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Abstract

In this paper, we consider the problem of guaranteed
cost control for a class of uncertain nonlinear systems.
We derive LMI conditions for the regional robust stabil-
ity and performance problem based on Lyapunov func-
tions which are polynomial functions of the state and
uncertain parameters. Based on the stability results,
we discuss the synthesis problem for a class of affine
control systems. Numerical examples are presented to
illustrate our method.

1 Introduction

The development of robustness and performance anal-
ysis as well as design techniques for nonlinear systems
is an important field of research. Despite the existence
of powerful techniques to cope with these problems in
the context of uncertain linear systems, the generaliza-
tion to the nonlinear case is a difficult task that has
motivated many researchers to study these problems.
Many control design methods dealing with nonlinear
systems use linear control methodologies such as the
LQR method, i.e. in some way the nonlinear system is
approximated by linear systems [1, 2, 3]. Sometimes,
these approaches can be potentially conservative or re-
strictive. On the other hand, it is well known that
the nenlinear optimal control due to difficulties in the
solution of the Hamilton-Jacob equation is not a prac-
tical approach, [4]. Since the work [5], that showed a
solution for rational systems in terms of linear matrix
inequalities (LMIs} and based on quadratic Lyapunov
functions, some authors have proposed more scfisti-
cated Lyapunov functions to derive less conservative
results using the LMI framework (8, 7, 8].

In this paper, we derive LMI conditions for the Guar-
anteed Cost Control problem for a class of uncertain
nonlinear systems in a given polytopic neighbourhood
of the equilibrium point. These conditions assure the
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regional stability of the unforced system, determine a
bound on the energy of the output signal for a given
set of initial conditions, and are based on Lyapunov
functions which are polynomial functions of the state
and uncertain parameters. Via an iterative algorithm,
this approach is applied to the synthesis problem con-
sidering a class of affine control systems. We point out
that the system matrices may be rational functions of
the state and uncertain parameters, and certain expo-
nential and trigonometric functions are also allowed.

The structure of this paper is as follows. First, we state
the problem of concern and derive an upper bound on
the 2-norm of the output performance for a set of initial
conditions. In the sequel, section 3 presents an appli-
cation of the derived method to the guaranteed cost
control problem. Numerical examples are given in sec-
tion 4, and some conclusions are drawn in the final sec-
tion. The notation used in this paper is standard, and
the matrix and vector dimensions are omitted whenever
they can be determined from the context. Some results
were omitted because of space restriction. For more
details, the reader is referred to the full version of this
paper [9] (available at www.ee.newcastle. edu.au/reporis/
reports_indez. html).

2 Performance of Nonlinear Systems

Consider the uncertain nonlinear system
&= Alz, 8}z, 2 = C(z,8)x (N

where z(0) = zp, and z € R™, § € B, 2z € R™
denote respectively the state vector, uncertain param-
eters and the output performance vector.

With respect to the system (1), we consider the follow-
ing assumptions:

A1l The uncertain parameters vector, 4, and its time-
derivative, 4, lie in a given polytope Bs, with
known vertices, i.e. (4,8) € B;s.



A2 The origin, = 0, of the system is an equilibrium
point.

A3 The right handside of the differential equation is
bounded for all values of z, 4, of interest.

A4 B is a neighbourhood of the equilibrium point of
the system.

In this section, the problem of concern is to compute a
bound on the 2-norm of the performance output signal
for a given set of initial state z¢ € B, and for all values
of (§,0) € B;. To this end, we will introduce some
definitions and notations.

We do not assume that B, is an invariant set with
respect to (1}. Hence, there may exist trajectories that
reach the boundary of B, at an instant T and then
leave it. Thus, we define the output energy as follows:

if the trajectory of
z(t) leaves B,;

lim fOTz’z dt otherwise.
T—eo

o o]

Nzl =

Let us suppose that the system (1) may be decomposed
as

=30, Ailz,8)m = Az, &)

z=3%1 , Ci(z,8)m = Cz,8)x (2)

where 7 is such that: m = [ 7y --- 1r; I, mo = =,
m = O(z,d)m and Qz,d)r = 0. In the associated
system, the vectors w; € R™ are auxiliary functions of
x,0 associated with the decomposition of the system
nonlinearities; O(x,d) € R™ *™ is an affine matrix,
function of {z,4d), used to decompose bilinear terms;
)z, 8) € R™*™, with m = 3.7 m,, is an affine ma-
trix function of (z,d) used to decompose polynomial
and rational nonlinearities and to represent eventually
additional constraints, such as algebraic equations, on
the vectors n;; Ai(z,8) € R™*™, § = 0,...,q, are
affine matrix functions of (x,§) associated with the de-
pendence of the system with respect to the x; func-
tions; and Cj(z,d) € R**™, ¢ = 0,...,q, are affine
functions of (z, ) associated with the output structure
of the system. The matrices A(z,8) € R™*™ and
C(z,8) € R ™™ are defined to represent the equiv-
alent system (2} in a concise form. To simplify the
notation, we always use them and ©, Q, A;, Ci, with-
out explicitly specifying their respective dependence on
T, d and t.

Hereafter, we assume that:

A5 the right-hand side of the differential equation (2)
is bounded for all values of 7 of interest and the
system representation in terms of the auxiliary
variable 7 is equivalent to the representation (1).
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By definition in (2), notice that © is an affine matrix
function of (x, §). Then, we can represent it as follows:
© = Y70 Tz + 272, Ujd; + V, where z;, d; are the
entries of the vectors = and § respectively, and T3y, Uj,
V' are constant matrices of structure having the same
dimensions of ©.

With above, define the following matrices ©
> 70 Tyzs; and © = 3 7% U;é;, where s; is the j-th
row of the identity matrix Ip,,.

Now, with these definitions, we can state the main re-
sult of this work as follows.

Theorem 1 Consider that system (2) satisfies Al-

A5. Let © and © be as above, Sfurther define Ny
Himgsm, 0] € Blimetmi)xm . qng

M 0 ] g [ Ime O]
‘I’“‘[-@ Im,]’E“[—(9+e) Iml]’
0 Q
A
F=[ . ];@F 0 [®. 0] [;
(e o] ~E F
T2 —I 0 0
M, = 0 T3 —x2
: . 0
0 0 zumg ~Tmg-1

Suppose that there exist matrices P, Ly, and Ly that
solve the following optimization problem, where the
LMIs are satisfied at all vertices of the meta-polytope
B= BI x Bg.

min trace (P + L,Pq + ¥,L,) subject to:
P+ L%, +¥, L, >0, P=P

0 PNo ] 'y 0
; +L,,%+\I'5Lb) [ . ]
([ NP 0 C <0
fo c] I,

Define the following Lyapunov function v(zx,é)
z P(z,8)z, with
| 7% ]

Define the sets R., level surfaces of the above Lyepunov
function, as R, = {z : v(z,8) < ¢, 0< ¢ < o0} and
R as the largest level surface of v(x,d) that belongs
to B, where ¢* = max ¢ such that R, C B;,.

Ing

]

I,

P =| ' ®)

Then, R.- is en invariant set and the 2-norm of the
output signal satisfies the following for all zq € R.»
and (4,08) € B;:

217 < v(zo,6(0)) < ¢

(4)



Until now, we propose a methodology for robust sta-
bility and performance analysis for a class of uncertain
nonlinear systems. In the following section, we will con-
sider the synthesis problem for a class of affine control
systems.

3 Control

Consider the uncertain nonlinear system

&= Az, 8z + Bz, O)u, (5)
z=C{z,8)z + D(z,0)u

where #(0) = zy, u € R™ denotes the control input,
and B(z,&), D(z,8)} are affine matrix functions of z,9
with appropriate dimensions.

In this section, we are concerned with the problem of
determining a contro! law of the type u = K(=,d)z
in order to minimize the output energy of system (5),
where K(z,8) = 3.7, Kim and the matrices K; €
R *™i are fixed gains to be determined. The uncer-
tain parameters in the nonlinear control law can rep-
resent scheduling parameters or a possible mismatch

between the applied and designed control gains.

For simplicity, we assume that:

A6 All states are available for measurement and feed-
back;

AT When we implement a gain scheduling control
technique, the scheduling parameters are known
on-line to the controller.

Note that with an appropriate choice of the matrix
gains K; the proposed control law can implement dif-
ferent design techniques such as robust {static or non-
linear), gain-scheduling or non-fragile controllers. In
the non-fragile case, the parameters introduced in the
control law via an appropriate choice of the auxiliary
vectors 7; belong to a given range representing the pos-
sible deviations with respect to the nominal value. For
design purposes, these parameters must be viewed as
time invariant uncertainties.

The theorem 1 provides the foundation for our synthe-
sis framework. Suppose that the matrix control-gains
K; (i =0,...,q) are given. Thus, we can redefine the
matrices A(z,d) and C(z,d} in (2) as follows:

A(I,(S) = [A()+BKO Aq+BKq ]

(6)

C(z,8) = [ Co+ DKy C, + DK, |

and apply the theorem 1 for closed-loop stability anal-
ysis. However, we now focus on extending its results to
control design feedback with guaranteed cost.

Observe that the matrix inequalities in (1) for the de-
sign case are bilinear matrix inequalities (BMIs) {10].
The BMI problems appear commonly in the multiplier
theory based robust control design. In order to solve
the technical difficulties arising from the numerical so-
lution of such BMIs, we will use the method proposed
by [11} where the BMI problem is solved via two LMI
sub-problems. In the following, we show this algorithm
specialized to our synthesis problem.

Algorithm 1 Let B, and B;s be given polytopes. Con-
sider the theorem 1 with matrices Az, 6) and C(z, )
as defined in (6).

STEP 1 Determine a stabilizing controller in the do-
main B = B; x Bs;

STEP 2 For a given stabilizing controller, solve the
optimization problem in theorem 1 taking into ac-
count the definition (6), obtaining the matriz Ly;

STEP 3 For a given matriz Ly, solve the optimiza-
tion problem in theorem 1, obtaining the new con-
troller.

STEP 4 Iterate over steps 2,3 until convergence or
satisfaction of a pre-defined 2-norm of the oul-
put signal.

At each iteration 4, note that above algorithm guar-
antees the regional stability of the closed-loop system
and ¢, < ¢f;_,y. As a result, the above algorithm
will converge on a local minimum. To overcome the
problem of finding a stabilizing controller (STEP 1),
we may use the classical LQR technique [12] applied
to the linearized model of the nominal nonlinear sys-
tem and check the domain of stability. Observe that
the LQR controller may not stabilize the system for
given domains B; and B5. When this occurs in STEP
1, we suggest the use of the controller proposed in [9],
theorem 2, with guaranteed domain of stability.

4 Numerical Results

To illustrate the analysis/synthesis results, we show
two numerical examples. The first one is based on the
Van der Pol’s equation for reversed time with a time-
invariant uncertain dumping factor. We analyse the
local properties using the proposed method for differ-
ent Lyapunov functions. In the second exemple, from
[4], the objective is to design a static state-feedback
control law with guaranteed cost for a time invariant
two-dimensional nonlinear oscillattor (with no uncer-
tain parameters).
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Example 1. Consider the following system:
0 -1

j::[l E(I%—l)]z
z=[1 0]z z(0)e B;

Q)

where the nonlinear dumping factor € is constant and
approximately known, l.e. £ € [gg — Ag, g9 + Ag] with
go = 0.8 and Ae =0.2.

In order to determine an upper bound on the output
energy, let us consider that B, is defined by the follow-

e

where a is a given scalar.

[0 4
—C

47
&

—x
[0 4

Now, consider the following partition of the matrix P
P B

of P(z, 6):
b= [ P P ]

With above partition, we can obtain the following Lya-
punov matrices: (i) Fo, P, and P; free, i.e. the ma-
trix P(z, 8} is quadratic in (x,4); (ii) P, P free and
P, =0, i.e. the matrix P(z,d) is affine in (z,d); and
(iit) Py = 0, P, = 0and P free, i.e. the matrix P(z, §)
is constant.

The table 1 shows estimated upper-bounds on the 2-
norm of the output signal for the proposed approach,
using theorem 1 and different Lyapunov matrices. For
all solutions, we considered o = 0.8.

Upper-bound on [zl Lyapunov Matrix

constant | affine | quadratic

vz, 6(0N2 9.2 9.0 1.8

Table 1: Estimated upper-bound on ||z(|z for system (7).

As expected, the polynomial Lyapunov functions
{quadratic Lyapunov matrix) achieves less conservative
results, thus justifying the required extra computation.
We point out that the piecewise quadratic approach
(13], with four linearized state space partitions (a simi-
lar computational effort), surprisingly fails in the anal-
ysis of stability for this system. This further shows the
potential of our approach.

Example 2. Consider the following nonlinear system:

Ty
T2

I2
-z (¥ + arctan(5z;))+

552
—2—1—T(1+251]) + 4z + 3u

Ihn

(8

with a performance index z = 23 + u.
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Note that system (8) has a non-rational nonlinearity,
then it is not straight rewritten in the equivalent form
(2). To deal with this problem, we define the fol-
lowing auxiliary variables 3 = arctan(5z;) and v =
arccot(5x;). With this auxiliary variables, it is possi-
ble to construct: a differential equation #; = 51—4%’5;?
and an algebraic one 73 +7— 5 = 0. Leading to the
following augmented-system.

:i’:l =22
2
g2 = —x1 (5 +123) - 2(1-?-25:?) +4z2 + 3u
. _ 5
I3 = 1+2:|:5$!1 (9)

O=z3+7~ %

The system (9) has only rational nonlinearities and
hence can be rewritten in the equivalent form (2). By
construction, the trajectories of the system representa-
tion (9) include all trajectories of the original system
(8). In particular, suppose that x1(0), z2(0} are the ini-
tial conditions of the system (8). Then for the initial
conditions =, (0}, £2(0) and z3(0} = arctan(5x,(0))
both systems have equal trajectories in the z;, zj
sub-space. Also, system (8) is open-loop unstable,
then we need a stabilizing controller. To this end,
we can use the LMI-LQR techniques from [12] applied
to the linearized model {keep in mind that for sys-
tem (8) there is no uncertainty). Where, we obtain
the following control matrix Kyun = [ 0 —1.667 ].
In the augmented state-space, the stabilizing control
matrix is given by K = [0 -1.667 0] This
controller (that ensures the stability of the cloosed-
loop system) is used as starting point of algorithm
1. As we are dealing with static state feedback of
the system (8), we will impose the following struc-
ture in the control matrix: K = [ &k ky 0 ]. Af-
ter 2 iterations, we obtained the following control law
u={-003 —173 0]z = arctan(5z;) ], in
which the guaranteed cost satisfles ||z]|2 < 32. Note
that the augmented system (9} allows only the use of a
quadratic Lyapunov function in the proposed approach.
It means that we cbtain a potentially conservative re-
sult, but in the other hand we have a lower computa-
tional effort.

It should be noted that the optimal solution has a cost
of 31 for the initial condition z(t = 0) = [3 -2
with the optimal Lyapunov function given by v(z) =
z3(% + arctan(5z1)) + 3, and the Receding Horizon
Control with Control Lyapunov Function (RHC+CLF)
scheme, proposed in [4], achieves a cost of 36 with a
horizon of 1.

The above results show the potential of our approach
and when compared with the optimal solution are in
some way surprisingly. This fact can be explained due
to the behaviour of the Lyapunov function candidate in
the z;, z2 sub-space. Note that in the z;, 2 sub-space
this function depends not only on z;, 2, but also on



arctan(5z;), i.e. the Lyapunov function candidate is
more complex than the quadratic one and similar to
the optimal solution.

5 Concluding Remarks

In this paper, we showed an LMI based technique to
compute a bound on the guaranteed cost for a class of
uncertain nonlinear systems given a set of intial con-
ditions represented by the polytope B,. To ascertain
the system stability and performance criterion, we use
Lyapunov functions of the type v{x,8) = z P(z,d)z,
where the matrix P{z,d) is a polynomial function of =
and d. Based on the analysis results, we proposed an
iterative algorithm for the synthesis problem. The first
example showed as expected that polynomial Lyapunov
functions leads to better performance criteria, thus jus-
tifying the required extra computation. The other one
illustrated how to compute a guaranteed cost control
law for an unstable open-loop system with non-rational
nonlinearities. Future research will be concentrated on
the design problem in order to obtain LMI conditions.
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Proof of Theorem 1

Consider the system (2) and define the following par-
tition of the o vector.

o= |

and TFZ[WE]ERT“
h

2
o

Ty

€ Rm

] € R™a; 7

g

(10)

where m, =mo+my, my =ma +... + mg and m =
My + Mp.

Let N, € R0 *™a he a matrix such that Nome, = =
and define Ny =[ Opmgxme Mo Ompxmy, |-

Suppose that the optimization problem (1) has a solu-
tion for all vertices of B. Then, by convexity, it is also
satisfied Vx € B, and ¥ (8,4) € B;.

For convenience, let us represent the first LMI of (1)
by Q. > 0. Since this inequality is strict, for some
sufficient small positive scalar ¢,, it is possible to add
the term —em}\f;]\fﬂ to @, without change its sign, i.e.
the condition @, — eaN;Na > 0 is still satisfied. Pre-
and post-multiplying Q, — €2 N, N, > 0 by 7', and ,,
respectively, we get:

T PT, > earz, V(7,8 € B=B, x B
(11)



since by construction ¥,7, = 0, ie. M,z = 0 and
Oz — o= 0.
From (2) and (10) notice that
Im
Ty = [ @U ] T (12)

Then, from (11) and (12) we cbtain
7]

Pz, 6)x > .2’z , V(x,d) € B

Irng
©

I

v(zx,d) 6

7, Pr, = x' [ } T

_ {(13)
where P(z, §) is the state-parameter dependent matrix
indicated in (3).

Since z,4 belong to a polytope, the entries of the ma-
trix ¥, in ¢, are bounded. Then there exists a suf-
ficient large positive scalar €, such that e,1l,, >
Q.. Thus, €a1ﬂ';ﬂ'a > fr;Qarra that in turn yields
€z z+10 Oz) > T P(z,8)x. Keeping in mind that
x,d belong to a polytope there exists a sufficient large
positive scalar €,2 such that €,21,, > ©'0. Hence:

v(x,8) = 2 P(2,0)7 < €a1(} + €a2)a T
for all x € B, and 6 € B;.

(14)

Applying the Schur complement on the 2nd EMI of (1),
we have

Let us represent the above matrix inequality by @y < 0.
Since this inequality is strict, for some sufficient small
positive scalar €, it is possible to add the term ebN;Nb
to this LMI without change the sign, i.e. the condition
Qp + q,N,;Nb < § is still satisfied.

0 PNy

NP C'C ] + Ly¥p + ¥, L, <0 (15)

Pre-multiplying by |
its transpose, we get:

7’ ] and post-multiplying by

_ ] .
] [ i G ][] <
~Eia+Fr =0
V(r,88)eB:{ T,m, =0 (16)
Qr =10

Taking the time derivative of m; = O=q yields

mo s
1 =Omo + Ofo = Y Tyi;z+ »_ Usdz + O
j=1 =1
Since &; = 5;7 is a scalar it follows that &;7 = z3; =
zs;d. This yields
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It is easy to verify that the above equality has the fol-
lowing compact form

—Efqa+ Fr =0 (17)
Note that, from (2) we define the auxiliary vectors =;
as m —Omy = 0 and Q7w = 0. The:se can be written
in the following compact form ¥y {7, 7 | = 0.
Then it is possible to write (16) as follows

’J"T;Pﬂ'a + 7r;P1"r,1 +rCCrx < —ebr'r
for all (x,6,4) € B.

Since z = Cn, the above expression for all (z,6,4) € B
is equivalent to

T (A(z,6) Pz, 8) + Plx,8) Az, 8)+
+P(@, Nz +zz< —ar (18)

ie. 5{2,8) + 22z < ~¢ T 1.

From (13), (14) and (18), the system (1) is locally expo-

nentially stable and v(z, §) = =’ P(z,48)  is a Lyapunov

function for the origin of the system.

Keep in mind that (13), (14) and (18) are satisfied for

all z € B; and (4,8} € Bs. Then, there is a sufficient

small constant ¢ > 0 such that R, C B;. Hence, R,

is an invariant set.

Integrating (18) from 0 to T, we have

T
o(#(T), 6(T)) - v(z(0),6(0)) < — [ 2 zde
1]

forall T' > 0 and 7o € R.-.

As T — oo, the above expression leads to
T i
lelf = gim [ 2 zdt < v(zo,50) <
T—ooc 0

for all zg € Re-, (4,0) € Bs.



