - o~0N • - • O~,Nfl,N] T. (6) 

Then, it is straightforward to show that s is a zero of p(s) if 
and only if 

K ( s ) p  = 0 

where 

-Re (e-h°~s~) Im (e n°~s~f r 
- - Im(e  h~s") Re (e h~s~) 

(7) 
R e ( e  hms~) Im (e-h~s ~) 

r(s) - ~  
- I m  (e-bins ~) Re (e-bins ") 

Re (e -nm) Im (e hm) 
--Im (e -hm) Re (e -hm ) 

is a 2 × 2(n + 1)(N + 1) real matrix. For the family of nth 
order quasipolynomials 9 given in (3) and ~ in the complex 
plane, we define 

Q(9, ~) "- {K(~)p:p(s) e ~}. (8) 

Note that for a polytope of quasipolynomials b ~ and for each 
fixed ~, Q ( ~ ,  ~) is a polytope in the complex plane, and that 
a polytope ~ as in (5) is D-stable if and only if Q ( 9 ,  ~) does 
not contain 0 for any ~ e D ~ (the complement of D). 

2. D-stability criteria for a polytope of neutral time-delay 
systems 

In this section we provide an Edge Theorem (Theorem 1) 
and a graphical test (Theorem 2) for a polytope of neutral 
time-delay systems 9 .  For simplicity, the graphical test is 
stated for the (unshifted) open left half plane although the 
result applies to other D regions (see Remark 3). In addition 

to the Edge Theorem, a simple necessary condition 
(Theorem 3) for checking the D-stability of 9 is given by 
considering the subpolytope 9N corresponding to the neutral 
terms. It is shown that in order for 9 to be D-stable, it is 
necessary that 9N be D-stable. Naturally, the D-stability of 
~N, which is a polytope containing only the e -n~ terms, can 
be verified by using Theorem 2. 

Theorem 1. Consider a polytope of nth order (real or 
complex) quasipolynomials 9 as in (5) and a set D in the 
complex plane satisfying the following condition: There 
exists some real number ol such that D c (the complement of 
D) contains the half plane Re s > o: and, for any point x ~ D c 
and any M > 0 ,  we can find a continuous path in D c 
connecting x and some point y with lYl >~M and Rey-----ol. 
Then, ~ is D-stable if and only if all the edges of 9 are 
D-stable. 

The following lemma is essential in the proof of Theorem 
1; see Fu et al. (1989) for the proof. 

Lemma 1. Consider a polytope of quasipolynomials 9 as in 
(5) and Q(.,  .) defined in (8). Then, for any ~ in the complex 
plane, 

EIQ(9,  ~)] c Q(E[9 ] ,  ~) (9) 

where E[9]  (resp. E[Q])  denotes the set of the edges of 
(resp. Q). 

Proof of Theorem 1. The necessity is obvious because 
E[9]  c ~.  We proceed with the sufficiency by assuming, on 
the contrary, that there exists some so eD c such that 
0 • Q(~ ,  So). We need to show that there exists some s I e D c 
such that 0 e Q(E[9] ,  s 0. Indeed, because of the bounded- 
hess of ~ ,  there exists some M > 0 such that 0 q Q ( 9 ,  s) for 
all s with Isl>-M and Res->o¢. This follows from the fact 
that 

{ P ( s ) - 1  :p(s )~9,  Res>_o~,lsl>M} sup a~x~sn 

{la~l i~=~ ( ~  ) ~ a ° k e  h~ = s u p  aike h~ S-i+ 
\ k = 0  z k = l  

:p(s)  e 9 ,  R e s  -> ol, Isl -> M}---, 0 
as ol---, +oo. Since, by our assumption, oL can be chosen 
arbitrarily large, it is seen that p(s) approaches a~s n in some 
right half plane and therefore it does not vanish in 
{s : Res -> or} for o~ sufficiently large. Now let F c D c be any 
continuous path connecting So and some point s :  with 
182[ --> M and Re s 2 -> oc. For every ~ e F, we define 

d~( {f min{ lqd:qe•E[Q(9 ,~)]}  if 0 ~ Q ( 9 , ~ )  
)~ l -m in{ lq~ l :qgeE[Q(~ ,~ ) ] }  if OeQ(9 ,~ ) .  

By the continuity of F, the minimum function, and the 
vertices with respect to ~, we know that d(-) is continuous on 
F. Since d ( s 2 ) > 0  and d(so)<-0, there must exist some s~ e F 
such that d(s 0 = 0, i.e. 0 • E[Q(9, sO]. Using Lemma 1, we 
conclude that 0 e Q(E[9 ] ,  s 0. [] 

Remark 1. It can be seen that the Edge Theorem (Theorem 
1) is extendable to a polyhedron of polynomials as well as a 
polyhedron of quasipolynomials using the same proof above. 
A polyhedron can be defined as the union of finitely many 
polytopes. [] 

Theorem 2. Consider a polytope of nth order (real or 
complex) quasipolynomials 9 as in (5). We use 
El ,  E z . . . . .  E, to denote the edges of 9 and Pko(S) and 
pkt(s) to denote the vertic quasipolynomials of E k. Then, 
is stable if and only if the following two conditions hold for 
every Ek, 1 <-- k <- t: 

(i) The frequency response plot of pko(jto)/(j¢o + 1) n for 
all real ~o including +oo does not encircle the origin; 

(ii) The frequency response plot ofpkl(jto)/pko(j~o ) for all 
real w including + ~  does not cross (-~o, 0] (the nonpositive 
part of the real axis). 
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Proof. The proof is essentially identical to that of Theorem 
5.1 in Fu et al. (1989). [] 

Remark 2. The number of tests in (i) for stability of vertices 
can be reduced to checking just one arbitrarily chosen vertex 
Plo(s). Then we can check the stability of those edges which 
contain plo(S) using the tests of form (ii). In the next step we 
test the stability of those edges which have a common vertex 
with one of the previous edges, etc. Since the set of edges of 
a polytope is connected, we can verify in this way the 
stability of all edges in a finite number of steps. [] 

Remark 3. Note that the graphical test given in Theorem 2 
can be generalized to sets other than the open left half plane 
by using the argument principle. In general, if the set D is an 
open set and the boundary of D is a continuous path (or a 
finite collection of such paths in the case when D is 
disconnected), then the graphical test can be carded over by 
replacing jto with a point on the boundary and (s + 1) n with 
(s + d) n for some arbitrary d e D. 

Theorem 3. Consider a polytope of nth order (real or 
complex) quasipolynomials ~ as in (5) and assume D to be 
an arbitrary open left half plane. Let ~N be the polytope of 
neutral terms corresponding to 3 ~ as given in (4). Then, in 
order for ~ to be D-stable, it is necessary that ~r¢ be 
D -stable. 

Proof. The proof follows directly from Lemma 2.3 in Datko 
(1978). [] 

3. Conclusion 
This paper extends the robust stability results of Fu et al. 

(1989) to neutral time delay systems. Our main result shows 

that, under a mild assumption on the set D, a polytope of 
qnasipolynomials of neutral type is D-stable if and only if the 
edges of the polytope are D-stable. In addition, the graphical 
test proposed in Fu et al. (1989) is extended to 
quasipolynomials of neutral type. 
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