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Abstract

This chapter discusses two important yet challenging theoretical problems
for control systems, namely, the static output feedback stabilization problem
and the structured singular value problem. Both problems are well known in
the control literature and have been intensively studied. This article introduces
several known results related to the computational complexities of these prob-
lems, with the aim to encourage new research on them.
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1 Introduction

Since the classical work of Bode, control theory has been around for over 60 years,
making major contributions to a wide range of engineering, scientific, medical and
social applications. To some extend, the field has reached a certain degree of maturity
and many new branches of control theory have emerged which penetrate deeply into
neighboring disciplines. Yet some of the classical control problems remain unsolved.
The purpose of this chapter is to discuss two of such problems.

The two classical control problems we study here are the static output feedback
stabilization problem and the structured singular value problem, both being well
known in the literature with a vast amount of work devoted to them. This chapter
introduces some of the known results on the computational complexities of these
problems. Our aim is to raise new interest in these problems so that new and better
algorithms or solutions can be found for solving them.

Due to the fact that these two problems are quite different in nature, we will
discuss them separately. But their common thread is their algorithmic difficulties. For
this reason, we will start with some brief discussion on the theory of computational
complexity.

2 Basics of Computational Complexity

In theory of computational complexity, numerical problems are classified according
to the computational time required for solving them on a Turing machine which is a
sequential digital computer with Boolean operations.
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Only decision problems are considered. For example, instead of asking “what is
the minimum value of a given quadratic function y = f(x)”, we ask whether the value
of quadratic function can be less than a given value. The former is an optimization
problem whereas the latter is a decision problem. The reason is that the two questions
have very similar levels of computational complexity. More precisely, if there is an
efficient algorithm for the decision problem, the optimization problem can be easily
solved to an arbitrarily high precision using a bisection method. This method starts
with some pre-assigned lower bound y and upper bound ȳ and repeat the following
steps until the two bounds are sufficiently close:

• Take y∗ = (y + ȳ)/2;

• Check if there exists x such that f(x) ≤ y∗. If yes, reset ȳ = y∗, else reset
y = y∗.

Note that the bisection algorithm solves the decision problem repeatedly, but two
bounds converge very quickly. A lot of algorithms more efficient than the bisection
algorithm can also be used, depending on the given problem.

The complexity class P denotes a class of decision problems which can be solved
by a deterministic Turing machine in polynomial time. The class NP denotes a class
of decision problems which can be solved by a nondeterministic Turing machine in
polynomial time, including P as a subclass. The exact definitions of these two classes
are involved and can be found in Garey and Johnson [15] and Papadimitroius and
Steiglitz [23]. Roughly speaking, every P problem has a deterministic polynomial
time algorithm, and every NP problem has deterministic exponential time algorithm.
An algorithm is called deterministic if it gives a definitive answer (yes or no) for the
given problem data. Most commonly used algorithms are of this kind.

The term polynomial time algorithm (or polynomial algorithm for short) means an
algorithm which requires only a polynomial number of steps and polynomial storage
to excute on a Turing machine. The data (called instance) of a decision problem are
assumed to be rational to avoid the complexity issues for real numbers.

Checking whether a given matrix is nonsingular is a simple example of P problems.
The formal statement of the problem is as follows:

Instance: Given an n× n matrix A with rational entries.
Question: Is det(A) 6= 0?
Examples of P problems are abundant in control theory: controllability and ob-

servability of a linear system (the decision problems are whether the system is con-
trollable and whether the system is observable), LQG control and H∞ control (the
decision problems are whether there exists a controller so that the LQG cost or H∞
norm of the closed-loop system is less than a given level). In fact, when formulated
as a decision problem, most classical control algorithms are in P.

A simple example of NP problem, which is not known to be P, is the maximization
of a convex quadratic function. A convex quadratic function has the form f(x) =
xT Qx+ bT x+ c, where Q ∈ Rn×n, b ∈ Rn, and c ∈ R are given data and x ∈ Xn with

Xn = {x ∈ Rn : |xi| ≤ 1}

which is also given. Minimizing such a quadratic function is known to be a P prob-
lem and can be easily solved by using algorithms such as Newton gradient method.
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However, maximizing such a function is much harder. To check the computational
complexity of the problem, we need to formulate it as a decision problem, as follows:

Instance: Given Q ∈ Rn×n, b ∈ Rn, c ∈ R and α with rational entries.
Question: Does there exist x ∈ Xn such that f(x) = xT Qx + bT x + c > α?
The parameter α is introduced so that the maximization problem becomes a de-

cision problem. As explained earlier, a bisection method can be applied to find the
maximum with any required level of accuracy.

To see that the decision problem above is in NP, we simply note that Xn is a n-
dimensional box and the maximum of a convex function occurs at one of its vertices.
Since there are 2n vertices and checking whether f(x) > α at a given vertex is a
simple problem (P problem), the decision problem can be solved with exponential
time complexity, hence a NP problem.

Examples of other classical NP problems which are not known to be P include
the traveling salesman problem, the maximum cut problem, and the 3-SAT problem
[15, 23].

It is generally believed that NP 6= P, although it has been a great challenge in
combinatoric optimization for the last several decades to prove or disapprove it. A
decision problem is called NP-complete if it lies in NP and every NP problem can
be transformed in polynomial time into this problem. All the non-P examples of NP
above are NP-complete. All NP-complete problems are equivalent in the sense that
they can be reduced into each other in polynomial time.

A problem is called NP-hard if an NP-complete problem can be reduced to this
problem in polynomial time. An NP-hard problem does not have to be in NP. In
control theory, the structured singular value problem, which is to be studied in this
chapter, is known to be NP-hard [3]. So, an NP-hard is at least as “hard” as a
NP-complete problem.

In proving that a control problem (or problems in other disciplines) is NP-hard,
we usually make no assumption for the problem data to be rational. Instead, we
typically analyze the special case where the problem data are rational and show that
it is NP-complete. As a result of it, the general case where the data are allowed to
be real is NP-hard.

3 Static Output Feedback Stabilization Problem

Consider a linear time-invariant system

ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t), (3.1)

where x(t) ∈ Rn is the state, u(t) ∈ Rm is the control input, y(t) ∈ Rr is the
measured output, and A, B and C are known matrices with appropriate dimensions.
The problem of static output feedback stabilization is to find a constant matrix K ∈
Rm×r such that the controller

u(t) = Ky(t) (3.2)

stabilizes (3.1), namely, the closed-loop matrix A + BKC is Hurwitz, i.e., its eigen-
values are all in the open left half plane.
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From algorithmic point of view, we want to find an algorithm which can determine,
in a “computationally tractable” way, whether any given system (3.1) admits a static
output feedback stabilizer (3.2). By “computationally tractable”, we mean “with
polynomial complexity.”

This seemingly simple problem has been challenging the control researchers ever
since the time of Bode. It is well known that dynamic output feedback stabilization
is a trivial problem to solve. The necessary and sufficient condition for stabilizability
is that [27] the system the pair (A,B) is stabilizable and the pair (A,C) is detectable.
However, the restriction of static output feedback makes the problem far more diffi-
cult. Despite of many attempts to solve this problem, no satisfactory solutions have
been found. Early work mainly focused on finding algorithms which can lead to stabi-
lization. However, such algorithms typically require strong conditions on the system
or fail to work in general. In recent years, focus has been shifted to considering the
potential inherent computational difficulties of the problem. Three such attempts are
to be discussed in this chapter.

At this point, the reader may wonder why we are so obsessed with the static
output feedback stabilization problem. The main reason is that many important
control problems are inherently related to this problem. Anyone familiar with the
modern control theory can point to many wonderful algorithms for control design,
such as LQG design and H∞ control. But often the time, these algorithms require
the controller to be of full order. In many applications, low-order controllers are
preferred. So there is a serious gap between good known control algorithms and
practical control requirements. If we restrict the order of the controller to be a low-
order one, the problem becomes hard, just as the static output feedback stabilization
case. Here we list two such problems as examples.

The first one is the fixed-order control problem. In this case, we consider the
following system:

ẋ(t) = Ax(t) + B1w(t) + B2u(t)
z(t) = C1x(t) + D11w(t) + D12u(t)
y(t) = C2x(t) + D21w(t) (3.3)

where x(t), u(t) and y(t) are as before, w(t) ∈ Rp and z(t) ∈ Rq are exogenous input
and controlled output, separately, and A,B1, B2, C1, C2, D11, D12 and D21 are known
matrices of appropriate dimensions. The controller takes the following form:

ẋc(t) = Acxc(t) + Bcy(t)
u(t) = Ccxc(t) + Dcy(t) (3.4)

where xc(t) ∈ Rnc is the state of the controller with its order nc given, and Ac, Bc, Cc

and Dc are controller parameters to be designed. The control objective is to find a
controller (3.4) such that the H∞ norm of the closed-loop system, i.e., the transfer
function from w(t) to z(t), is less than a given level, say, one. Accordingly, we seek
a computationally tractable algorithm to determine if such a controller exists for any
given system (3.3) and nc.

It is obvious that when nc = n, we have the so-called full-order control problem,
which has been well studied and there exist simple algorithms of polynomial com-
plexity; see, e.g., [7]. Although we do not go into details here, but it can be shown
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that the problem is still relatively easy to deal with when nc = n − 1. The problem
becomes difficult when nc < n − 1. The static output feedback case where nc = 0 is
a special but important case.

We remark here that the level of difficulties of the above problem does not depend
on the H∞ performance requirement. The same difficulty remains when another
performance index, for example, quadratic cost as used in classical LQG control, is
used, or even when stabilization is the mere objective.

The second example related to static output feedback stabilization is static output
feedback D-stabilization. For the same system (3.1) and controller (3.2), the objective
here is to find K such that the closed-loop system has eigenvalues distributed in the
desired region D. By distribution, we mean that the region D can consist of several
disjoint sub-regions and a fixed number of eigenvalues are required in each sub-region.
Obviously, if D is the open-left half plane involving no sub-region, the D-stabilization
problem is the usual stabilization problem. On the other hand, if D consists of
n fixed points in the complex plane, the D-stabilization becomes a pole-placement
problem. The purpose of D-stabilization is to provide some guarantee on the closed-
loop performance.

From computational complexity point of view, the level of difficulty of the D-
stabilization problem does not appear to depend on D. That is, the problem appears
equally hard for most regions. Also, the problem does not appear to become easier if
a fixed-order controller (3.4) is used when nc < n− 1.

We now set out to discuss three attempts for the static output feedback stabiliza-
tion problem.

3.1 Static Output Feedback Stabilization with Confined Feed-
back Gain

This result is due to Blondel and Tsitsiklis [1]. Unlike the standard output feedback
stabilization problem, they restrict the feedback gain K to be in a confined region.
That is, given kij and k̄ij , 1 ≤ i ≤ m, 1 ≤ j ≤ r, K = {kij} is required to have

kij ≤ kij ≤ k̄ij (3.5)

The result is as follows:

Theorem 3.1 [1] The following problem in NP-hard:
Instance: Positive integers n,m and r, n×n matrix A, n×m matrix B and r×n

matrix C with rational coefficients, and rational numbers kij and k̄ij, 1 ≤ i ≤ m,
1 ≤ j ≤ r.

Question: Does there exist a real matrix K = {kij} satisfying kij ≤ kij ≤ k̄ij and
that A + BKC is Hurwtiz?

Remark: At first glance, the result above appears to have shown that the static
output feedback stabilization problem is NP-hard and our quest for computational
complexity of the problem is over. However, this is far from true. The reality is
that the restriction on the control gain (3.5) has made the problem far harder than
necessary. Indeed, it is shown in [1] that the state feedback stabilization problem (i.e.,
when C = I) is still NP-hard when the same restriction (3.5) is imposed. Not only
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this, a seemingly much simpler problem, the so-called stable matrix in interval family
problem, which has A = 0, B = I and C = I, is also shown to be NP-hard. Actually,
the way that Theorem 3.1 is proved is to show that the special case of stable matrix in
interval family problem is NP-hard. As we all know, state feedback stabilization with
restriction on the feedback gain is a simple classical problem. The reason the problem
becomes very hard when restriction (3.5) is imposed is that the algorithm we look
for needs to be able to check for any given box of K, where the original stabilization
problem only needs to find one stabilizing K.

3.2 Matrix inequality Approach

Denote by Rn
s the set of n×n symmetric and real matrices. The problem we consider

here is stated as follows: Given two affine mappings L1(·), L2(·) : Rn
s → Rn

s , find
positive definite matrices X,Y ∈ Rn

s such that

L1(X) < 0, L2(Y ) < 0, XY = I (3.6)

The two inequalities above are linear matrix inequalities but the equality above im-
poses a bilinear constraints on X and Y . This is a special case of bilinear matrix
inequality.

The matrix inequality problem (3.6) and output feedback control are closely re-
lated. Consider the system (3.3) and fixed order controller (3.4). Let us define

x̄ = [xT xT
c ]T

Ā =
[

A 0n×nc

0nc×n 0nc×nc

]
, B̄1 =

[
B

0nc×m

]
, B̄2 =

[
B2 0n×nc

0nc×m Inc

]
,

C̄1 = [C1 0r×nc ], C̄2 =
[

C2 0r×nc

0nc×n Inc

]
,

D̄12 = [D12 0r×nc ], D̄21 =
[

D21

0r×m

]
, D̄11 = D11

K̄ =
[

Dc Cc

Bc Ac

]
(3.7)

Then, the closed-loop system can be written as

˙̄x(t) = (Ā + B̄2K̄C̄2)x̄(t) + (B̄1 + B̄2K̄D̄21)w(t)
z(t) = (C̄1 + D̄21K̄C̄2)x̄(t) + (D̄11 + D̄12K̄D̄21)w(t) (3.8)

The following results are known; see [16] and [18].

Lemma 3.1 The system (3.3) admits an output feedback stabilizer of order nc if and
only if there exist positive definite matrices X, Y ∈ Rn+nc

s such that

L1(X) := (C̄2)T
⊥(ĀT X + XĀ)(C̄2)⊥ < 0

L2(Y ) := (B̄T
2 )T
⊥(ĀY + Y ĀT )(B̄T

2 )⊥ < 0
XY = I (3.9)
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In the above, the notation U⊥ for a given matrix U denotes any full rank matrix
whose columns form the basis of the null space of U , in particular, UU⊥ = I.

Lemma 3.2 Given the system (3.3), there exists an output feedback stabilizer of order
nc such that the closed-loop transfer function has H∞ norm less than 1 if and only if
there exist positive definite matrices X, Y ∈ Rn+nc

s such that

L1(X) :=




C̄2

D̄21

0




T

⊥




ĀT X + XĀ XB̄1 C̄T
1

B̄T
1 X −I 0
C̄1 0 −I


 [C̄2 D̄21 0]⊥ < 0

L2(Y ) := [B̄T
2 0 D̄T

21]
T
⊥




ĀY + Y ĀT B̄1 Y C̄T
1

B̄T
1 −I 0

C̄1Y 0 −I


 [B̄T

2 0 D̄T
21]⊥ < 0

XY = I (3.10)

We see in Lemmas 3.1-3.2 that both cases yield the matrix inequality problem
(3.6). Heuristic algorithms are commonly used in solving bilinear matrix inequalities.
For example, the following iterative algorithm was proposed in [17]:

Xk = argmin{α : L1(X) < 0, I ≤ Y
1/2
k XY

1/2
k ≤ αI},

Yk+1 = argmin{β : L2(Y ) < 0, I ≤ X
1/2
k Y X

1/2
k ≤ βI}, k = 0, 1, . . . (3.11)

with some initial positive definite Y0 satisfying L2(Y0) < 0. However, such algorithms
do not lead to satisfactory solutions in general.

The question we ask is whether there exist numerically tractable algorithms for
solving the matrix inequality problem (3.6). The answer is, unfortunately, negative,
as shown in Fu and Luo [14]:

Theorem 3.2 The matrix inequality problem (3.6) is NP-hard.

3.3 Pole Placement Approach

We now consider the problem of pole-placement using static output feedback. Given
the system (3.1) and a set of desired eigenvalues λi, i = 1, 2, . . . , ν ≤ n, we want to
know whether there exists static output feedback controller (3.2) such that all λi are
the closed-loop eigenvalues.

Denoting the open-loop transfer function by G(s) = C(sI − A)−1B, the pole
placement problem is equivalent to finding K such that

det(I + KG(λi)) = 0, i = 1, 2, . . . , q (3.12)

Again, from computational complexity point of view, we want to know if there
exists an efficient algorithm to determine the existence of such K. Unfortunately, we
have a negative result for this problem [9]:

Theorem 3.3 The static output feedback pole placement problem is NP-hard.

Remark: It is obvious that if there is a sufficient number of independent outputs,
pole placement is always possible. State feedback pole placement is a special case of
this fact. Therefore, the result above can be interpreted as that determining whether
there is a sufficient number of outputs for pole placement is NP hard.
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4 The Structured Singular Value (µ) Problem

The structured singular value problem, also known as the µ problem, is the central
problem in robustness analysis for control systems. Although it is mostly studied in
the control field, its implications and applications are far reaching because it addresses
a fundamental numerical analysis and linear algebraic problem.

The term of structured singular value was coined by Doyle [6], although its concept
had been around for a long time for robustness analysis of linear systems subject
to various types of uncertainties. Three types of uncertainties are considered: real
parameters, complex parameters and complex blocks. Real parameters correspond to
common physical parameters such as mass, friction coefficient, resistance, etc., and
are described by a block structure below:

∆r = {∆r = diag{δ1Ir1 , δ2Ir2 , . . . , δmIrm
}|δi ∈ R} (4.1)

Complex parameters are less common, but useful for describing uncertainties in
complex-valued signals such as modulated radio waveforms, and are described by

∆c = {∆c = diag{z1Ic1 , z2Ic2 , . . . , ztIct
}|zi ∈ C} (4.2)

Complex block uncertainties are typically used to model unstructured uncertainties
(e.g., unmodeled dynamics in transfer functions), and are described by

∆C = {∆C = diag{∆1,∆2, . . . , ∆v}|∆i ∈ Cki×ki} (4.3)

When different types of uncertainties are present, we have the so-called mixed uncer-
tainties.

The general structured singular value problem, also known as the mixed µ problem,
is described as follows: Given a complex matrix M ∈ Cn×n and a set ∆ defined by

∆ = {∆ = diag{∆r,∆c, ∆C}|∆r ∈ ∆r, ∆c ∈ ∆c, ∆C ∈ ∆C} (4.4)

with
r1 + r2 + . . . + rm + c1 + c2 + . . . + ct + k1 + k2 + . . . + km = n (4.5)

The problem of structured singular value analysis is to compute the value of the
function µ∆(M), which is defined to be zero if In−∆M is nonsingular for all ∆ ∈ ∆,
or otherwise

µ∆ =
1

inf{ρ > 0| det(ρIn −∆M) = 0, ∆ ∈ B(∆)} (4.6)

where
B(∆) = {∆ ∈ ∆| |δi| ≤ 1, |zj | ≤ 1, ‖∆k‖ ≤ 1, ∀i, j, k} (4.7)

Two special cases are important: The real µ problem where only ∆r is present; and
the pure complex µ (or complex µ for short) problem where only ∆C is present.

4.1 Existing algorithms

The first algorithm for computing the pure complex µ value was proposed by Doyle
[6], and it is known as the D-scaling method. The idea is as follows: Suppose the
uncertainty structure ∆ involves complex blocks only, i.e.,

∆ = {diag{∆1,∆2, . . . , ∆v}|∆i ∈ Cki×ki} (4.8)
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Let
D = {D = diag{d1Ik1 , d2Ik2 , . . . , dvIkv}|di ∈ P} (4.9)

where P denotes the set of positive real numbers. Then, for any ∆ ∈ B(∆), D ∈ D
and ρ > 0, ρI −∆M is nonsingular if and only if ρI −∆D1/2MD−1/2 is nonsingular
because D1/2 and ∆ commute. A sufficient condition for ρI −∆D1/2MD−1/2 to be
nonsingular for all ∆ ∈ B(∆) is that ‖D1/2MD−1/2‖ < ρ, which is equivalent to
M∗DM < ρ2D. Changing ρ2 to α and defining

Φα(D) = M∗DM − αD (4.10)

the following provides an upper bound for µ∆(M):

min α

subject to Φα(D) < 0, D ∈ D, α > 0 (4.11)

The above is an example of the so-called generalized eigenvalue problem, which can
be solved using semidefinite programming (a polynomial time algorithm) [2].

The D-scaling method was generalized in [8] to the so-called (D,G)-scaling method
for the mixed µ problem. This is done as follows: Given the structure ∆ in (4.4), let

D = {D = diag{Pr1 , Pr2 , . . . , Prm , Pc1, Pc2, . . . , Pct ,

d1Ik1 , d2Ik2 , . . . , dvIkv
}|Pri

∈ Pri , Pcj
∈ Pcj , dk ∈ P} (4.12)

where Pk denotes the set of k × k positive definite matrices, and let

G = {G = diag{Hr1 ,Hr2 , . . . , Hrm , 0c1, 0c2, . . . , 0ct ,

0k1 , 0k2 , . . . , 0kv}|Hri ∈ Hri} (4.13)

where Hk denotes the set of k × k hermitian matrices. Then, for any ∆ ∈ B(∆),
D ∈ D and G ∈ G, ∆ commute with both D and G. Define

Φα(D, G) = M∗DM − αD + j(GM −M∗G), D ∈ D, G ∈ G (4.14)

Then, like the pure complex µ case, an upper bound for µ∆(M) is given by

min α

subject to Φα(D,G) < 0, D ∈ D, D ∈ G, α > 0 (4.15)

The (D,G)-scaling method has been the dominant method for µ analysis. For this
reason, a lot of research has been devoted to studying the quality of this method; see,
e.g., [22, 20].

One line of research focuses on conditions under which the upper bound is exact,
i.e., the upper bound gives the exact µ value. A complete result is given in a paper by
Meinsma, Shrivastava and Fu [21], which shows that the number of cases where the
upper bound is exact is rather limited. Recalling that the numbers of real parameters,
complex parameters and complex blocks are denoted by m, t and v, respectively. The
exact cases are

• m = 0, t = 0, v ≤ 3;
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• m = 0, t = 1, v ≤ 1;

• m = 1, t = 0, v ≤ 1.

All other cases have examples to show that the upper bound is not exact.
Another line of research aims to providing tighter (i.e., better) upper bounds. In

Fu and Barabanov [12], a number of new upper bounds are introduced based on the
so-called multiplier approach which is simply stated as follows:

Lemma 4.1 [12] Given a complex matrix M ∈ Cn, an uncertainty structure ∆ as in
(4.4) and ρ > 0, ρI −∆M is nonsingular for all ∆ ∈ B(∆) if there exists a matrix
C ∈ Cn such that

C(ρI −∆M) + (ρI −∆M)∗C∗ < 0, ∀∆ ∈ B(∆) (4.16)

The parameter C above is called multiplier. A nice property of the result above is
that the condition (4.16) is linear in ∆. This result provides a simple way to obtain an
upper bound for µ. Namely, the upper bound for µ∆(M) is the reciprocal of the least
value of ρ for which a multiplier C exists for (4.16). This approach is conceptually
simpler than the (D,G)-scaling method, but can be shown to include (D,G)-scaling
as a special case [12, 20]. Algorithms based on the multiplier approach are in general
tighter than (D,G)-scaling, but at the price of more computational time; see [12] for
more details.

4.2 Computational Complexity

The real µ problem was shown to be NP-hard first by Poljak and Rohn [24]. A
similar result was given by Demmel [5]. Their proofs used the idea of transforming
the so-called max-cut problem, a known NP-complete problem into a real µ problem
in polynomial time. Since the real µ problem is a special case a mixed µ problem,
these results imply that a general µ problem is also NP-hard.

In the works of Braatz et. al. [3] and Coxson and DeMarco [4], a different NP-
complete problem, minimization of concave quadratic function, is used to prove the
NP-hardness of the mixed µ problem. Their approaches are algebraic and simpler.
Also shown in [3] is that adding complex uncertainties does not make the µ problem
easier.

In all the proofs above, real uncertainties are essential in showing the NP-hardness.
The computational complexity of the complex µ problem was also shown to be NP-
hard by Toker and Ozbay [26] using an elegant transformation from another NP-
complete problem.

Knowing that the problem of computing µ is NP-hard in various cases, the next
logical question is how “hard” it is to approximate µ. To this end, a result in [4]
shows that there exists some arbitrarily small ε > 0 such that ε-approximation for
the real µ is also NP-hard. Toker [25] offers a more negative answer for the real µ
problem by showing that computing a Cn1−ε-approximation with some (very large)
C > 0 and (very small) ε > 0 is also an NP-hard problem. In the above, n refers to
the dimension of the µ problem, and Cn1−ε-approximation means that the relative
approximation error is sublinear, i.e., it does not grow linearly as the dimension n
grows. So the NP-hardness of the Cn1−ε-approximation problem suggests that no

10



polynomial algorithms can give approximation of µ with relative error growing at any
sublinear rate, unless P=NP.

In Fu [10], a most negative result was given for the real µ problem: The problem
of r(n)-approximation for the real µ is NP-hard for any r(n) > 0. That is, the relative
approximation error can grow arbitrarily fast for any polynomial algorithm, unless
P=NP. The result in [10] is further extended by Fu and Dasgupta [13] to the case
where the real blocks are bounded using any p-norm rather than the ∞-norm as in
the standard case.

Although the computational complexity of the problem of approximating the real
µ value is well understood, the case for complex µ is less clear. The only known result
was given by Megretski [19] which shows that the D-scaling method gives a relative
error r which grows at most linearly as the function of n, provided that µ 6= 0. That
is, the problem of finding a linearly growing r-approximation for the complex µ is a
polynomial problem, provided µ 6= 0.

It was proposed as an open problem by Fu in [11] to determine whether the
problem of approximating complex µ with an arbitrarily small or arbitrarily large
constant relative error is NP-hard. It was conjectured in [11] that both cases are
NP-hard. But the answers are still unknown.

5 Conclusions

This chapter has introduced two fundamental yet challenging problems in the control
theory. The static output feedback stabilization appears to be a simple problem, yet
so far it is not known whether the problem is NP-hard or not. The main challenge is to
determine if this is the case or not. Solving this problem is important to a wide range
of fixed-order control problems. On the other hand, better heuristic algorithms are
still needed so that practical control designs can be carried out better. The structured
singular value problem remains a major problem in robust control, despite the fact
that many NP-hard results are known. One particular challenge is to determine
how well we can approximate complex µ. Also, better heuristic algorithms, e.g.,
algorithms faster but giving tighter bounds than (D,G)-scaling, will be very valuable
to robustness analysis and robust control design.
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