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Abstract— We consider the standard (point-wise) linear chan-
nel model for MIMO wireless systems in terms of a contin-
uous operator channel. We show analytically that the point-
wise representation over-estimates the (true) modal connection
strengths and produces artificially distorted channel singular
values. Analytic results are compared with simulations for simple
channel models and the convergence of the point-wise model
toward the continuous model is shown.

I. INTRODUCTION

The advent of multiple-input multiple-output (MIMO) wire-
less communications has promoted the concept of high band-
width wireless systems employing large numbers of antenna
elements at the transmit and receive ends of the wireless link.
To accommodate user mobility, a great deal of interest has
been devoted to closely spaced array elements and the effects
of correlation for small wireless devices. Much of the wireless
communication literature uses a linear, spatial model which is
based upon an abstraction of antenna elements to points in
space. We refer to such models as point-wise models.

The discrete-point abstraction of antenna elements is valid
for well separated elements and is supported by a large
amount of measurement data [1]. Unfortunately, as the antenna
elements become closely spaced, the point-wise modelling
techniques become hidden under the application of correction
factors – such as correlation matrices or norm adjustments [2]
– which attempt to account for close proximity of elements
and effects such as mutual coupling.

Recent work [2–5] has shown that spatially diverse wireless
systems may be modelled using continuous spatial techniques,
which focus on the continuous nature of space, rather than the
individual antenna elements. In particular, it has been shown
that a single user wireless channel is limited by the region
enclosing the antenna arrays, not the number of elements in
the array [4, 5]. Although orthonormal expansions [3] may
be used to model arbitrary antenna arrays and elements they
lack the simplicity of the point-wise matrix model. In [6] it
was shown that antenna elements may be seen as “samples”
of the continuous channel. It is natural to ask how well we
may estimate the continuous channel given only the point-wise
matrix entries and rudimentary details of the regions enclosing
the antenna arrays. Can we reconcile the simplicity of point-
wise MIMO vector models e.g., [7], with the fundamental
benefits of continuous spatial techniques?
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Fig. 1: Continuous solid regions VT (transmit) and VR (receive) containing
Nt and Nr discrete antenna elements respectively. Two particular elements
are highlighted, with the corresponding channel matrix entry Gji shown.
figure

In this paper we show that the point-wise approximation
of the continuous channel may be interpreted as a particular
choice of orthonormal expansion. However, this “discrete”
sequence is a poor choice for basis expansion as it;

1) over-estimates the continuous mode strengths and
2) has no equivalent “sum-rule” (c.f. [8]) accuracy measure.

The estimation error described in point 1 may be reduced, at
the expense of using a large number of sampling points1. The
main result of this paper is that we may adopt the simpler
point-wise approach for MIMO, if we are willing to accept an
artificially correlated estimate of the channel.

This paper is arranged as follows: in section II we describe
the continuous space channel model and compare with the
point-wise model of the open literature. In section III we show
analytically that the point-wise model over-estimates the con-
nection strengths of the continuous case and has no measure
of representational accuracy. Section IV presents numerical
comparisons of the two modelling techniques and shows that
the point-wise approach is inaccurate in determining channel
eigenvalues. We draw conclusions in section V.

II. CHANNEL MODEL

Consider the physical arrangement shown in Fig 1. We have
shown two regions VT and VR in space which communicate
with each other over a given channel – which may or may
not contain scatterers. The region VT contains Nt sources
(transmit elements) which produce a signal within VR, and
VR contains Nr receive elements. We have superimposed
“discrete” antenna elements contained within each region,
shown as black spots in Fig 1. Each (transmit/receive) element

1Although estimating continuous functions via discrete points is ineffi-
cient [9, 10], our main argument is that the point-wise model will produce
artificial estimates of channel correlation.
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may be considered as the centroid of a given sub-region. The
ith transmit element is located at a point ρTi ∈ VT and may
be considered as being contained by the small sub-region
∆VTi as shown. Each sub-region ∆VTi is assumed to be
disjoint and the collection of sub-regions occupies the whole
of VT , i.e., VT =

∑
i ∆VTi. Similarly, the receive elements

are contained within small disjoint sub-regions ∆VRj whose
collective occupies all of VR.

The enclosing regions VT and VR are separated by a
distance D (between their centers) which is assumed to be
large compared to their volumes. This corresponds to the
typical case for indoor and outdoor wireless transmission,
where a base-station communicates with a mobile receiver
over (at least) a small number of meters. We shall assume
that the channel is single-frequency, has no inter-symbol
interference and is time-invariant. We shall not be interested
in electro-magnetic field modelling, rather we consider the
MIMO channel estimate: We assume that each transmit and
receive element does not interact with the (scalar) electrical
field as is assumed in the MIMO literature we are contrasting
with. Removing this assumption will make the point-wise
model more accurate, at the expense of EM-modelling.

We shall consider functions ψ(rT ) for points rT ∈ VT

where rT = {x, y, z} is a vector in 3-space. The inner product
of two such functions ψ(rT ) and f(rT ), is defined:

〈ψ|f〉VT
�

∫
VT

ψ(r)f(r) dr (1)

where x denotes complex conjugate and the integral of (1) is a
volume integral. We shall assume that the functions ψ(rT ) are
sufficiently well behaved to ensure a valid inner product. The
functions ψ(rT ) may be considered as transmit signals, which
induce receive signals φ(rR) in VR. We wish to examine the
channel connecting transmit and receive signals. If we take any
complete, orthonormal sequence of functions {ϕTi(rT )}∞i=1,
we may expand signals ψ(rT ), as coefficients

ψ(rT ) =
∞∑
i

aiϕTi(rT ) ai � 〈ψ|ϕTi〉VT
(2)

within the transmit volume VT , where 〈·|·〉 denotes inner prod-
uct. We may apply a similar result for functions φ(rR) in the
receive volume VR, using a complete orthonormal sequence
{ϕRj(rR)}∞j=1 and inner product defined over rR ∈ VR. If
we write a transmit signal as a vector of Fourier coefficients,
a = {a1, . . . , ak, . . .} and the received signal as a similar
vector b = {b1, . . . , bk, . . .} we may write a linear vector
channel of the form:

b = Γa + ω (3)

where a is an (infinitely long) input vector, b is an (infinitely
long) output vector, ω is a vector of noise samples and Γ is a
communication operator:

φ(rR) = (Γψ) (rT ) =
∫

VT

G(rR, rT )ψ(rT ) drT (4)

Γji �
〈〈G(rR, rT )|ϕTi〉VT

|ϕRj

〉
VR

(5)

for a given “connecting” function G(rR, rT ) defined over
points in each region. The operator Γ, takes functions from
VT , and produces functions in VR, according to the properties
of the channel. The entries Γji may be considered as the
connection strength between transmit basis function ϕTi(rT )
and receive basis function ϕRj(rR) for arbitrary choice of
functions. The entries Γji are determined by the choice of
orthonormal sequences while the eigenvalues of Γ are inde-
pendent of the sequences and represent fundamental properties
of the channel.

The operator Γ, is a particular example of a Hilbert-Schmidt
operator. Such operators are known to be compact and have
finite Frobenius norm cf. [11]:

tr (ΓΓ∗) = ‖Γ‖F ≤
∫

VR

∫
VT

|G(rR, rT )|2 drR drT = γ (6)

where tr (·) denotes trace and the right-hand side of (6) is
dependent on the size of the volumes and the intervening
channel. The result of (6) is called a “sum-rule” in [8]. Further,
(6) holds with equality (by Parseval’s theorem) if and only if
the orthonormal sequences of (5) are complete.

The matrix form of Γ will be infinite dimensional, Γ is n×n
with n → ∞, although only a finite number of eigenvalues
will have non-negligible magnitude, i.e., although Γ is infinite
dimensional, it is effectively finite rank. We denote the number
of non-negligible eigenvalues as Nc, which represents the
number of communication modes of the particular channel.

We shall compare the well-known point-wise channel model
with this operator viewpoint. Recall the point-wise linear
channel as defined according to points within the transmit
and receive regions. Each element in VT transmits a signal
independently of the other elements and the superimposed
ensemble is received by elements in VR. The linear channel
may be described in the familiar matrix form:

y = Gx+ w (7)

where x is a vector x ∈ C
1×Nt , of input signals, defined at

points ρTi ∈ VT , G is the Nt × Nr matrix G ∈ C
Nt×Nr ,

of channel coefficients between each transmit-receive pair, y
is a vector y ∈ C

1×Nr of received signals defined at points
ρRj ∈ VR, and w is a vector y ∈ C

1×Nr , of noise. In direct
transmission (no scattering) the entries of G are given by the
distance between points D0

ji = |ρRj − ρTi|:

G0
ji �

exp
{−ı 2π

λ D
0
ji

}
4πD0

ji

(8)

where ı =
√−1. Any coupling between transmit elements

is given by the matrix G. Scattering may be easily ac-
commodated by noting that each scattering object introduces
an additional transmission path – which may be considered
separately to all others – with corresponding alteration in the
path length: Dk

ji is the distance from ρTi to ρRj along the
scattering path. In this way, G may be written as a summation
of several paths: G =

∑
k αkG

k where αk denotes the path
gain for a particular scatter path. Several methods exist for
generating such channel matrices in the open literature.

Globecom 2004 77 0-7803-8794-5/04/$20.00 © 2004 IEEE
IEEE Communications Society



III. ESTIMATION OF Γ FROM G

It is clear that G(rR, rT ) = G(ρRj , ρTi) = Gji when
the points ρTi and ρRj , coincide with the vectors rT and
rR respectively. We may consider the continuous function
G(rR, rT ) a limiting case as the number of transmit and
receive points in each region approaches infinity, i.e., G ≡
G(rR, rT ) for Nt, Nr → ∞. It is not sufficient to have Gji

approximate the connecting function G(rR, rT ), rather we
require the singular values of G and Γ to converge. We shall
shortly show that the convergence is not monotonic.

Problem 1 (Estimating Γ given G). What Nt × Nr matrix
Ĝ = αG for some scalar α, approximates Γ? How well do
the singular values of σĜ, of Ĝ, estimate the singular values
σΓ, of the continuous transfer matrix Γ?

We shall begin by defining sets of functions ϑTi(rT ) and
ϑRj(rR) in VT and VR respectively, which are constant within
the sub-region surrounding antenna element i (resp. j). The
functions provide a mapping from the point-wise entries of G
to the connection strength entries of Γ. We note that they are
not sampling functions: any coupling, polarity effects, etc may
be modelled through the use of additional “spatial sampling
signatures.” The sequences {ϑTi(rT )}Nt

i=1 and {ϑRj(rR)}Nr

j=1
are not complete for finite Nt and Nr. Define

ϑTi(rT ) =

{
1√

∆VT i
rT ∈ ∆VTi ⊆ VT

0 otherwise
(9)

where the constant 1/
√

∆VTi is chosen to ensure ‖ϑTi‖ = 1.
The ϑTi are scaled block functions – constant within ∆VTi

and zero everywhere else. Similarly, we define

ϑRj(rR) =

{
1√

∆VRj

rR ∈ ∆VRj ⊆ VR

0 otherwise
(10)

Under the condition that the sub-regions are disjoint, then
orthogonality of the sequences {ϑTi}Nt

i=1 and {ϑRj}Nr

j=1 is
guaranteed. Using the orthonormal functions from (9) and
(10) with the inner product (5) we may generate a particular
Nt ×Nr instantiation of Γ by:

Γji � 1√
∆VRj∆VTi

∫
∆VRj

∫
∆VT i

G(rR, rT ) drR drT (11)

If the sub-regions ∆VTi and ∆VRj , are sufficiently small,
then the integrand of (11) may be approximated as a constant
throughout both sub-regions. In this case the integrand is
independent of the variables of integration and the connectivity
strength between ϑTi(rT ) and ϑRj(rR) is given by a complex
scalar.

Γji ≈ Ĝji = G (ρRj , ρTi) ·
√

∆VRj∆VTi (12)

= Gji ·
√

∆VRj∆VTi (13)

where the approximation of (12) is accurate if the sub-regions
are sufficiently small. From (13), the point-wise transfer matrix
G will have a scaling offset of the true connection strength

estimates. If we assume that all the sub-regions are equal in
size, then ∆VTi = VT /Nt and ∆VRj = VR/Nr, where we
have denotated the volume of the solid regions as VT and VR

respectively. We may re-write (13)

Ĝ = G

√
VTVR

NtNr
= αG (14)

The result of (14) recalls the scaling factor2 applied in [7]
and the “Frobenius norm” scaling applied in [12]. Note that
we have not used physical constraints to justify this scaling, it
is a result of using orthonormal functions. However, the entries
of Ĝ over-estimate the entries of Γ. This error diminishes to
zero as the sampling points become sufficiently dense.

Lemma 1. The entries of the Nt ×Nr (point-wise) estimation
matrix Ĝ have a larger magnitude than the equivalent entries
of the Nt ×Nr continuous channel matrix Γ for finite Nt and
Nr.

Proof. Consider |Γji| from (11) and the corresponding entry
|Ĝji|.

|Γji| ≤
∫
∆VRj

∫
∆VT i

|G(rR, rT )| drR drT√
∆VRj∆VTi

≤ |Ĝji|

which results from the triangle inequality [11].

If we view the estimate (13) as a trapezoidal approx-
imation of the integral (11), then the error is of order
O

{
max (∆VTi + ∆VRj)

2 ·G′(rR, rT )
}

where G′(rR, rT ) is

the derivative of G(rR, rT ) evaluated at an unknown point [10,
pp.133] which implies the estimation error diminishes as
the sub-volumes become small although the exact error is
unknown. For any finite Nt, Nr the orthonormal sequences
{ϑTi}Nt

i=1 and {ϑRj}Nr

j=1 are not complete and (6) will remain
an inequality. As such

‖Γ‖F = tr (ΓΓ∗) ≤ γ (15)

we may also see that

tr
(
ĜĜ∗

)
=

Nt∑
i

Nr∑
j

|Gji|2 ∆VTi∆VRj ≈ γ (16)

for any value of Nt, Nr. This is due to the inaccuracy of
approximating an integral with a scaled sample. However, (16)
shows there is no equivalent sum-rule for the point-wise
estimation case. As such, we cannot tell (from the entries
of Ĝ alone) whether the representation of Ĝ is a sufficiently
accurate estimate of Γ.

Lemma 1 implies that the point-wise matrix model for
MIMO channels is a biased estimator for the continuous
channel eigenvalues. We may approximate the bias as follows.
If each entry of Ĝ is offset by a similar error, which holds if
the sub-regions are small and equal size, then we may write
Ĝ as:

Ĝ ≈ Γ + ε1 ·
√
γ − tr (ΓΓ∗) (17)

2In [7] the elements were assumed to be dense at the receiver only, so that
only a factor of

√
VR/Nr was applied, with VR = 1.
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where 1 is a rank one matrix and ε is an arbitrary constant.
The form of (17) implies that the conditioning of Ĝ will be

artificially worse than Γ due to the over-estimation error.
The low-order singular values of Ĝ will be larger than their
counterparts in Γ: |σĜ

1 | ≥ |σΓ
1 |, and the high-order singular

values of Ĝ will be correspondingly smaller than those of Γ:
|σĜ

n | ≤ |σΓ
n |. This means a point-wise MIMO channel will

appear artificially correlated compared with its continuous
counterpart, implying that signal designs based on the point-
wise technique will have lower capacity than those using
knowledge of the continuous channel.

IV. NUMERICAL RESULTS

We shall present simple channels which emphasize the con-
vergence of the point-wise modelling approach, the results are
equally valid for more complex channels. We have considered
two transmission scenarios: 1) direct (no multipath) between
large volumes, 2) between thin plates in non-line of sight
multi-path.

For the direct transmission case we chose VT and VR to
be identical cubes of side length 20λ and a transmission
frequency of 3GHz, giving λ = 0.1m. The cubes were
separated (center-to-center) by D = 100λ along the z-axis
and had their edges aligned along the x, y, z axes. We used
equal numbers of sub-regions along each dimension. For 3-
space this means that Nt = Nr = Nsam

3 where Nsam is the
number of samples along a single dimension. The number of
well connected modes [8] is

Nc =
ATAR

D2λ2
=

(20λ)2(20λ)2

D2λ2
= 16 (18)

AT is the surface area of the parallel face at VT and similarly
for AR. The magnitude of the singular values is bounded by:

∣∣σΓ
∣∣2 ≤ VTVR

(4πD)2
1
Nc

= 2.533 × 10−4 = |µ|2 (19)

Fig 2 shows the modes estimated from the point-wise
model. For Fig 2(a) one sub-region i.e., Nt = Nr = 1 has
been used to estimate Γ. It can be seen that the magnitude
of the estimated singular value is sixteen times larger than
the bound of (19), i.e., |||σĜ

1 |2 ≈ 16|µ|2. As the number
of sub-regions increases, the estimate of the singular value
magnitudes improves toward the continuous values, shown
in Fig 2(c). In Fig 2(b) we have used Nt = Nr = 223

samples and the difference between the point-wise estimate
and continuous calculation is negligible.

For random scattering two equal sized thin plates were used,
VT = VT = 5λ× 5λ× 0.1λ separated by 20λ along the z-
axis. The plates had their edges aligned along the x, y, z axes
with faces. Scattering bodies were placed at random, locally
to VT and VR. Each scattering path consisted of two scattering
bodies: from VT to a local scattering body near VT , to a local
scattering body near VR and then to VR. Each scattering body
was assumed purely reflective and given a random normal
direction as described in [5].
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(a) Discrete model, Nt = Nr = 1. Note scale.
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(b) Nt = Nr = 223 = 10648
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Fig. 2: Comparison for point-wise and continuous models for direct transmis-
sion between 20λ× 20λ× 20λ cubes, separated by D = 100λ, λ = 0.1m.
Number of well-connected modes Nc = 16, and eigenvalues bounded by∣∣σΓ

∣∣2 ≤ |µ|2.
figure
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(a) Discrete model convergence, highlighted re-
gion (arrow) shows region of magnification in
Fig 3(b).
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Fig. 3: Singular values for increasing number of sub-regions for point-wise
approach.
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Figure 3 compares the results for continuous and point-
wise models using Monte Carlo simulations. For each iteration
a new set of local scatterers was generated and the channel
matrices calculated. The process was repeated for 5, 10, 20 and
35 samples per dimension for the point-wise case. The mean
singular values magnitudes (squared) for both Γ and Ĝ are
plotted. The first 25 values are shown in Fig 3(a) and expanded
in Fig 3(b). It can be seen that the estimates from point-wise
modelling converge to the continuous singular values as the
number of sub-regions increases. Even for large numbers of
sub-regions, Nt = Nr = 352 = 1225 the low-order singular
values are over-estimated.

A. Computational complexity

The number of samples required to generate reasonable
estimates of the continuous channel from the point-wise
matrix is very large. It can be seen from Fig 2(b) that
Nt = Nr = Nsam

3 = 10648 samples were required to rea-

sonably approximate Γ. The channel matrix Ĝ was then

10648 × 10648 with only 16 significant singular values. For
an n× n matrix, the singular value decomposition (SVD)
algorithm takes O(n3/2) operations [9]. This shows that the
point-wise model is an inefficient method of representing the
continuous channel.

V. CONCLUSION

As the number of antenna elements within a fixed region of
space becomes large, point-wise models converge toward the
continuous case after the application of a scale factor. We have
shown how this scale factor may be found without need for
“power-scaling” arguments. We have shown that the estimates
of the continuous connection strengths given by the point-wise
channel matrix Ĝ are over-estimates of the true channel modes
which results in artificially distorted channel matrix singular
values, with low-order modes over-estimated and high-order
modes under-estimated. This implies that the MIMO point-
wise model is a biased estimator of the continuous eigenvalues.

For low estimate errors, the channel matrix Ĝ must have
large dimension for non-trivial arrangements. Thus direct ap-
plication of the SVD algorithm to G (or Ĝ) requires substantial
computation and results in only a small number of signifi-
cant singular values. Numerical techniques which incorporate
greater knowledge of the continuous wave functions are likely
to show improved computational complexity, and will not
require such large numbers of samples to produce reasonable
results.
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