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Abslracf-In this paper, we study the validity of the 
separation principle for linear quadratic control of linear 
systems in the presence of control input saturation. Our result 
shows that the well-known separation principle for linear 
systems fails to hold in this case. 
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Control, Saturation Control. 

1. INTRODUCTION 

where z ( t )  E R" is the state at time t ,  y(t) E R' 
is the measured output, w(t)  and w ( t )  are process noise 
and measurement noise, respectively, t takes non-negative 
integer values, and A and C are constant matrices. It 
is commonly assumed that w(.) and w(.) are independent 
zero-mean Gaussian white noises with variance matrices 
given by r, 2 0 and r, 2 0, respectively. Also consider 
the following infinite-horizon cost function: 

The well-known Separation Principle plays an impor- 
tant role in the linear control theory because it allows 
us to simplify an output feedback control problem into a 
state feedback control problem and a state observer design 
problem. There are several versions of the Separation 
Principle. The first version, which can be found in most 
introductory control textbooks, states that an observer- 
based state feedback system has closed loop eigenvalues 
specified by the state feedback controller and those of 
the state observers. The second version applies to Linear 
Quadratic Gaussian (LQG) control problems by stating 
that an optimal output feedback controller is formed by 
an optimal state feedback controllei and an optimal state 
estimator [l]. A similar version is available for output 
feedback H ,  control [2] .  Recently, a version of Separation 
Principle has also been developed for a class of uncertain 
linear systems [3]. 

In this paper, we study the validity of the Separation 
Principle for linear systems with input saturation. The 
study is done in the setting of classical linear quadratic 
control. We show via an example that the well-known 
Separation Principle breaks down due to the presence of 
the input saturation. 

The implication of this result is important because 
for most applications input saturations are unavoidable. 
In turn, we need to be cautious about using Separation 
Principle based control designs. 

11. BACKGROUND 

Consider the following linear system: 

with some Q = QT 2 0 and R = RT > 0. It is 
assumed that ( A  ) 
is an observable pair. 

Consider a linear dynamic controller of the following 

'1') is a controllable pair and ( A  

The well-known separation principle states that the optimal 
controller that minimises the cost function J ( u )  is given 
by 

u(t)  -Kk( t )  (4) 

where K is the optimal state feedback control gain and 
k ( t )  is the optimal estimate of the state z( t )  (obtained by 
a Kalman filter). 

The purpose of this paper is to study if this separation 
principle can he extended to the case where the control 
input is saturated, i.e., when u(t)  in (I) is replaced with 
u(u(t) , where U ( . )  is a saturation function with saturation 
level equal to 1. 

111. NOISE MODEL 

As mentioned earlier, the noises w(t) and w ( t )  are 
assumed to be Gaussian. This is a standard assumption 
used in mast work, if not all, on linear quadratic control. 
The advantage of this assumption is that the state is also 
Gaussian when there is no input saturation. 

In the presence of input saturation, the controlled sys- 
tem usually has a bounded region of stabilisability. This 
implies tbat it is no longer realistic to assume the noises 
to be Gaussian. For examole, a Gaussian process noise 



has a non-zero probability to have a sufficiently large 
noise sample that drives the state out of the region of 
stabilisability, unless the noise space lies in the subspace of 
the state that is open-loop stable (or marginally stable). It 
can also he argued that a Gaussian measurement noise has 
a similar destabilising mechanism in the output feedback 
case, although this is more indirect to see. The observation 
above means that we should consider hounded noises in 
dealing with systems with input saturation. 

The use of a non-Gaussian model for noises makes 
difficult to study the distribution of the state, even when 
the system is linear (i.e., without input saturation). For 
example, a uniformly distributed process noise does not 
yield a uniform distribution for the state. However, this 
problem does not cause difficulty in calculating the co- 
variance matrix for the state. That is, the covariance matrix 
only depends on the covariance matrices of the noises. This 
is easily seen because the state vector 

is a linear function of the noise vectors 

[wT( U T (  . . .IT, [UT( vT( ...I7 

A careful analysis shows that the property above is suf- 
ficient for the separate principle to be valid. The following 
is the formal statement: 

The separation principle holds for the system ( I )  and the 
costfunction (2) when the process noise and measurement 
nuise are independent zero-mean white noises, regardless 
of their distributions. 

In particular, the separation principle holds when the 
noises are nortt-hounded. 

1v. BREAKDOWN OF SEPARATION PRINCIPLE 

Now, we give an example to show that the separation 
principle breaks down when the control input is saturated. 

Our example involves the following scalar system: 

x( t  + 1) .05x(t) u(u(t) w( t ) ,  z( 

where w(t )  (resp. ~ ( t ) )  is uniformly distributed between 
[-0.9,0.9] (resp .[-0.95,0.95]). It is assumed that w(t )  
and ~ ( t )  are independent. The variances of w ( t )  and v ( t )  
are found to be 0.9’/3 and 0.9‘/3, respectively. 

The cost function to he considered is 

We first consider the state feedback case. We argue that 
the optimal state feedback is given by 

To see this, we first need to show that the state does not 
diverge under the control law (7) for any w( t )  bounded by 
Iw(t)l 5 0.9. Indeed, we claim that 

I4t)l 5 2 (8) 

This can be easily checked by assuming 0 5 z ( t )  5 2 
and verifying the -0.9 5 z(t+ 1) 5 2. Similarly, if - 2  5 
z ( t )  5 0,  we have -2 5 z(t)  5 0.95. Therefore, the claim 
in (8) holds. 

To show the optimality of (7), we denote 
nr 

&(U) & E ( z ’ ( t )  .05u2(u(t) 
t=n 

and note that 

J&L) E(z’( - z’(N + 1) 
N 

+ E C(z’(t + 1 )  - x 2 ( t )  z’(t) .05u2(u(t) 
t=a 

t=a 

where 

f (z  ) .05z -tu(.) w)’ + O.O5u2(11) 

with 

Ef ( z  ) ,052 +U(.) ’ + 0.05u2(u) .9’/3 

The optimal u ( N )  that minimises E f ( z ( N ) ,  u(W), w(N) 
is obviously given by (7). The result is 

E f ( x ( N ) > W ) >  4 N )  
( .05 + 0.05’)x2(N) if Ix(N)I 5 1 = {  (/1.05x(N)I - 1)’ + 0.05 otherwise 

In either case, &f(z(N),u(N),w(N) is a convex func- 
tion of z(N). Since z(N) is linear in u(u(N - 1) 
which in turn is convex in u(N ~ I), we know that 
& f ( z ( N ) , u ( N ) , w ( N )  is a convex function ofu(N-1). 
Alsonote thatEf(z(N-l);u(N-l) ,w(N--l)  is convex 
in u(N-1), so the optimal value for u ( N -  1) is once again 
given by (7). The process above can be applied recursively 
to show that the optimal solution at any t is indeed given 

Next, we consider the output feedback case. The optimal 
control seems difficult to calculate. Instead, we consider 
the following simple control law: 

by (7). 

u(t)  .(t) -y(t) (9) 

We will argue that the state z ( t )  is bounded for any 
jzu(k)l 5 0.9 and l,u(t)l 5 0.95 under this control law, 
implying that the cost J ( z  ti) is bounded. We then argue 
that the control law 



with an optimal state estimate i ( t )  is destablising with 
a non-zero probability, implying the cost J ( z  6 )  is un- 
bounded. These results together will prove that the sepa- 
ration principle fails in this example. 

To see that the control law in (9) results in a bounded 
state, we claim that (8) is still valid. Indeed, we only need 
to consider z( t )  2 0 and we divide it into two cases: 
0 2 z ( t )  5 1.95 and 1.95 5 z( t )  < 2. For 0 2 z( t )  5 
1.95, we have -1 5 C ( t )  -s(t) - w ( t )  5 0.95 (i.e., no 
saturation), z(t  + 1) > -1 - 0.9 > -2 and 

z( t  + 1) _< 1.05z(t) -z(t)  - v ( t )  w ( t )  
5 0.05 x 1.95 + 0.95 + 0.9 < 2 

For 1.95 5 z ( t )  < 2, we have z(t  + 1) > -2 as before 
and 

s(t + 1) 5 1.05z(t) - 1 + 0.9 < 2 

Hence, the hound (8) holds. 
The optimal state estimator is of the following form: 

Z(t  + 1) .05 i ( t )  u(u(t) (1 1) ?(t) z( t )  !(Y(t) - Z:( t )  , Z( 

for some e. This yields 

Z( t+ l )  . 0 5 f ( t )  .05!(y(t)-?(t) o(u(t) , Z(  

Defining S ( t )  

E ( t  + 1) .05( - ! )e( t )  w ( t )  - 1.05! ( t ) ,  E( 

To keep f bounded, we need 11 - Cl _< 1. Denoting 

(12) 
z ( t )  - Z ( t ) ,  we have 

Then, 

= i . 0 5 ~ (  - e)% + o.g2/3 + 0 . 9 5 ~  x i . 0 5 ~ P / 3  

or equivalently, 

0.9’/3 + 0.95’ x 1.052!2/3 
‘= 1-1.05’( 

The optimal is obtained by minimising q, resulting in 

= 0.6111 

Consequently, 

t 2 15. It is checked (via computer simulation) that z( t )  
reaches 38.15 at t = 91. Once z ( t )  > 38, 

z(t  + 1) 2 1.05z(t) - 1 ~ 0.9 > z ( t )  

for all u(t)  and Iw(t)l 5 0.9, and the divergence is 
unstoppable. In fact, the divergence is exponential. 

Although a particular sequence of (w(t),v(t) , t = 
0 , .  ”, 100, is used to demonstrate the divergence of z( t ) ,  
we note that z( t )  is a continuous function of that sequence. 
That is, the divergence property still holds when the 
sequence of ( w ( t ) ,  u ( t )  is perturbed slightly. This implies 
that there is a non-zero probability for z ( t )  to diverge. 
Therefore, the cost function J ( u )  is unbounded. 

This concludes our painstaking exercise to prove the 
invalidity of the separation principle. 

V. CONCLUDING REMARKS 

Remark 1. Although in the example above we chose 
the destablising sequence of noise samples to start from 
t = 0, it is not difficult to see that such a destablising 
sequence can occur at any time. Because such a sequence 
has only a finite duration and with a non-zero probability, it 
is easy to see that the existence of such a finite destablising 
sequence in a random infinite sequence of noises actually 
has probability I .  That is, the cost function J ( u )  has 
probability I to be unbounded. 

Remark 2. The main reason for the separation prin- 
ciple to fail in the example above is that the Kalman 
filter, although giving a state estimate with a minimum 
covariance of estimation error, sooner or later the system 
will experience a sequence of noise samples such that the 
estimation error is large enough to drive the closed-loop 
system out of the stahilisahility region. 

The comment above suggests that it is necessary to con- 
sider the “worst-case” effect of the noises, when designing 
controllers with input saturation. 
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