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On guaranteed cost control of linear systems with input saturation
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Abstract: This work studies the problem of control design for linear systems with input saturation. It is well
known that integral quadratic constraints (IQC) can be used to describe input saturation and that the use of
IQC in analysis can lead to less conservative performance bound and larger domain of attraction. In this work,
it is shown that a class of commonly used IQCs may not help in control synthesis. That is, the use of these
IQCs does not enlarge the guaranteed domain of performance for synthesis.
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0 Introduction

Actuator saturation is common in feedback control systems. Control design often requires us to take such actuation into
account, or the design may “wind up” the actuator, possibly resulting in degraded performance or even instability. Com-
mon solutions include anti-windup compensations (see, for example, [1, 2]). This approach is relatively simple to be
used, but the resulting performance may be limited. Design methods based on Riccati equations, such as [3~6], tend
to improve the performance. More recent results also include those developed using the circle and the Popov criteria with-
in the frame-work of linear matrix inequalities (LMIs) (see, for example, [7, 8)).

This paper studies the problem of control design for linear systems with input saturation. It is well known that integral
quadratic constraints (IQC) can be used to describe input saturation and that the use of IQC in analysis can lead to less
conservative performance bound and larger domain of attraction. However, the situation is rather different in control syn-
thesis. It was shown by Iwasaki that the use of circle criterion (a special type of IQC) does not yield a larger guaranteed
domain of stabilizability when compared with a linear controller without saturation. It was further shown by Iwasaki and
Fu that the use of circle criterion does not lead to a larger domain of attraction for guaranteed cost control either. These
negative results are somewhat surprising because they seem to be against the intuition that a saturated controller should
achieve better performance or stability .

In this work, we study the use of a more general IQC in synthesis. It is shown that the negative results above also hold
for a class of commonly used IQCs. That is, the use of these IQCs does not enlarge the guaranteed domain of performance

for synthesis.

1 1QC based analysis

Consider the following linear time-invariant system:

2(t)=Ax(t) + Bu(t)

2(t) = Kn (1) (1)
e(t)=Cx(t)+ Du(t)
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where u(1)€. 72" is the control input, x(1)€ . %" is the state, z(1)€.%2" is the feedback signal, and e(1) €. 2" is
the output. Suppose the control input u is subjected to the following saturation nonlinearity, i.e.
a; if u; >aq
u=9(z)eu = z; if lul<a; (2)
—a; fu < -aq
where a €.72" is a positive constant vector.
A given set of state vectors X is caled a domain of attraction if any state trajectory starting from a point x, € X conve-
rges to the origin as the time goes to infinity. The set X is called an invariant set if any state trajectory starting from a

point x, € X stays in X. The set X is called a domain of performance with level ¥ if it is a domain of attraction and any
output e in response to x, € X has its %, norm less than or equal tov ¥ .
Integral quadratic constraints (IQC) are convenient and powerful for capturing various types of nonlinearities and un-

certainties in the system. In this work, The use of IQC to describe the input saturation is considered, i.e., replaceing

the input saturation (2) with the following [9] :

[ oe (1), cwl), 2()di = 0, ye € [0,1] 3)

Jo
where w = z — u = z — $(z), o(+) is a quadratic form, and x, is dened by
. = A,x. + Bu + Bz, x,.(0) =0 (4)
with a Hurwitz matrix A, . The inequality (3) needs to be satisfied for all z € Z C %4'[0, %), where Z is an
admissible set for z which will be specied later.
An alternative representation of the IQC (3)-(4) is given by
f [;((];2)] T[(p)[ej(’;’w))]dwzo, ve€0,1] (5)
where [[ (jw) is a rational matrix function of jw. An IQC can be either static (where ®(jw) is a constant matrix and
hence x. is void) or dynamic (where ®(jw) depends on w ).
Examples of 1QCs are plenty. Here, three commonly used ones are listed for input saturation.

Example 1 Norm Bound. In this case, x, is void and we have
d(w,z):é}lri(zﬁ—u%):i%m]lriw,-@zi—wi)EO (6)
where 7; >0 are arbitrary constants. In this example, Z = _%4".
Example 2 Sector Bound. Suppose it is known in advance that |z, | never exceeds p;, = a; (This happens, e.g.,
when the state is confined in a given set). We can take
Z=1z:2€%", 1z(t)l<p;, Vt=0, i=1,",m| (7)
Then we can bound w; by the following:
(zi —u)(u; = s,2) =w; ((1 = 5;)z; — w;) =0

where s; = a;/p; . Hence, we have

a(w,z)z_%:lz'iwi((l—si)zi—wi)z() (8)
for any 7, >0. Again, x, is void in this case. Obviously, this is a tighter constraint than (6). In fact, this is the tight-

est static [QC in the sense that the ¢ (w; z) in (8) lower-bounds any other ¢ (w;z) over Z.

Example 3 Zames-Falb Bound [10]. Suppose H,(s) are any stable rational functions with
Re(1+ H,(jw)) =0, ¥ (9)
Denote by h; the impulse response of H;(s). Then, we have
(z; = w) (u + hiow) = whie(u; = w,;) =0, Vi

Hence, we have
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a(x,r,w,z)ziiriwi(h,;"(u,;—wi))ZO (10)
where 7, >0 are any constants. In this case, x, is the state associated with H(s) = diag{ H,(s),**-, H,(s)|. In this
example, Z=7,".

In the presence of x,, we can generalize the feedback signal z to involve x, as well, i.e., z= Kx + K.x, . We may
combine (1) and (4) to obtain the following augmented system:
x(t)=.2x(t) +.Bu(t)
2(1) = 7x (11)
e(t)=%%+ 2u(t)
where x = [x" I |T€7",
A= A 0 ];.,%’:[B];%‘= (K K. |; z=[C 0]; o=D. (12)
BK A,+BK, B, o ’
We can also rewrite the quadratic form o (+) as follows:
1" =%
a(x,r,w,z):[ ] Q[ ] (13)
u u
for some suitable matrix (.
System analysis using 1QC is based on the following lemma:
Lemma 1 Consider the argumented system (12) and a given constant ¥ > 0. Let V(%) = #"2% be a candidate
Lyapunov function, where 7= 7" > 0. Take
X=1{z: V(zx)<l} (14)
and the corresponding admissible set for z as

Z={7x: €724, :(1)EX, V1t=0} (15)

Suppose the IQC (5) is satisfied for all z&€ Z. Also suppose

AP+ DPA PH _l[gﬂ' ][V 1+ 0=0 (16)
+ o D+ )<
AP ol "7 Ly -
and
—1 > > 2 x ! % e -
il o |20, viex, w=sam) (17)
u u
Then, X is an invariant set. Further, the set
X ~
x:%x:[o]ex} (18)

is a domain of performance with level 7.

Proof Consider any ¥ € % with i(1)EX, Vt=>0and u=¢(%x). From (16), we get

. , %17 1%
25z y | rxvou | 7] 0 ] <0 (19)
u u
Using (17), the above leads to
28" 7% <0

which implies that &' 7% is nonincreasing and hence X is an invariant set. Hence the IQC (5) holds for any trajectory
of % starting in X. Returning to (19) and integrating it from 0 to % , we get

1 * 2 T 7 ® x ' x

y e 1P < @z + [ 7] o] a
0 olu u
Using (5), we conclude that
e [ = 27(0)75(0) < 1
0

Hence, X is a domain of perfomance with 7, sois X.
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2 1QC based synthesis

Now a key technical result is presented.

Theorem 1 Consider the argumented system (12) and a given constant ¥ > 0. Let the conditions in Lemma 1
be satisfied. Suppose there exists a scaling( constant) matrix F such that the following conditions are also satisfied:

(i) 1 Fz(t) | < g, for all z € Z, where F; is the ith row of F;

(i) The IQC condition (5) is replaced by

[W{F)] ||(jw)[€(II_F)]20 ve€lonl, Vo (20)
(1ii ) The inequality (17) is replaced by
y’l(Z'T+FT§ZT)(Z’+@F)+[[]TQ[]]EO (21)
F F

Then, u = Fz is an unsaturated linear (dynamic) controller that guarantees the same domain of performance as the (pos-
sibly) saturated controller u (1) = ¢( Ki(t)).

Proof Take u = Fz. Condition ( | ) ensures that input saturation does not occur. Condition ( il ) guarantees that
the IQC (5) is satisfied for the corresponding (w, z) pair and condition ( fii ) implies that (17) is also satisfied for u =
Fz. Hence, from Lemma 1, u = Fz also guarantees the same domain of performance X .

Remark 1 The verification of (20) can often be simplified as far as the e parameter is concerned. Writing
O (jw) Dy, (jw)

D, (]w) @, (]w) ’
it is pointed out that most IQCs (including those listed in [9]) have the property that

D), (jw) =035 Op(jw) <0, Vo (22)
In this case, (20) is convex in €. Thus, it is sufficient to check at € =1 (because (20) at € = 0 is the same as

®,, (jw)=0).That is, (20) is simplified to checking

D(jw) =

[P IRIE] I Er (23)

The same comment applies to (5), i.e., it sufficies to check at e =1 when (22) holds.

Next we show several cases where an 1QC-based synthesis does not yield a better design as far as a guaranteed domain
of performance is concerned.
2.1 Synthesis using static IQCs

We apply Theorem 1 to synthesis using a static 1QC.

Let y>0, K and P=P" >0 be given. Form X = {x:x"Px<1}. Define

0 = max{a,, rtnea))((l Kxl|

and s; = a;/p; for i =1,+*+, m. Then, the sector bound based IQC is given by (8) and the corresponding admissible set
for z is given by (7). Note that (17) is satisfied for any ¥ > 0.

To ensure that X is a domain of performance, the IQC-based synthesis requires (16) which is equivalent to
m X
2P (A4 Bu) + 7™ (Cet D) (Co+ D) + S (K= ) (s = s.k) <0, v | ] 20 (20)
i= u

Now take the new control signals u; = s;K;x . We see that u; (¢) are notsaturated in X and that 6(w, z) =0. Hence, by
Theorem 1, this unsaturated controller achieves the same domain of performance X . Indeed, this can be trivially veri-
fied from (24). Taking u; = s,K;x, (24) reduces to

2x"P(Ax + Bu) + 7 "(Cx + Du)"(Cx + Du) <0, vV x=0

Integrating the above from ¢ =0 to % gives
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| leto 124 < 7@ (o) = 7

Recall the remark that (8) is the tightest static IQC (see Example 2), it is concluded that any domain of
performance guranteed by using a static IQC-based synthesis is also achievable by using a non-saturated controller.
2.2 Synthesis using dynamic IQCs: Negative result

We apply Theorem 1 further to show that a dynamic 1QC based synthesis may not offer improvement either.

Let ¥, %, P’and Z be similarly defined as in the previous subsection (except for the change of notation due to
dimension augmentation of the state) and consider any dynamic IQC in (5). If we choose z(t) to be constant, the

dynamic 1QC should also be held but reduced to:
21" z
[ ] CD(O)[ ] > 0, VY constant z € Z
ew ew
We can denote the above by
R
] o] =0, vrex (25)

u u

for some constant matrix (). Note that x, is not involved here because z is constant, implying that u is also
constant and x,(¢) remains zero at all ¢. Also note that (25) implies (17).

Let decompose

, P Py
P = [
Py Py
multiplying
I 0
0 0
(i
and its transpose to the right and left of (16), respectively, we reduce it to
AP + PA PB Lre
. ]+7 [ T][C D]+Q, <0 (26)
B'P 0 D

By now, we have established a static IQC (25) and an equivalent of (16), which is (26). Hence, the result can
be applied in the previous subsection and an conclusion can be drawn that there exists a unsaturated controller
which gives the same domain of performance X. Moreover, the unsaturated controller can be proportional to z, as
in the static IQC case.

Example Synthesis using Zames-Falb and sector bounds. We consider the case of synthesis using both a
Zames-Falb bound (10) and a sector bound. We will demonstrate the result above by a more direct proof.

Due to the dynamic nature of the IQC, we need to consider the augmented system (11). The IQC is given as

follows:

m

G(x,(,w,z) = Zfi(zi - ui)(ui - Sizi) + fi<zi - ui)(ui + Ui) (27)

i=1

with any positive 7; and ¢;, where v, (jw) = H,(jw)u;(jw) and H(jw) satisfies(9) .
Let y >0, Zand P = P" > 0 be given. Define
oi = maxia; » max | Tz |
and s; as in Case 1, where X is given in (14). Suppose (16) holds. Then, by Lemma 1, X in (18) is a domain
of performance with level 7.

Now, we again take u; (1) = s;z,(¢). This implies that u,(¢) are not saturated in X. We have

m

o(x,w,2) = Efi(l - Si>5izi<zi +h;©z)

i=1

where h; denotes the impulse response of H;(s). It follows that (T#% 126 )



