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Stochastic Analysis of Turbo Decoding
Minyue Fu, Fellow, IEEE

Abstract—This paper proposes a stochastic framework for dy-
namic modeling and analysis of turbo decoding. By modeling the
input and output signals of a turbo decoder as random processes,
we prove that these signals become ergodic when the block size of
the code becomes very large. This basic result allows us to easily
model and compute the statistics of the signals in a turbo decoder.
Using the ergodicity result and the fact that a sum of lognormal
distributions is well approximated using a lognormal distribution,
we show that the input–output signals in a turbo decoder, when ex-
pressed using log-likelihood ratios (LLRs), are well approximated
using Gaussian distributions. Combining the two results above, we
can model a turbo decoder using two input parameters and two
output parameters (corresponding to the means and variances of
the input and output signals). Using this model, we are able to re-
veal the whole dynamics of a decoding process. We have discov-
ered that a typical decoding process is much more intricate than
previously known, involving two regions of attraction, several fixed
points, and a stable equilibrium manifold at which all decoding tra-
jectories converge. Some applications of the stochastic framework
are also discussed, including a fast decoding scheme.

Index Terms—Iterative decoding, maximum a posteriori proba-
bility (MAP) decoding, soft decoding, turbo codes, turbo decoding.

I. INTRODUCTION

THIS paper addresses the following question: How does a
turbo decoder behave when the code block size becomes

very large? It turns out that many (known and new) properties
of turbo decoding can be understood by studying this question.

Many papers can be found which attempt to uncover the
mystery of the turbo decoding method invented in [1], see,
e.g., [2]–[14]. There are two approaches: deterministic and
stochastic. The deterministic approach treats decoding as a
deterministic process. That is, the aim is to characterize the
behavior of the decoder for each instance of the input signal (the
received signal). The work of Richardson [4] exemplifies this
approach. Typical questions this approach attempts to answer
are concerned with the existence, uniqueness, and stability of
equilibrium (or fixed) points. Using geometrical analysis, [4] is
able to reveal a number of dynamic behaviors of turbo decoding,
including the existence of fixed points and some conditions for
the uniqueness and stability of fixed points. The existence of
fixed points is also proved in [7] using a somewhat simpler but
also deterministic approach. However, the existence of a fixed
point does not imply anything about the convergence of turbo
decoding, as the system may exhibit multiple fixed points or
even limit cycles. Moreover, the conditions for the uniqueness
and stability are conservative, specific to each decoding block,
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and difficult to compute, meaning that they are not useful
in predicting the performance of a given turbo decoder. The
drawbacks of the deterministic approach are largely due to
the fact that a turbo decoder is a high-dimensional nonlinear
mapping. Nevertheless, the deterministic approach provides
good insights into the dynamics of turbo decoding.

The stochastic approach, on the other hand, views the input
and output of a decoder as random processes and tries to char-
acterize their statistics. The most prominent feature of the sto-
chastic approach is that these statistics are easily computable
using realizations (or instances) of the random processes. This
approach is naturally motivated by the fact that the end result
we want is always some sort of statistical measure of the de-
coder. Notable examples of the stochastic approach include the
methods given in [9]–[12]. These methods all use a single sta-
tistical parameter to characterize the input or output signal in
each decoding phase or iteration. More precisely, a log-max-
imum a posteriori (Log-MAP) decoder is modeled as a single-
input single-output (SISO)1 model. This parameter is either the
so-called mutual information [9], [10], [12] or the signal-to-
noise ratio (SNR) [10], [11]. The SISO model stems from the
motivation that a Log-MAP decoder, or any decoder for that
matter, can be viewed as a mapping for transforming the a priori
mutual information or SNR into the extrinsic mutual informa-
tion or SNR. Aiding to this motivation is the following obser-
vation initially made in [13]: The log-likelihood ratios (LLRs)
of the a priori signal and extrinsic signal in a turbo decoder
can be approximated using Gaussian distributions. Using SISO
models, [9]–[12] are able to explain a number of important fea-
tures of turbo decoding, including the well-known step-like (or
waterfall) performance of turbo decoding and fixed points at
a low SNR. In particular, the so-called extrinsic information
transfer (EXIT) chart of [9] and similar charts in [10], [11] are
found particularly useful in understanding and quantifying the
dynamics of turbo decoding.

It is also possible to combine the deterministic and stochastic
approaches. This is done in [6] by extending the approach of
[4] to a stochastic framework. By doing so, it is shown that
a unique fixed point exists with an arbitrarily high probability
when the received signal has an asymptotically low SNR. It is
also shown that when the received signal has an asymptotically
high SNR, a locally stable fixed point exists with an arbitrarily
high probability. These results are in agreement with the typical
step-like performance of turbo decoding, but only so in a quali-
tative sense. A SISO stochastic model is also given in [6].

This paper also embarks on the stochastic approach. Our
study, however, aims to answer a number of important questions
which are not addressed by the existing work on the stochastic
approach. Namely, we want to know the following.

1Please do not confuse this acronym with soft-input soft-output.
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1) When is the stochastic approach meaningful?
2) What statistical parameters are needed to model a turbo

decoder?
3) How do we compute these statistics?
4) How does the dynamics of a turbo decoder (or turbo dy-

namics for short) behave?
5) How do we explain these behaviors?
The first question is answered by our first main result which

roughly says that the stochastic approach is indeed valid when
the block size is very large. More precisely, we prove the
following.

When the received signal is subject to additive white
Gaussian noise (AWGN) and the interleaver is chosen ran-
domly, the turbo decoding output for each iteration approaches
an ergodic random process as the block size approaches infinity.

The implications of the ergodicity are significant. First of all,
an ergodic random process, by definition, is stationary. This im-
plies that all the samples have the same distribution and thus the
same statistics. Second, all the commonly used statistics (such
as mean, variance, cumulative density function (CDF), SNR)
can be computed by averaging over a single realization of the
random process, justifying the meaningfulness of the stochastic
approach. This fact also answers the third question above, i.e.,
only one (but long) decoding simulation needs to be performed
and the statistics computed from different realizations are iden-
tical with probability (or with high probability when the block
size is large but finite). In other words, the ergodic property al-
lows us to analyze the performance of turbo decoding (and also
the performance of the associated turbo code) without being
boggled down by the nonlinearities of the decoding function.

Based on the ergodic property above, we proceed to answer
the second question listed by studying the distributions of
the decoding output. We consider Log-MAP decoding for
turbo codes with AWGN. We first show that the input and
output of Log-MAP decoding, when expressed using a scaled
LLR (SLLR), are related in the following way: The output
is a log-sum of exponentials of the input. In other words, the
exponential of the output is the sum of exponentials of the
input. Then, using the well-known fact that a sum of lognormal
distributions can be well approximated using a lognormal
distribution, we establish our second important result.

When the received signal is subject to AWGN and the block
size approaches infinity, the decoding output of each turbo de-
coding iteration (based on Log-MAP decoding) is well approx-
imated using a Gaussian distribution.

The significance of this result is that a Log-MAP decoder
can now be viewed as a two-input two-output (TITO) model
with input–output parameters corresponding to the means and
variances of the SLLR of the a priori signal and the SLLR of
the extrinsic signal. This greatly simplifies the characterization
and estimation of the decoding process.

We noted earlier that the Gaussian approximability has been
observed in [9]–[12] and used to build SISO models. How-
ever, our work differs from these papers in the following ways.
First, we provide theoretical justifications for the Gaussian ap-
proximation. That is, Gaussian approximations are valid be-
cause 1) the decoding output, when the block size becomes
very large, becomes an ergodic random process, and 2) sums of

lognormal distributions can be approximated using lognormal
distributions. Second, we point out that the SISO models in
[9]–[12] are inadequate for explaining the evolution of the mean
and variance of the LLRs in the decoding process. To make this
point clear, we note that the received signal, when subject to
AWGN, has the property that its LLR also has a Gaussian dis-
tribution. Moreover, we have , where and are the
mean and variance of the LLR, respectively (see Section III-A).
That is, the mean and variance are not two independent param-
eters. It turns out that although the input–output signals (also
expressed using LLR) can be approximated using Gaussian dis-
tributions, their means and variances do not obey the same re-
lationship as mentioned above. We thus need two parameters
(mean and variance) to characterize each signal. The inadequacy
in [9]–[12] is that the mean-to-variance relationship above is
maintained throughout the decoding process. This is done to
satisfy the so-called symmetry condition of [34] (see Remark
2 for details). We will show that this may lead to somewhat un-
satisfactory approximations. Third, we show that an inadequate
use of a SISO model may also lead to very erroneous implica-
tions. For example, based on a SISO model, [11] concludes that
a Log-MAP decoder is a nondecreasing mapping from the input
SNR to the output SNR ([11, Proposition 1]). This property is
then used to prove the superb performance of a typical turbo
decoder and the existence of a possible fixed point associated
with a high bit-error rate (BER) ([11, Propositions 2 and 3]).
We will show that this nondecreasing property is false. Another
example is that the SISO models using mutual information in
[9], [10], [12] are unable to explain a “strange” phenomenon
which we will demonstrate that a Log-MAP decoder can take
an input with very “good” mutual information and produce an
output with much “poorer” mutual information.

Before addressing questions 4 and 5, we need to make a small
detour to discuss SNRs. The goal of a turbo decoder is to con-
vert a received signal with a low SNR to a decoded signal with a
high SNR. To differentiate these two types of SNR, we will call
the former the channel SNR and the latter the decoder SNR. For
AWGN channels, the channel SNR is characterized by
(the bit-energy-to-noise-density ratio). The decoder SNR deter-
mines the BER of the decoding.

Now we can return to questions 4 and 5. One of the applica-
tions of the TITO model is the analysis of fixed points. When
the block size becomes very large, it turns out a turbo decoder
may have two stable fixed points: one at a low decoder SNR and
one at a high decoder SNR. For simplicity, we will call them
low- and high-SNR fixed points, respectively. A low-SNR fixed
point occurs when the channel SNR, , is too low (typ-
ically, a fraction of a decibel away from the Shannon limit).
A low-SNR fixed point results in a high BER and cannot be
improved by increasing the block size. However, they can be
avoided by increasing . Using ergodicity, we are able
to estimate the thresholds for different turbo codes. In
contrast, the high-SNR fixed point is the result of a finite block
size. We develop a simplified model for Log-MAP decoding at
a high input SNR. By using this model, we are able to show that
for all commonly used -rate turbo codes, the decoder SNR
can grow indefinitely as the block size increases. That is, the
high-SNR fixed point can be pushed up arbitrarily by increasing
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the block size. This implies that, when the turbo decoder is void
of a low-SNR fixed point, its BER can be made arbitrarily small
by increasing the block size.

Moreover, by using the TITO model, we reveal that turbo
dynamics is much more intricate than previously known. In-
deed, when the block size is very large and is low, the
state space of turbo decoding contains two regions of attraction
separated by a stability boundary: one leading to a low-SNR
fixed point and another to a high-SNR fixed point. There is
also a stable equilibrium manifold in the state space at which
all decoding trajectories converge. These features are illustrated
in Fig. 15. When exceeds a certain threshold, the two
regions of attraction merge and the low-SNR fixed point dis-
appears, resulting in the familiar superb performance of turbo
decoding.

In addition to developing and analyzing the TITO model, we
demonstrate some simple applications, including a fast turbo
decoding algorithm. This algorithm can outperform Log-MAP-
based turbo decoding as it is faster without degrading the BER.

The rest of this paper is divided into three parts. Part 1
(Sections II–IV) studies ergodicity. Part 2 (Sections V–VIII) is
devoted to Gaussian approximations. Part 3 (Sections IX–XIII)
investigates turbo dynamics and discusses applications. Final
conclusions are reached in Section XIV. For easier reading, all
the proofs are contained in the Appendix.

Part 1: Ergodicity

The next three sections are concerned with the ergodicity
of the input–output signals in a turbo decoder. More specifi-
cally, Section II introduces some basic concepts and results for
random processes. Section III studies stochastic modeling for
Log-MAP decoding. Section IV studies stochastic modeling for
turbo decoding.

II. RANDOM PROCESSES

In this section, we introduce some necessary background
information on random processes. The material is extracted
from [15] but simplified to avoid “heavy” mathematics.
Throughout this paper, we consider random variables and
random processes defined in the probability space ,
where , is the Borel -algebra, and is the
probability measure. For multivariate random processes, the
associated probability space becomes .

Definition 1: A (discrete-time) random process
is said to be independent if for any -tuple

Two random processes and are said to be independent if for
any -tuple and -tuple

Definition 2: A random process is said to be sta-
tionary (in the strict sense) if for any -tuple ,

is independent of .

Note that a stationary random process has the same distribu-
tion (and thus the same probability measure) for all .

Definition 3: A random process is said to be ergodic if it
is stationary and for any measurable set and any infinite
sequence

as

with probability , where is the so-called indicator func-
tion which equals when or zero otherwise. Similarly, a
set of random processes (including )
are called jointly ergodic if they are stationary and for any mea-
surable set and any infinite sequence

as

with probability .

Lemma 1: If a set of random processes
(including ) are ergodic (individually) and independent
of each other, then they are jointly ergodic.

Lemma 2: Suppose a set of random processes ,
(including ) are jointly ergodic. Then,

given any measurable function , the random
process defined by

is ergodic.

Corollary 1: Suppose is an ergodic random process
with probability measure and is a measur-
able “statistical function.” Then, for any infinite sequence

, we have

where , the mean of , is the corresponding “statistics.”

Note that usual statistics include mean, variance, correlation,
and higher order moments. Also note that Gaussian white noises
are ergodic. Hence, any random processes generated by a sta-
tionary measurable function of Gaussian white noises are er-
godic, and their usual statistics all enjoy the ergodic properties
as stated in Corollary 1.

III. STOCHASTIC MODELING OF MAP DECODING

For noniterative decoding, the decoder is simply a mapping
from a received signal to a decoded signal. When the received
signal is subject to AWGN, the performance of the decoder, as
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measured by an averaged decoding BER, is fully determined by
the SNR of the received signal. For this reason, a single curve
of SNR versus BER is typically used to characterize the perfor-
mance of the decoder.

For iterative decoding, each constituent decoder also takes
an a priori signal as an input. The output of the decoder be-
comes the so-called extrinsic information which, after an appro-
priate transformation such as interleaving, becomes the a priori
signal for the next constituent decoder. The behavior of the (con-
stituent) decoder turns out to be much more complicated. It is
generally insufficient to characterize the performance of an con-
stituent decoder by the SNRs of the input signals.

In this section, we analyze the asymptotic behavior of
Log-MAP decoding with a very large code block size. By
modeling the input and output signals in a Log-MAP decoder
as random processes, we show that the asymptotic behavior of
Log-MAP decoding can be described by a simple stochastic
model.

A. Scaled LLRs

To help understand the distributions of LLR signals, we in-
troduce the notion of scaled log-likelihood ratio (SLLR). Given
any signal which is a noisy version of a binary signal with
elements , recall that its LLR, denoted by , is
defined as

Its SLLR, denoted by , is defined as

The SLLR indicates how well is “correlated” with . Note
that for the analysis of a linear code, one may assume that the
transmitted signal is an all-one sequence, which corresponds to
binary zeros. In this case, SLLR LLR .

When a (received) signal is subject to AWGN, its SLLR
has a Gaussian distribution. Indeed, if , where is a
transmitted binary signal and is a zero-mean Gaussian white
noise with variance , then the LLR of is given by

Therefore, the SLLR of is a Gaussian distribution given by

with the following mean and variance:

SNR

We see from above the SLLR of meets the unique condition

(1)

This condition is known ([9], [13]) but we have scaled the LLR
purely for convenience.

However, as we will see later, that the preceding relationship
no longer holds for extrinsic signals (and the a priori signals

in later iterations). Because of this, we introduce the notion of
mean-to-variance ratio (MVR)

In particular, the MVR for is .

B. Log-MAP Decoding

The well-known Log-MAP decoding algorithm [1], [16]
takes an a priori signal (representing the a priori proba-
bility of the information signal ) and a received signal ,
and produces an extrinsic signal and an a posteriori signal

(representing the extrinsic and a posteriori probabilities of
the information signal). Their LLR expressions are denoted
by , , , and , respectively. Their SLLR expressions
are denoted by , , , and , respectively, with means and
variances denoted by and , etc.

When applied to a linear, binary block code, Log-MAP de-
coding can be interpreted as follows. Let

and

represent the information and code signals, respectively. The
coding rate is in this case. Let be a received
signal, where is a zero-mean AWGN with variance .
Let be the a priori probability for , and
let be the conditional probability for when

. Then, by Bayes’ rule, the a posteriori probability
for the information sequence to be equal to a given candidate
information sequence is given by

where is the code signal for . The Log-MAP decoder com-
putes the following LLR:

Dividing both the numerator and denominator above by

and using the following LLR expressions:

we can rewrite as

where

Using the SLLR expressions, the above becomes

where
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To simplify our analysis, we assume, without loss of gener-
ality, that the information signal . It fol-
lows that

Note that each exponential function in involves two sums.
The number of terms in the first (respectively, second) sum
equals the weight difference between the and (respectively,

and ).
Typically, the following extrinsic signal needs to be com-

puted:

where is the set of code bits shared by other constituent en-
coders. In the case of a parallel concatenated turbo code, cor-
responds to the systematic bit. Using the SLLR expressions, we
have

(2)

or simply

(3)

where are row vectors consisting of zeros and ones and
.

Remark 1: Although in (2) the whole sequences of and
are used to compute each , it is well known that the contri-
butions of the terms and diminish as becomes
large; see, e.g., [13], [14]. More precisely, if we denote by and

the approximation of and without the terms and

for for some given , then the approximation
error becomes negligible when becomes sufficiently large.

C. Asymptotic Behavior of Log-MAP Decoding

From the preceding analysis, it is clear that the output signal
of MAP decoding can be modeled as a random process. The key
question we now ask is how to model this random process. We
are particularly interested in the behavior of the output signal
when the code block size is very large. Our main result is given
as follows.

Theorem 1: Given a convolutional code with an infinite
block size, suppose the SLLR of the received signal and the
SLLR of the a priori signal are ergodic random processes,
and and are both independent by themselves and indepen-
dent of each other. Then, the outputs of the Log-MAP decoder
(i.e., and ) are both ergodic random processes.

The implications of Theorem 1 are important. When the re-
ceived signal is subject to AWGN (which is ergodic) and is
ergodic, the result above says that the statistics of are inde-
pendent of and can be computed using a single realization of

, i.e., solving only a single (but long) Log-MAP decoding.

IV. STOCHASTIC MODELING OF TURBO DECODING

We now want to generalize the ergodicity result in Theorem
1 to turbo decoding. Again, we are interested in the case when
the block size approaches infinity.

So far, from the analysis of Log-MAP decoding, we un-
derstand that if the received signal is subject to AWGN and
the SLLR of the a priori signal, , is an independent ergodic
random process, then the SLLR of the extrinsic signal is
also ergodic. In turbo decoding, we start with , which
is a Gaussian white noise with zero mean and zero variance.
Therefore, it is natural to conjecture that the SLLR of the
extrinsic signal in every iteration is an ergodic random process.
It turns out that this is generally incorrect. The reason is that the
extrinsic signal is “locally” correlated. More specifically,
and can be strongly correlated if is small. It follows
that the stochastic properties of for the next iteration are
largely influenced by the interleaver. It is easy to imagine that a
nonstationary is possible if a “bad” interleaver is used.

Fortunately, the correlation in decays. Therefore, if the in-
terleaver has a “good” spreading property, the interleaved ex-
trinsic signal, which becomes the a priori signal, should be no
longer correlated “locally.” Since depends only on those
which are “local” to , the interleaved extrinsic signal is effec-
tively an uncorrelated signal.

To understand how well an interleaver works, we introduce
the notion of a spreading factor. Given an interleaver of size

, its spreading factor is given by

The following result reveals the spreading property of random
interleavers.
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Fig. 1. Convergence of the means of EEE(`; n).

Lemma 3: Given any , if an interleaver of size is
chosen randomly, then

as (4)

Lemma 3 leads us to the main result for Part 1.

Theorem 2: Given a turbo code with block size , suppose a
random interleaver is used and the received signal is subject
to AWGN. Denote by the SLLR of the extrinsic signal
from the th iteration of Log-MAP decoding. Then, for any

, approaches an ergodic random process as .

In Theorem 2 and the rest of the paper, the number of iter-
ations refers to the number of Log-MAP decoding processes.
This differs from what is commonly understood in the liter-
ature where the number of iterations refers to the number of
turbo cycles.

To demonstrate the ergodicity of , we simulate a
-rate turbo code with , 0.5 dB,

and pseudorandom interleaver. For each and , many runs
of are simulated. These values are used to compute a
lower bound and an upper bound for . The lower bound
is the average of these values minus their standard
deviation, whereas the upper bound is the average of these

values plus their standard deviation. The size of the
gap between the lower and upper bounds shows how well

converges as .
The simulation results are shown in Fig. 1. Three observa-

tions are made. First, the gap between the lower and upper bound
curves becomes smaller as becomes larger. Second, the gaps
are nested in the sense that the curves for a larger are within
those for a smaller . Finally, the gap becomes larger as be-
comes larger. The first two observations confirm the conver-
gence of . The third observation means that a larger
is required for a larger when the same accuracy of estimation
is required.

Although not shown here, the convergence properties of
are also simulated and they are checked to be similar

to those of .

Part 2: Gaussian Approximations

In the following four sections, we study Gaussian approxi-
mations for Log-MAP decoding and turbo decoding. Section V
introduces some known results for sums and log-sums of
lognormal distributions. Section VI demonstrates Gaussian
approximations for Log-MAP decoding in various cases.
Section VII analyzes Gaussian approximations for Log-MAP
decoding. Section VIII extends Gaussian approximations to
turbo decoding.

V. LOG-SUM OF LOGNORMAL DISTRIBUTIONS

Given a set of Gaussian-distributed random variables with
means and variances , , we define

Then, each is a lognormal distribution and

is a sum of lognormal distributions (SLND). We will call a
log-sum of lognormal distributions (LSLND).

The motivation for studying LSLND will be given in the
next section where we will see that a Log-MAP decoder can be
viewed as a function with inputs being Gaussian distributions
and outputs being LSLND.

The statistical properties of SLND have been well studied. It
is well known that the distribution of a SLND can be closely
approximated using a lognormal distribution when are in-
dependent with the same mean and variance. In this case,
is well approximated by a Gaussian distribution. Although no
closed-form description is given on the distribution of an SLND
or an LSLND, a number of methods are available for computing
the mean and variance (or equivalently, the first and second mo-
ments) of . All the available methods rely on the assumption
that the sum of two independent lognormal distributions is still a
lognormal distribution. It turns out that when are correlated
and/or the statistics of are different, is also well approx-
imated using a Gaussian distribution, provided that the corre-
lation is not very strong and the statistical differences are not
significant. We discuss four popular methods below.

The first method is the so-called Fenton–Wilkinson (FW)
method given by [17]. This is based on the simple fact that

It follows that the first and second moments of can be
computed as follows:

and



FU: STOCHASTIC ANALYSIS OF TURBO DECODING 87

where is the correlation coefficient of and defined as

The mean and variance for is approximated using

The FW method works well only when are weakly corre-
lated with similar means and variances and that the variances
are small.

The second method is the Ho–Schwartz–Yeh method, orig-
inally given in [18] and later modified in [19], gives a more
accurate approximation for the mean and variance of at the
expense of more computations. The basic idea here is to approx-
imate the sum of two log-normal distributions at a time using
more accurate approximations for the mean and variance and do
it recursively until all the terms are exhausted. The algorithm is
quite involved; see [19] for details.

The third method, called cumulant matching approximation,
is a modification of the FW method with correction terms called
the Gram–Charlier series [20]. Since this method works poorly
when are correlated (see [19]), we will not discuss it further.

The fourth method is the simple Monte Carlo simulation
method. Despite its simplicity, Monte Carlo simulations seem
to give the most reliable estimates for the mean and variance;
see [22]. The main disadvantage of the Monte Carlo method
seems to be the lack of insight into the relationships between
the parameters of and those of .

Various approximation methods have been extensively
studied; see details in [19]–[25].

To demonstrate the Gaussian approximation, we consider the
simple case where only two lognormal distributions are added.
The purpose of this example is twofold: First, we want to ex-
amine how well Gaussian approximations work. Second, we
want to get some idea about the relationships between the dis-
tributions of and the distribution of .

Fig. 2 shows the normalized CDF of

(5)

for different distributions of and . The normalization is
done by removing the mean and scaling the variance to , so
that we can easily see the accuracy of Gaussian approxima-
tions. The MVRs for and are chosen to be equal to . It
is shown in the figure that Gaussian approximations are gener-
ally very good even when and have quite different distri-
butions and/or quite strong correlations. The two curves which
do show some noticeable approximation errors are the curve 1
( , , ) and curve 3 ( ,

, ). The former is caused by the signif-
icantly different mean values (in a relative sense), whereas the
latter is caused by the strong correlation.

Fig. 3 shows how the MVR changes for in (5). In the figure,
and are independent with the same mean and MVR equal to

. We see that the MVR for varies. When and have small
means, is slightly less than . When their means become
large, .

Fig. 2. Normalized CDF of Z = � ln(exp(�X) + exp(�Y )).

Fig. 3. Mean and variance of Z = � ln(exp(�X) + exp(�Y )).

In both Figs. 2 and 3, 10 000 samples were used to generate
each distribution.

VI. GAUSSIAN APPROXIMATIONS FOR LOG-MAP DECODING

We now want to analyze the distribution of (the SLLR
of the extrinsic signal) for Log-MAP decoding. Our purpose
is twofold. First, we want to show that Gaussian approxima-
tions work well. Second, we want to determine the key input
and output parameters in a Log-MAP decoder and understand
their relationships.

Consider the expression from (2). Recall that is
a vector of (independent) Gaussian distributions when the
received signal is subject to AWGN. Suppose is also
Gaussian distributed. Then, the terms and

are also Gaussian distributed. It follows that
and are log-

normally distributed and is the difference between the two
LSLNDs. This observation is summarized as follows.



88 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 1, JANUARY 2005

Fig. 4. Normalized CDF of extrinsic signal (SLLR).

For a convolutional binary code with an infinite block size,
if the received signal is subject to AWGN and the SLLR of
the a priori signal is a Gaussian distribution, then the SLLR of
the extrinsic signal can be well approximated using a Gaussian
distribution.

Although the preceding result says that the SLLR of the ex-
trinsic signal can be approximated using a Gaussian distribu-
tion, its MVR is no longer equal to in general. This occurs
even when the a priori signal has zero information (i.e., ).
Therefore, it is insufficient to characterize the output signal by
its SNR. Instead, two parameters, the mean and variance of the
SLLR need to be used. Since the output signal is fed back to the
next constituent decoder, the a priori signal to a constituent de-
coder also needs to be characterized by the mean and variance
of its SLLR.

In view of the analysis above, we conclude the following.
A Log-MAP decoder can be approximated as a mapping

from to . If is suppressed, the decoder
is simply a mapping from to .

To illustrate the behavior of Log-MAP decoding, we con-
sider the simple -rate, -state, systematic convolutional code

(in octal). The received signal is subject to
AWGN with 1.2609 dB (which corresponds to

0.5 dB when the code is used as a constituent code
of a -rate turbo code). A block size of 500 000 is used in the
simulation.

Fig. 4 shows the normalized CDFs of for different values
of but with . It is observed that for very low values
of , is only roughly approximated using Gaussian distribu-
tions. As increases, the approximation becomes very accu-
rate. When is very high, the approximation becomes slightly
off again.

Fig. 5 plots versus . It is observed that exceeds
for low values of . However, for high values of , the con-
verse is true. The crossover point is critical in determining the
convergence of turbo decoding. A more important feature is that
the crossover point is seriously affected by the MVR. The lower
(or higher) the value of , the lower (or higher) the crossover
point is.

Fig. 5. Mean of extrinsic signal (SLLR).

Fig. 6. MVR of extrinsic signal.

Fig. 6 plots (the MVR of ) versus . It is observed that
when is low, . As increases, may go down a bit
before it quickly picks up. Also, has a significant influence
on the MVR of the extrinsic signal. The higher the former, the
higher the latter.

We emphasize that the phenomena observed in Figs. 4–6 are
common to all convolutional codes.

The influence of the MVR on the performance of the
Log-MAP decoding complicates the characterization of the
decoding behavior. A natural question to ask is whether it
is possible to simplify this characterization. Since the MVR
effectively alters the BER of the SLLR, one possible idea is
to adjust the SLLR so that the MVR becomes but the BER
remains the same. More precisely, given an SLLR , which
is Gaussian distribution with mean and variance ,
we define the adjusted SLLR such that it is a Gaussian
distribution with mean and variance related by
(thus, the MVR ) and that
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Fig. 7. Adjusted means of extrinsic signals (SLLR): global view.

Fig. 8. Adjusted means of extrinsic signals (SLLR): local view.

The parameter (and thus ) can be found out as follows: Since
both and are Gaussian distributed, we have

It follows that

Using and (the MVR of ), we obtain the
following relationship:

Figs. 7 and 8 plot the adjusted versus . They are the
same plots but with different input ranges. It can be seen that the
curves for different MVRs have similar trends but they differ no-
ticeably. This suggests it is possible to use a SISO model (i.e.,

input SNR versus output SNR) to describe the qualitative be-
havior of a Log-MAP decoder. But for more accurate analysis of
Log-MAP decoding, it is necessary to use a model with two pa-
rameters (i.e., the mean and variance, or equivalently, the MVR
of the SLLR) for both the input and output.

Remark 2: It is known [32] that turbo decoding is a partic-
ular instance of a more general decoding algorithm called be-
lief propagation. In [33], it is proved that the LLRs (also called
messages) in a belief propagation algorithm obey the so-called
symmetry (or consistency) condition when the block size is very
large. This condition states that the density function of a mes-
sage obeys

If is a Gaussian distribution with mean and variance ,
the above condition is the same as requiring . When
applied to a scaled LLR with a Gaussian distribution, the sym-
metry condition requires (or MVR ).

Throughout this paper, we will argue for the need of using
two separate parameters (both mean and variance) to model the
(scaled) LLR. This seems to contradict the symmetry condition.
However, the answer lies in the fact that Gaussian distributions
are only approximations. That is, the Gaussian approximation
aims to give a good approximate model by scarifying the sym-
metry condition. We argue that the violation of the symmetry
condition does not create a serious problem. To see this, we note
that the distribution of a (scaled) LLR is mostly one sided and
decays exponentially fast as . Thus, it is not impor-
tant to enforce when either or is
very small. What is much more important is how to capture the
portion of the density with a significant mass distribution using
a simple model, which is achieved by Gaussian approximation.
This claim is also supported by the analysis in Section VI where
the use of adjusted SLLRs (which obeys the symmetry condi-
tion) fails to adequately model the turbo dynamics.

VII. ANALYSIS OF LOG-MAP DECODING

We now give some explanations to the Log-MAP decoding
behavior we observed earlier. More specifically, we try to an-
swer the following questions:

• What causes the errors in Gaussian approximations?
• What causes the MVR to change?

A. Simplified Model for Log-MAP Decoding at High SNRs

To help understand the behavior of Log-MAP decoders, we
derive a simplified model at high SNRs. Here, by a high SNR,
we mean that is large and . The simplified model is
given as follows.

Lemma 4: Suppose is approximately Gaussian distributed
with , the received signal is subject to AWGN, and

Also, suppose that the convolutional code is recursive, the code
block is infinitely long, and the information sequence for
transmission is an all-one sequence. For each , denote by
the set of weight- information sequences with
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which are terminating. Then, the following approximation
holds:

(6)

where is the index for the other information bit with
and is as defined earlier.

We note that the number of weight- information sequences
in can usually be significantly reduced. This is because
those which generate a high weight code can be eliminated
without affecting the computation. In practice, only a few
weight- information sequences need to be included in .

B. Gaussian Approximation Errors

To have a better view of the Gaussian approximation errors in
Fig. 4, we show two magnified local plots of it in Figs. 9 and 10.
Combined with Fig. 4, we can make the following observations
(which are also noted in [10]).

• For low values of , relatively large approximation errors
occur. The two tails are skewed toward lower probabilities
and the center is skewed toward higher probabilities.

• For high values of , the opposite occurs, although the
approximation errors are significantly smaller.

• For some mid values of , Gaussian approximations are
most accurate.

It turns out that the observations above can be explained using
the expression of . Recall from (3) that is the difference
between the two logarithmic terms. Therefore, the accuracy of
the Gaussian approximation for depends on the accuracy of
the Gaussian approximations for the two logarithmic terms. Re-
call that a sum of lognormal distributions can be approximated
using a lognormal distribution with the accuracy of approxi-
mation depending on two factors: the correlations of the indi-
vidual lognormal distributions and variations in their means and
variances. Therefore, to have very accurate approximations, the
individual lognormal distributions are required to have indepen-
dent and identical distributions.

When is low, each of the two logarithmic terms in (3) con-
tains the sum of many exponential terms. Take the first loga-
rithmic term for example. Although are corre-
lated and have different means and variances for different values
of , the influence of the correlations and the variations in the
mean and variance do not have significant contributions to the
Gaussian approximation. There are two reasons for this. First,
the sum is dominated by the terms of

which have the smallest means and that for these
terms, their means and variances are similar. Second, because a
large number of terms are involved in the sum, the correlations
between different terms are relatively weak. Therefore, both

and

Fig. 9. Normalized CDFs of extrinsic signals (local view 1).

Fig. 10. Normalized CDFs of extrinsic signals (local view 2).

are well approximated using Gaussian distributions and their
correlations are again weak because of the large number of terms
involved in the two sums.

The main source of approximation errors comes from
. In fact, has a negative mean and its variance

is not negligible. If we rewrite the term “1” as , then
and it can be viewed as a Gaussian distribution with

zero mean and zero variance. It follows that and have
significantly different distributions, which implies that

is only poorly approximated using a Gaussian distri-
bution. If we approximate using first-order ap-
proximation, i.e.,

then we see that resembles a lognormal
distribution. Fortunately, is usually much
smaller in magnitude compared to , its contribution to is
relatively small. Nevertheless, the lognormal resemblance of

with a negative mean for gives a small
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degree of skewing to the distribution of that we observe in
Figs. 4, 9, and 10.

When is high, the simplified model (6) becomes valid,
i.e., the term disappears, leading to a much
better Gaussian distribution for . The reason for a small degree
of skewing is that the weight- sequences in (6) on the same
side of (either left or right) share some common bits (which
imply correlations) and have different means and variances. The
reason for the skewing in the direction opposite to that in the
case of a low is that the skewing now happens in the second
logarithmic term.

Because the directions of skewing are different for low and
high , there exists a mid range for for which the skewing has
roughly disappeared and the Gaussian approximation is most
accurate.

C. MVR Analysis

Fig. 6 shows that the MVR of is small (below ) when is
low and becomes large (above ) when is high. This behavior
is easily explained using the result in Fig. 3.

We now show that the simplified model (6) can be used to
accurately predict the MVR of at a high SNR. To this end,
we first note that a terminating weight- sequence for

must be

It follows that

where is an information sequence with

otherwise.
In Figs. 11 and 12, are used in to sim-
ulate the simplified model (6). It is clear that these plots closely
match Figs. 5 and 6 in the high-SNR region.

VIII. GAUSSIAN APPROXIMATIONS FOR TURBO DECODING

From the analysis of Log-MAP decoding, we understand that
if and are independent Gaussian white noises, then is
well approximated using a stationary process with a Gaussian
distribution. In turbo decoding, we start with , which is a
Gaussian white noise with zero mean and zero variance. There-
fore, from the first iteration is well approximated using a
Gaussian distribution. We note that is not independent. How-
ever, recalling the spreading property of random interleavers in
Lemma 3, we understand that if a random interleaver is used,
for the next iteration will become effectively independent when
the block size is large. Hence, Gaussian approximations can
continue, i.e., in every iteration is well approximated using
a Gaussian distribution.

To formalize our analysis, we define the Gaussian approxi-
mation model for a turbo decoder as follows:

For each decoding iteration, the SLLR of the a priori signal
is well approximated using an uncorrelated Gaussian dis-
tribution and the SLLR of the extrinsic signal is well ap-
proximated using a (possibly locally correlated) Gaussian
distribution.

Fig. 11. Means of extrinsic signals (SLLR): simplified model.

Fig. 12. MVRs of extrinsic signals: simplified model.

To check the validity of the Gaussian approximation model,
we compare it to turbo decoding using an example. The turbo
code in this example is a -rate one with ,

, and a pseudorandom interleaver. We take
0.3 dB which is about 0.8 dB away from the Shannon

limit. Twelve iterations are used. For the method using the
Gaussian approximation model, in each iteration is chosen to
be a Gaussian distribution with the same mean and variance as
those for the fed into the corresponding iteration of the turbo
decoding. Fig. 13 compares the means and variances of in
the two cases. It is clear from the figure that the Gaussian ap-
proximation model gives a very good match to turbo decoding.
However, there are some small but noticeable errors. These are
caused by the fact that Gaussian approximations are slightly
skewed when is either small or very large, as we pointed
out earlier. More precisely, the Gaussian approximation model
tends to slightly overestimate the and underestimate at
a high SNR. At a low SNR, the opposite is true although the
estimation errors are not as serious.
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Fig. 13. Validity of Gaussian approximation.

Fig. 14. BER estimate using Gaussian approximation.

If the turbo decoding is terminated after iteration , the BER
can be estimated by

BER (7)

where and are the mean and variance of the systematic
part of , respectively, and denote, respectively,
the and from iteration , and is the CDF for the
Gaussian distribution with zero mean and unity variance.

Fig. 14 shows how well this BER estimate is. The turbo code
used here is a -rate one with , pseu-
dorandom interleaver, , and 0.3 dB. It is
observed that the Gaussian approximation tends to overestimate
the BER slightly when it is large . This is consistent
with Fig. 9. When the BER is small, the Gaussian approximation
tends to underestimate it. This is also consistent with Fig. 9. We
also note that the BER estimation error by the Gaussian approx-
imation becomes very significant when the BER is very small

. A part of the reason for the Gaussian approximation
to fail at very low BER is that there are simply not enough error
bits in a block to “influence” the estimates of the mean and vari-
ance. Simulations suggest that the Gaussian approximation pre-
dicts the BER reasonably well provided that the BER is higher
than the inverse of the block size. In our example, this BER value
is .

Part 3: Dynamics of Turbo Decoding

In this part, we analyze the dynamic behavior and conver-
gence properties of turbo decoding (Sections IX–XII). We will
also study some simple applications (Section XIII).

It is known that the outputs of turbo decoding typically “con-
verge” at either some constant values or a quasi-periodic trajec-
tory as the number of iterations increases. Occasionally, a seem-
ingly convergent decoding trajectory may suddenly “diverge”
and move into a different trajectory. A detailed account of these
behaviors can be found in [5] and the references thereof.

These behaviors, however, are the consequence of having a
finite code block size . Recall that when , the decoding
output for each iteration becomes an ergodic random process.
Each decoding instance is a realization of the random process
and the decoded signal has the same statistics (with probability

). Therefore, we conclude that, as , the state of the
decoded signal either converges at a finite stable fixed point or
diverges. As we will see later, the former scenario occurs only
at a low-SNR value, leading to a large BER. In contrast, the
latter scenario leads to an ever-increasing SNR and thus arbi-
trarily low BER. However, when the block size is finite, this
trend cannot be sustained indefinitely. As the number of itera-
tions increases, the spreading property of the (de)interleaver be-
comes less effective, causing the decoding process to converge
at a high (but finite) SNR point. Thus, we have two stable fixed
points, one with a low SNR and one with a high SNR. This con-
clusion is consistent with [34] which is obtained by studying
low-density parity-check (LDPC) codes and the belief propaga-
tion algorithm.

One key difference between these two types of fixed points
is that the low–SNR ones cannot be improved by increasing the
block size, whereas the high-SNR ones have their SNR values
improved indefinitely as the block size increases. Another key
difference is that the low-SNR fixed points can be avoided
when the received signal has sufficient . The required
threshold of depends on the constituent encoder but
is typically a fraction of a decibel away from the Shannon
limit when the block size is large. It is these low-SNR fixed
points which prevent the corresponding turbo codes to reach
the Shannon limit when the block size approaches infinity.
In contrast, the high-SNR fixed points cannot be avoided,
implying that a small BER is never avoidable, although it can
be made arbitrarily small by increasing the block size.

Turbo dynamics is in fact much more complex than indicated
by the two stable fixed points. The complete picture is illustrated
in Fig. 15. The turbo code used here is a -rate code with

, 0.1 dB, , and a pseudo-
random interleaver. We see from the figure that there is a stable
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Fig. 15. Dynamics of turbo decoding.

equilibrium manifold at which every turbo decoding trajectory
converges,regardless of what the initial point is. On the stable
manifold, there is a stable fixed point with a low SNR which
is paired with an unstable fixed point above it. The whole state
space (i.e., the space of ) is divided into two regions by
the so-called stability boundary which intersects the unstable
fixed point. When the initial state is to the left of the stability
boundary, the decoding trajectory quickly moves to the stable
equilibrium manifold and then converges at the stable fixed
point with a low SNR. When the initial state is to the right of the
stability boundary, the decoding trajectory again approaches
the stable equilibrium manifold very quickly, then moves to the
right along the manifold for a while but eventually converges at
a stable fixed point or region with a high SNR.

The scenario in Fig. 15 corresponds to the case where
is below a certain threshold. If exceeds this threshold, the
stable and unstable equilibrium points coalesce and disappear.
In this case, there is no stability boundary. That is, no matter
where the initial point is, the decoding trajectory always con-
verges at a stable fixed point or region with a high SNR, and the
final SNR is only limited by the block size.

When is slightly above the threshold mentioned above
(e.g., by a small fraction of a decibel) and the block size is finite
but not too small, the dynamics in Fig. 15 is still roughly valid.
The main difference is that the equilibrium manifold, the fixed
points, and stability boundary all become somewhat fuzzy. This
leads to the typical decoding phenomena mentioned earlier. In-
deed, the fuzziness of the upper part of the stable equilibrium
manifold is clearly visible in Fig. 15. Following this observa-
tion, it is clear that the high-SNR fixed point varies from one
block to another considerably.

The detailed analysis of the turbo decoding dynamics are
given in the following sections.

TABLE I
E =N THRESHOLDS FOR AVOIDING LOW-SNR EQUILIBRIUM POINTS

IX. LOW-SNR ANALYSIS

The low-SNR stable equilibrium point is invariant when the
block size becomes very large due to the ergodicity of . Thus,
they can be easily found by simulating a single but long block
code. By adjusting the value of , we can easily search for
the threshold at which the low-SNR equilibrium point vanishes.
Table I gives a list of SNR thresholds for different turbo codes.
In these examples, the coding rate is .

It is interesting to note from these examples that the thresh-
olds are all a fraction of a decibel away from the Shannon limit
( 0.4906 dB). This means that the Shannon limit cannot be ap-
proached by merely increasing the block size. Table I also shows
that little gain is made by increasing the number of states be-
yond 16. We stress that these thresholds do not rely on Gaussian
approximations.

We note that the threshold values in Table I are similar but
somewhat different from those given in [11]. We suspect that
the differences are caused by the possibility that, in [11], the
a priori signal (not its LLR) in each iteration is replaced by
a Gaussian signal with an equivalent SNR. In our analysis, no
such approximation is used. Our values are more accurate than
those given in [11].
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Fig. 16. Trellis diagram for G(D) = (1; 5=7). (a) From i to i + 1. (b) From k � 1 to k + 7.

If a low-SNR fixed point exists, the BER of turbo decoding
can be easily calculated. Indeed, when reaches a
stable fixed point , so does , and its fixed point

is given by

(8)

Consequently, the BER of turbo decoding is given by

BER (9)

We point out that the idea of using simulations to search for
thresholds has also been used in [14] where thresholds

are estimated for a number of rate- codes. What is new in
this paper is that we justify the simulation method using the
ergodicity theory.

X. HIGH-SNR ANALYSIS

In order to understand the behavior of turbo decoding at a
high SNR, it is necessary to study the simplified model (6). To
help this study, we use a simple example of a -rate convolu-
tional code with . We denote the systematic
sequence and parity sequence by and , respectively. Its trellis
diagram is shown in Fig. 16(a). The brackets on the left of the
trellis indicate the systematic and parity bits corresponding to
each branch of the trellis.

For a given , the computation of involves only weight-
sequences, denoted by , which takes for each element ex-
cept and , . Two of
these weight- sequences (corresponding to and )
are shown in Fig. 16(b) (thick arrows). For the first (shorter)
weight- sequence, the systematic and parity bits are given by

Similarly, for the second weight- sequence

The third weight- sequence (not shown) is given by

For notational simplicity, we denote the systematic part and
parity part of by and , respectively, denote by , and
drop the index in , , and . Then, the contributions of the
three weight- sequences above to are given by

respectively. If we use to denote the contributions
of the weight- sequences “traveling” to the left (i.e., with

), we can rewrite (6) as

(10)

where

and is similarly defined. In particular, note that and
are independent and have the same statistics.

Also, from the expressions of , we note that they
share common terms. By re-arranging the terms, can be al-
ternatively expressed using the following recursion:
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The preceding observations also apply to a general convolu-
tional code. We have the following result.

Lemma 5: Given a -rate systematic, recursive, binary
convolutional code with an infin-
itely long block size, suppose and are coprime
and monic polynomials with the same degree. Denote by

the weight of the parity sequence corresponding to the
shortest weight- information sequence. Suppose the SLLR of
the received signal and SLLR of the a priori signal are
independent Gaussian white noises with means and and
variances and , respectively. Then, the simplified model
(6) of the SLLR of the extrinsic signal , when only the first

weight- sequences on each side of the trellis are included,
can be rewritten as (10) with

(11)

where are independent Gaussian variables with the
following distributions:

(12)

where denotes a Gaussian distribution with mean
and variance .

Using the model in (10) and (11), we can analyze the evolu-
tion of and . Each iteration can be viewed as a mapping

from to , i.e.,

A careful examination of (10) and (11) shows that the mapping
is affine with respect to , i.e.,

Hence, we only need to examine the decoding behavior for
. Given (noting that ), and and , the corre-

sponding and can be computed numerically.
Fig. 17 demonstrates a typical decoding behavior at a high

SNR. This example uses . Two values of
are used. We consider the case of first.

We see that when is small, . As becomes large,
. This implies that there is a crossover point which is

a stable fixed point for where . This point occurs at
about . At this point, . Although the plot
shows up to , there are no other crossover points for

. Similar observations apply to the case of .
In this case, the stable fixed point occurs at and at this
point, . If we reduce further, will
become negative.

From the preceding discussion, we reach the following
conclusion.

Fig. 17. EEE versus AAA at a high SNR.

TABLE II
E =N THRESHOLDS: FOR DECODED SNR ! 1

As the iteration number increases, no matter what the
initial values of and are (provided that the sim-
plified model is valid), and will approach
constant values. Moreover, if approaches a posi-
tive constant, the SNR of the extrinsic signal (and thus the
a posteriori signal) will increase indefinitely as the itera-
tion number increases. Conversely, if approaches
a negative constant, (and thus ) will decrease indefi-
nitely until the simplified model is no longer valid.

We remark that the conclusion above holds for every turbo
code. Table II lists, for different turbo codes, the threshold
values of for the asymptotic value of to be
positive. Since these thresholds are far below the Shannon limit,
the corresponding turbo decoding always diverges. In fact, the
only parameter that determines whether the asymptotic value
of is positive or not is . Table II shows that for any
turbo code where , approaches a positive value.
The following lemma shows that all commonly used turbo
codes possess this property.

Lemma 6: Suppose the constituent encoder
is such that and are coprime,

monic, with the same degree, and has an odd weight.
Then, .

Note that all commonly used have an odd weight for
their (both primitive or nonprimitive polynomials).

XI. FIXED POINT AT TERMINATION

For a turbo code with a finite (but large) block size, the effect
of correlations in can no longer be ignored when the number
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Fig. 18. Three stages of turbo decoding.

of iterations increases. Although the exact effect is difficult to
analyze, simulations show that the variance will increase dra-
matically as the number of iterations exceeds a certain value. As

(and thus ) increases, the increment can no longer
be sustained (see Fig. 17). As falls to zero, the decoding
converges. Due to the finite block size, only quasi-convergence
is achieved, i.e., or converges at a small neighborhood.

Also, due to the finite block size, which breaks down the er-
godicity for when the number of iterations is large, the fixed
point at the termination varies from one block to another consid-
erably. For each block, the decoded BER can still be estimated
using (9). However, the resulting BER is only indicative be-
cause there are typically too few error bits to make the estimate
accurate (This is a common problem when estimating the tail
distribution using a finite number of samples.) Also, the BER
varies significantly from one block to another and thus needs to
be averaged over many blocks.

Fig. 18 illustrates the convergence at termination. The ex-
ample used is with 0.25 dB. The
three stages of decoding behavior are clearly seen in Fig. 18. The
circles on one of the curves correspond to the values of
for different iterations. In the first several iterations when is
very small, good increments of are seen. In the following
several iterations when is close to a “potential” low-SNR
fixed point, increments of become small. Once this re-
gion is passed and decoding enters the high-SNR region, the
simplified model (10)–(11) takes over. In this region, starts to
converge and good (and roughly) constant increments of
are seen. Finally, when the number of iterations increases fur-
ther, increases very quickly, causing and to converge.
It is also seen in the figure that the longer the block size, the
larger the final value of tends to be. However, there is a large
variation in the final state for different code blocks due to the
breakdown of the ergodicity.

XII. THE INADEQUACY OF SISO MODELS

In this section, we show two SISO models that are inade-
quate for characterizing the dynamics of a Log-MAP decoder.

The corresponding input–output parameters are SNR and mu-
tual information. We point out the “strange” phenomenon that
a Log-MAP decoder can take an input with a very high SNR
or very good mutual information and produce an output with a
much lower SNR or poorer mutual information. To this end, we
first need to explain how mutual information is defined.

Recall that can be approximated using . We need
to consider since this is the true input signal. Its
probability density function is given by

The mutual information between and (or ) is defined as
in [26]

Simplifying the above leads to

This implies that is a function of (or the SNR of ).
For this reason, we will denote as . It can be shown
that is a monotonically increasing function with
and .

We note that our definition of mutual information is consis-
tent with the definition in [9], [10] but without enforcing the
mean-to-variance relationship .

Fig. 19 offers an alternative view of the turbo dynamics for the
same turbo code as in Fig. 15. This is a flowchart for Log-MAP
decoding. On the chart, each circle represents an input to the
Log-MAP decoder and the attached stem represents the dif-
ference between the output and input. The stable equilibrium
manifold is clearly visible in the flowchart. We observe that
when the input is far away from the stable equilibrium mani-
fold, Log-MAP decoding makes big steps toward the manifold.
In contrast, only small steps are made when the input is on the
manifold.

To demonstrate the strange phenomenon mentioned above,
we consider the input . Obviously, the input
SNR is infinity and the input mutual information equals (per-
fect). However, the output of Log-MAP decoding has
but , i.e., the output SNR or mutual information is much
worse than the input. If we continue with more iterations, the
decoding trajectory will eventually lead to the low-SNR fixed
point, as shown in Fig. 15. It is also interesting to note that this
strange phenomenon also occurs when is to the right
of the stability boundary in Fig. 15 or even when the stability
boundary is nonexistent. Indeed, given any input with

and sufficiently small , the output has a
worse SNR or mutual information than the input.
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Fig. 19. Flowchart of turbo decoding.

XIII. APPLICATIONS

Understanding of turbo dynamics is useful in aiding the de-
coding process. Here we study two issues: decoding termination
and fast decoding.

A. Decoding Termination

Many termination algorithms are available. Notable examples
include the cross-entropy method [3], hard-decision-aided cri-
teria [27], and the average log-likelihood threshold method [5].
Their common aim is to try to terminate the decoding as early as
possible but with a minimal effect on decoding errors. The basic
idea in all these algorithms is to check how well the decoded
output signals converge and declare termination when certain
convergence criteria are met.

From our analysis of turbo dynamics earlier, we understand
that the state of the decoder is represented by . There-
fore, it is natural to establish termination criteria using .
For example, termination can occur if is such that a suf-
ficiently high SNR is reached or if starts to converge or
oscillate.

One question to ask when using is how to compute
it (noting that the information signal is not known). To answer
this question, we recall that the SLLR signal is related to the
LLR signal (which is available) as follows:

This implies

Using the assumption that has a Gaussian distribution, there
exists a one-to-one (nonlinear) mapping between and

which can be precomputed and stored in a
lookup table. Note that can be easily computed
on-line.

Alternatively, we may simply use the approximation that

which is very accurate when is large and is reasonably ac-
curate in most cases when decoding is close to termination. It
follows that

B. Fast Decoding

Many suboptimal decoding algorithms exist which are faster
than the Log-MAP algorithm. Examples include the soft-output
Viterbi algorithm (SOVA) [28] and the Max-Log-MAP algo-
rithm [3]. However, suboptimal decoding algorithms yield a
larger BER, or, equivalently, requiring a higher .

The question we ask is: Can we speed up the decoding process
without sacrificing the BER?

It turns out that this is quite possible. The key lies in two
observations of turbo dynamics. Returning to Fig. 18, we first
observe that the improvement of is very uneven for
different iterations. More specifically, small improvements are
made when is close to a potential low-SNR fixed point
but large improvements are made elsewhere. This suggests that
a suboptimal decoder can be used when is not close
to a potential low-SNR fixed point. The only criterion for the
suboptimal decoder is that it should also maintain a flow of
improvement for . The second observation is that the
decoding trajectory always converges at a stable equilibrium
manifold. This suggests that if a suboptimal decoder is found
to be inadequate, we can always switch back to Log-MAP de-
coding without causing decoding failure. The only drawback
of this switching is the potential computing cost “wasted” by
the suboptimal decoder. However, provided that an appropriate
switching strategy is used, an overall time saving is possible.

Fig. 20 compares three decoding methods. The turbo code has
-rate, , , and a pseudorandom

interleaver. The three methods are: Log-MAP, MAX-Log-MAP,
and a Hybrid method which will be explained later. It is assumed
that a MAX-Log-MAP iteration is twice as fast as a Log-MAP
iteration, and thus counted as half an (equivalent) iteration. This
assumption is based on the facts that a MAX-Log-MAP decoder
can be implemented as a modified SOVA decoder [29] and that
SOVA decoding is half as complex as Log-MAP decoding [3].
Thirty equivalent iterations are shown in the figure for
0.2, 0.3, 0.4, and 0.6 dB, respectively.

For low values of (0.2 and 0.3 dB), we see that
MAX-Log-MAP performs slightly better than Log-MAP for
a small number of equivalent iterations, but as the number
of iterations increases, Log-MAP becomes better. There is a
significant margin of BER asymptotically. However, at higher
values of (0.4 and 0.6 dB), MAX-Log-MAP outper-
forms Log-MAP. What is more interesting (and somewhat
surprising) is that as the number of iterations becomes very
large, MAX-Log-MAP decoding has a slightly lower BER floor
than Log-MAP decoding. This phenomenon is more evident
at 0.6 dB. Although only 30 equivalent iterations
are shown, both decoding methods have roughly converged by
then.

The hybrid method uses a very simple heuristic rule: it applies
MAX-Log-MAP for the first iteration and whenever the average
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Fig. 20. Comparisons of decoding methods. (Legend: dashed curves for
MAX-Log-MAP, solid curves for Log-MAP, and dotted curves for Hybrid. Top
two curves: E =N =0.2 dB; next three curves: E =N = 0.3 dB; next three
curves: E =N = 0.4 dB. Bottom two curves: E =N = 0.6 dB.)

of in the previous iteration is increased by when com-
pared with the iteration before; otherwise, Log-MAP is used.
The purpose is to demonstrate that it is possible to take the ad-
vantages of both Log-MAP and MAX-Log-MAP methods to
give a decoding method which outperforms the both of them.
This is achieved for 0.3 and 0.4 dB when the number
of equivalent iterations exceeds 16 and 17, respectively.

We remark that the rule used in this hybrid method is not
optimized. More improvement may be possible if the rule is
properly tuned. However, we do caution that the hybrid method
requires both Log-MAP and MAX-Log-MAP algorithms
which may complicate the hardware/software implementation.
Also, the assumption that MAX-Log-MAP is twice as fast as
Log-MAP may not be realistic for a specific implementation.
Nevertheless, the idea behind the hybrid method is hoped to
provide a new direction for improving the decoding speed.

XIV. CONCLUSION

In this paper, we have proposed a stochastic approach to the
modeling and analysis of turbo decoding. Two key results, er-
godicity and Gaussian approximations, have been established
which lead to some new understanding of turbo decoding. In
particular, we are able to build a simple dynamic model for turbo
decoding and reveal the intricate behavior of turbo decoding un-
known previously.

Some concluding remarks are in order.
First, we note that we have restricted our study to turbo codes

without puncturing. It is straightforward to generalize the anal-
ysis to turbo codes with puncturing. The only difference is that
if a turbo code is punctured, the input–output signals are no
longer stationary. Instead, these signals become (quasi-)cyclo-
stationary if a (quasi-)periodic puncturer is used. However, a
slightly weaker notion of stationarity called asymptotic mean
stationarity [31] can be used to study the ergodicity. This al-
lows us to maintain the essential property that the statistics of
the extrinsic signals can be computed from a single realization,

ensuring that Gaussian approximations and modeling of turbo
dynamics work as in the case without puncturing.

Second, the stochastic approach generalizes naturally to other
types of turbo codes, including turbo codes with more than two
constituent encoders and those with serial concatenations. It
would be interesting to conduct a comparative study of different
types of turbo codes using the stochastic approach.

Third, the stochastic approach generalizes to other iterative
decoding schemes, including the well-known sum-of-product
based iterative schemes [30] for LDPC codes. The ergodicity re-
sult in this paper can be easily extended to regular LDPC codes.
For irregular LDPC codes, it seems that the weaker notion of
asymptotic mean stationarity [31] can be used to establish a
similar ergodicity result. Gaussian approximations should still
be valid for any sum-of-product decoding schemes. More pre-
cisely, if the input variables have lognormal distributions with
similar statistics, then the output variables of a sum-of-product
decoder are well approximated using lognormal distributions.
We note that there is a lot of work done on stochastic analysis
of LDPC codes, see, e.g., [33], [34]. We hope the approach used
in this paper can complement and expand the work in this area.

Finally, we expect that the better understanding of turbo de-
coding we have gained from the stochastic approach is useful
in searching for more powerful turbo codes and more efficient
decoding algorithms. The fast decoding example in this paper
demonstrates this point.

APPENDIX

PROOFS

A. Proof of Lemma 1

For simplicity, we prove the result for . The proof for a
general case is similar except that the notation is more involved.
Let be a given region in . Suppose is a rectangle, i.e.,

. Then, for any infinite sequence
and

Denote by the number of for which
. It follows from the ergodicity of that

as

with probability . From the ergodicity of , we have, with
probability

In the above, is the probability measure for , .
Hence,

(13)
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with probability , as . Indeed, this holds even
when because this corresponds to the case where

and in this case, the limit above is still true.
Now, suppose a given measurable set is nonrectangular. In

this case, we may approximate it to an arbitrary precision using
the union of a finite set of disjoint rectangular sets and
apply the ergodicity result above to each of these rectangular
regions. Hence, the ergodicity result still holds for any region .

B. Proof of Lemma 2

Since the function is time invariant, the random process
is stationary. Given any interval , then the set

is a measurable set in because is a measurable
function. Hence, for any infinite sequence

with probability .

C. Proof of Theorem 1

We prove Theorem 1 for only since the proof for is
similar. Note from (2) that the function for computing is
stationary (with respect to ) and measurable. We define random
processes and as

Hence, the set of these new random processes are both indepen-
dent and independent of each other. From Lemma 1, they are
jointly ergodic. Returning to (2), can now be viewed as a
function of and . Obviously, this function is measur-
able. It follows from Lemma 2 that is ergodic.

D. Proof of Lemma 3

Given any , there are at most number of
such that . For each of these , since is chosen
randomly, the probability that is at most

. It follows that

which approaches as . This is the same as (4).

E. Proof of Theorem 2

We start with . Note that is an ergodic
random process when . It follows from Theorem 1 that

approaches an ergodic random process as . This
random process is not necessarily independent. However, the
dependence is only “local” in the sense that the dependence be-
tween and vanishes as becomes suffi-
ciently large. This property follows from Remark 1. Hence, the
spreading property of given in Lemma 3 implies that after in-
terleaving, the resulting for the next iteration becomes

independent as . Also, is independent of
due to the random interleaving. Hence, by invoking Theorem
1 again, it follows that approaches an ergodic random
process as . Similarly, after de-interleaving, the resulting

for the next iteration becomes independent as .
The arguments above can continue for other iterations. Hence,

approaches an ergodic random process for each when
.

F. Proof of Lemma 4

Recall the expression (2) for . Consider any information
sequence with in the first logarithmic sum. In order for

to have a noticeable contribution in the sum, must be termi-
nating. Since the convolutional code is recursive, such a must
be at least weight- , i.e., must equal for at least two .
When is large and the MVR is , the contributions of these
sequences to the logarithmic sum are negligible. It follows that
the first logarithm sum is negligible. In contrast, the second log-
arithmic sum dominates. For this sum, again, we only need to
consider terminating weight- information sequences because

is large. For each such sequence, there is only one term
contributing to the logarithmic sum.

G. Proof of Lemma 5

The expressions for are derived similarly to the ex-
ample prior to Lemma 5. The terms have
independent Gaussian distributions because and are
independent Gaussian white noises. Due to the properties of

and , the parity sequence corresponding to the
first (shortest) weight- information sequence has the patten

, where with the weight
sum equal to . Similarly, the parity sequence
corresponding to the second weight- information sequence
has the pattern .
In particular, the two sequences above share parity
bits. Similarly, if we continue this exercise, we will find that
the th and th parity sequences share parity
bits. Using this fact, the means and variances in (12) are easily
verified.

H. Proof of Lemma 6

Let be the weight- information sequence which
yields the minimum weight for the parity sequence. Then,

for some polynomial . Since
has an even weight and has an odd weight,

must have an even weight. This means that the parity sequence,
which equals , must have an even weight. There-
fore, we only need to eliminate the possibility that the weight
of equals . Since and are monic and
with the same degree, having weight equal would
mean that , violating the assumption that

and are coprime.
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