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A Blind Approach to Hammerstein
Model Identification

Er-Wei Bai, Senior Member, IEEE,and Minyue Fu, Senior Member, IEEE,

Abstract—This paper discusses the Hammerstein model iden-
tification using a blind approach. By fast sampling at the output,
it is shown that identification of the linear part can be achieved
based only on the output measurements that makes the Hammer-
stein model identification possible without knowing the structure
of the nonlinearity and the internal variables.

Index Terms—Hammerstein systems, nonlinear systems, param-
eter estimation, system identification.

I. INTRODUCTION

T HE Hammerstein model is a special kind of nonlinear
system where a nonlinear block is followed by a linear

system. The Hammerstein model has applications in many
engineering problems including control, signal processing
and communication [8], [10], [14]. For instance, the Ham-
merstein model finds applications in modeling distortion in
nonlinearly amplified digital communication signals (satellite
and microwave links) followed by a linear channel [8], [14].
Therefore, the Hammerstein model identification has been
an active research area for many years [4], [8], [14] in the
control and signal processing communities. There exists a large
number of research papers on the topic of the Hammerstein
model identification in the literature. Existing methods can be
roughly divided into four categories:

1) iterative method [12], [15], [19];
2) overparameterization method [2], [6], [7], [9];
3) stochastic method [5], [8], [13];
4) separable least squares method [1], [16].
The idea of the iterative method [12], [15], [19] is the alter-

native estimation of parameters. Although there are some varia-
tions, the parameter set is usually divided into two subsets. One
finds the optimal values for the first set while the second set
is fixed. Then, two sets are switched to find the optimal value
for the second set while the first one is fixed. This method can
often provide good results. However, convergence is a problem.
In fact, it was shown in [17] that the method can be divergent.
Some modifications were proposed in recent years [15] to over-
come this problem. The overparameterization method [2], [6],
[7], [9] is to overparameterize the Hammerstein system so that
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Fig. 1. Sampled Hammerstein system.

the overparameterized system is linear in the unknown parame-
ters, and then, any linear estimation algorithm applies. The dif-
ficulty with this approach is that the dimension of the resulting
linear system can be very large, and therefore, convergence or
robustness becomes an issue. In general, this approach is lim-
ited to the Hammerstein system where the unknown nonlinear
block is parameterized linearly by unknown parameters. The
stochastic method [5], [8], [13] uses white noise properties to
separate the nonlinear part from the linear part and works only
if the input is white. The idea of the separable least squares [1],
[16] is to write one set of variables as a function of the other
set based on the first-order necessary and sufficient conditions.
Thus, the dimension of the optimization space is reduced. This
method is found particularly useful for hard or nonsmooth non-
linearities [1].

In this paper, we consider identification of a discrete-time
Hammerstein system. We will mainly focus our study on sam-
pled Hammerstein systems, as shown in Fig. 1, but we will also
extend our results to nonsampled discrete-time Hammerstein
systems.

A discrete-time Hammerstein system is shown in Fig. 1. The
goal of the Hammerstein system identification is to estimate the
transfer function of the equivalent sampled linear system for the
given sampling interval and to estimate the unknown non-
linear function based only on the measurement ofand .
The internal signal is not available. The order of the linear
system is knowna priori.

Our approach in this paper is different from all four methods
discussed above and is based on the idea of our previous work
on blind system identification [3]. We identify the linear part
using the output measurements only, i.e., no information on the
input and the interval variable are needed. In gen-
eral, blind system identification is not possible only based on the
output measurements because different systems coupled with
appropriate inputs can produce identical outputs at the sampling
instants . However, by fast sampling at the output, blind iden-
tification based on the output measurements is possible. Once
the linear part is obtained, identification of the nonlinear part
can be carried out in a number of ways.

We remark that the blind system identification techniques for
IIR system were first developed in our early work [3] for linear
systems. The use of fast sampling in identification of sampled
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Hammerstein models was studied in a recent paper [18]. For
a given sampling interval , the transfer function at the sam-
pling interval , where is the order of the system,
was derived. However, it is not clear in [18] whether the infor-
mation of the transfer function at is enough to de-
rive the transfer function at. In the current paper, this problem
is completely solved. We show that the transfer function at the
given sampling interval can be identified based only on the
output observations. The current paper also contains two addi-
tional minor contributions. The first one is that our proposed
algorithm applies to a wide range of inputs, and moreover, the
persistent excitation condition that guarantees convergence and
robustness is obtained, whereas in [18], the input is restricted to
white noises. The second minor extension is that [18] deals with
control systems where the input is piecewise constant, and the
current paper is in the digital signal processing setting where the
input is a discrete pulse sequence.

The outline of the paper is as follows. Section II establishes
some preliminary results. Some assumptions on the system are
also given in this section. Section III studies blind identification
of the linear part and convergence issues. Section IV devotes
to identification of the nonlinear block and several methods are
proposed. A numerical simulation is provided in Section V. Ex-
tension to nonsampled discrete Hammerstein systems is pro-
vided in Section VI. Section VII gives some final remarks.

II. PROBLEM STATEMENT AND PRELIMINARIES

As mentioned in the previous section, we will focus on the
sampled Hammerstein system first. Extension to nonsampled
Hammerstein systems will be made in Section VI. Consider a
sampled Hammerstein model in Fig. 1, which consists of a non-
linear block and a continuous linear time-invariant system. For a
given sampling interval , the input is a discrete pulse se-
quence. The output of the nonlinear block, which is the input
to the linear system, is also a discrete sequence

(1)

where is a nonlinear function with known or unknown struc-
ture parameterized by an unknown parameter vector .
The model of (1) covers a large class of nonlinear functions.
The most common static nonlinear model
in the Hammerstein representation is obviously a special case
of (1). Some nonlinearities with memory, e.g., hysteresis, also
belong to (1). In such a case, the memory lengthis assumed
to be known.

Let the continuous linear time-invariant system be repre-
sented by a state-space equation

(2)

It is a routine exercise to derive its equivalent discrete time equa-
tion for a given sampling interval when the input is a discrete
pulse sequence [3]

(3)

The discrete transfer function from to is, accord-
ingly, given by

(4)

form some s and s. The goal of the Hammerstein system
identification is to estimate in terms of its parameterss
and s, as well as the unknown nonlinear functionbased only
on the measurement ofand .

We now make an assumption on the sampled system (3)
throughout the paper.

Assumption 1:It is assumed that the sampled system (3) at
the sampling interval is minimal (reachable and observable).

The following lemma can be easily verified [3].
Lemma II.1: Consider the continuous system (2) and the

sampled system (3). Then, we have the following.

• The sampled system is minimal at the sampling interval
for some positive integer

, whenever
, where s are the eigenvalues of the continuous

system.
• The sampled system is minimal at any sampling interval

, if it is minimal at the sampling interval .
Our approach in this paper is based on blind system identifica-

tion, i.e., to estimate using only the output measurements.
The idea is fast sampling at the output that results in a sampled
system at a higher sampling rate or a smaller sampling interval.
Let the output sampling interval be

for some positive integer, which is referred to as the oversam-
pling ratio. For given and , consider the following sequences:

(5)

Although the input sampling interval is fixed atand

(6)
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we can write in terms of the output sampling interval:

(7)

Denote by the discrete transfer function from to
and by , the discrete transfer

functions from to , i.e.,

The transfer functions of can be easily derived [3]:

where , and . Thus, the
transfer function is given by

(8)

It is interesting to note the following.

• All s share the same denominator, i.e.,

• as in (4), and this implies

• is strictly proper and s,
are proper but not strictly proper. Moreover,

, and .
It will be shown later that by fast sampling at the output,

can be identified based only on the output measurements.
The difficulty is that is the transfer function at the sam-
pling interval , which is not the desired transfer func-
tion at the sampling interval . Thus, we have an identi-
fiability problem, i.e., how to find from . We have
the following result.

Lemma II.2: Let for some integer . Suppose
the transfer function at the sampling interval is
in the form of

Write

Then, the transfer function at the sampling interval is
given by

(9)

Proof: Under the minimality assumption, it is clear that
is a pole of the continuous time system, is a pole of

, and is a pole of . This implies that the denom-
inator of is

To determine the numerator , note

(10)

and recall

In addition, we have the equation shown at the bottom of the
page. The last equality is from (7). On the other hand,

, and this implies
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Now, from (10) and the fact that all and are the same,
we have

This completes the proof.
Before closing this section, we observe that the parameteri-

zation of the Hammerstein model is actually not unique. Sup-
pose the nonlinear block and the linear block are represented by
some function and the transfer function , respectively.
Then, any pair of and for some nonzero con-
stant would produce the identical input–output measurements.
In other words, any identification setting cannot distinguish be-
tween ( ) and ( ). To obtain a unique param-
eterization, needs to be normalized, e.g., set . The
problem with this approach is that it indirectly presumes ,
which may not be the case. To avoid this problem, we assume
the following assumption throughout the paper.

Assumption 2:Consider of (4). Assume that
and that the sign of the first nonzero

element of is positive.

III. I DENTIFICATION OF THE LINEAR BLOCK

In this section, we will provide an algorithm for estimating
based only on the output measurements. The idea of our

approach is to estimate first and then to compute
using the result of Lemma II.2. To avoid unnecessary complica-
tions, we assume in Sections III-A and B that noise .
The convergence of the algorithm in the presence of noise will
be discussed in Section III-D.

A. Estimation of the Denominator

Given the input sampling interval, let the output sampling
interval be . Write as

for some unknown s and s. Its time domain expression is
given by

The input sequence is nonzero only if .
In other words, is nonzero only if , and
moreover

Now, at the sampling instants , we have

(11)

Define

We have

(12)

This equation is linear in the unknown. All other variables
and consist of output measurements only, and there-

fore, the denominator coefficientscan be estimated by many
standard algorithms, e.g., the recursive LMS or recursive least
squares method.

B. Estimation of the Numerator

To estimate the numerator of at the sam-
pling interval , consider two sequences

where . As discussed in
(4) and (8), is strictly proper, and is proper
but not strictly proper. In addition, and share
the same denominator. Hence

Clearly

and this implies

or in the time domain

Again, from (8), is proper but not strictly proper, and
this implies . Define

It follows that

(13)



1614 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 50, NO. 7, JULY 2002

This is again linear in the unknown variable, and all other
variables and are available. The unknown numerator
coefficients can thus be estimated by any standard algorithm.

C. Algorithm for Estimating

Now, we are in a position to provide the algorithm estimating
based only on the output measurements.

Blind Identification Algorithm for Estimating :

1) Given input sampling interval . Set .
2) Sample and collect output measurements and

. Define

3) At each , apply either the recursive least squares or the
recursive LMS algorithm to estimateusing (13), for in-
stance, the recursive LMS-type algorithm

(14)
where is the estimate
of at time , and at each , ,
apply either the recursive least squares or the recursive
LMS algorithm to estimate using (12), for instance, the
recursive LMS-type algorithm

(15)

where is the estimate of at
time . The estimate of is
defined as

4) By using Lemma II.2, compute the estimate
of , which is the transfer function at the sam-
pling interval , in terms of its coefficient estimates

and based on
. Because and the first nonzero

element of is positive, we normalize by

and set if the first nonzero element ofis negative.
Finally, the estimate of , at time , is obtained.

5) Set , and go to Step 2.
Only output measurements are needed to implement the al-

gorithm. The algorithm is recursive and produces the estimate
at each .

D. Convergence Analysis

Whether converges to depends on whether
converges to . Therefore, it boils down to

the parameter convergence of and . It is well
known that both parameter estimates converge asymptotically
if and are persistently excited (PE) at least in the
absence of noise. Therefore, it is important to establish the PE
condition on and . In fact, the PE condition on
has been developed in our early work on the subject of blind
system identification [3]. However, the PE condition on
is new.

Lemma III.1: Consider the parameter estimation algorithms
(14) and (15). Then, we have the following.

• Suppose the spectral measure of is not concentrated
on points. Then, is PE.

• Suppose the numerators of and do not
share any common factor and that the spectral measure of

is not concentrated on points. Then,
is PE.
Proof: The second part has been shown in [3]. We only

provide the proof for the first part. By a simple calculation, we
have

where

...
...

.. .
...

...

and

...
...

...
...

From Assumption 1 and Lemma 1, the discrete time system is
minimal, and therefore, each eigenvalue of the matrix, in-
cluding the repeated ones, can only have one Jordan block. Let

...

where each is a Jordan block with the dimension. What
we have to show is that the system is reachable; therefore, the
sufficient richness of the input implies PE of . From
Assumption 1 and Lemma II.1, we know that ( ) is reach-
able if ( ) is reachable. Note that ( ) is reachable

is reachable rank for all
, where s are the eigenvalues of the contin-

uous-time system. Now, let the first column of the matrixbe
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It follows that we have the equation shown at the bottom of the
page. From Assumption 1, , if . Hence,
( ) is reachable the last row of each

...
...

...

is not zero. The term inside the bracket is not zero; otherwise,
would be both a zero and a pole of the discrete-time system.

This would contradict Assumption 1 and Lemma 1. Thus, ()
is reachable if is not zero; . To show that those

s are not zero, observe that any eigenvalue of is not
zero, and moreover, if is an eigenvalue associated with the

th Jordan block with multiplicity , the corresponding
eigenvector and generalized eigenvectors are the columns of the
following matrix:

...
...

...

Note that and

adj

where is the adjoint matrix formed by the cofactors .
Thus, , where is the determinant of
some nonsingular matrix formed by deleting the first row and
column of , and this implies for all .
This completes the proof.

Finally, we discuss the parameter convergence. In the pres-
ence of noise, (12) and (13) become, respectively

where

If the noise is bounded, i.e., , then both and
are bounded

for some constant , and this leads to the following well-
known result in the system identification literature [11].

Theorem III.1: Consider the parameter update algorithms
(14) and (15) with bounded noise . Suppose
that and are PE. Then, the parameter estimation
errors ( ) and ( ) converge exponentially to a ball
centered at the origin with radius for some constant ,
where relies on the level of the PE.

Clearly, if noise is absent, the parameter estimates converge
to the true values exponentially.

E. Sufficient Richness of

From the convergence analysis, we see that parameter conver-
gence depends on the PE conditions on and , which
rely on the spectral contents of . This is often referred to
as the sufficient richness condition in the system identification
literature [3], [11]. However, is the internal variable that is not
measurable and directly controllable. It is desirable to have the
richness conditions in terms of the input over which we
may have control. Translation of the richness condition from

to is actually difficult because of the nonlinearity. For
instance, let be a pseudo-random binary noise sequence
(PRBS) taking values 1 and . contains
infinitely many spectral lines and , containing only
one spectral line. Thus, may not be sufficiently rich when

is.
However, in the case of polynomial nonlinearities

and sinusoidal inputs ,
the PE condition can be easily established. If the input has a
single spectral line ,

...
...

...

...
...

...

...
...

...

...

...
...

...
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has spectral lines unless some frequenciess are the same
module 2 . If

has 2 spectral lines, is in the form of the equation shown
at the bottom of the page. Therefore, for , has all
the frequencies

unless it is in a pathological case, where either the coefficients
are zeros or the frequencies are the same module 2.

IV. I DENTIFICATION OF THE NONLINEAR BLOCK

A. Direct Approach

Once the linear part is identified, we have the estimates
s and s of s and s. The unknown parameter vectorthat

parameterizes the nonlinear block can be estimated directly by
minimizing

(16)

The convergence and computational complexity of the mini-
mization depends, of course, on the nonlinearity. Here, we
are particularly interested in the linear parameterization struc-
ture

(17)

with known s and unknown s. Then, by defining

(16) can be rewritten as

(18)

All variables and are available, andcan be estimated
by many standard algorithms. For example, using the recursive
LMS algorithm, we get

We remark that the most common polynomial nonlinearity rep-
resentation

in the Hammerstein model literature is a special case of (17)
with .

B. Indirect Approach

In this approach, our goal is to recover the unknown internal
signal first and then to estimate the nonlinear block
using the information of and . This approach
is particularly useful when the nonlinear block is static

but lacks structure. Because of unknown
structure, it is not possible to estimate the nonlinear function
in terms of parameter estimation. However, if the data
and become available, the complete picture ofcan
be easily graphed. This graphical picture provides us accurate



BAI AND FU: BLIND APPROACH TO HAMMERSTEIN MODEL IDENTIFICATION 1617

information on the unknown as long as there is enough pair
( ) in the range of interest.

The first step of this indirect approach is to recover the un-
known . To simplify notation, suppose the transfer func-
tion is available. If not, its estimate can be obtained
by applying the blind identification algorithm presented in the
previous section.

Now, recall

where is the Z-transform of , which is available.
Supposing that is minimum phase, can be recovered
by taking the inverse

or, in the time domain

If, however, is nonminimum phase, inversion becomes
problematic. To this end, suppose and do not
share any common zeros. Then, from the Bezout identity, there
exist two stable transfer functions and such that

(19)

This implies

(20)

Therefore, and, consequently, can be obtained by
filtering and using and . Note
that calculations of and are straightforward if
and are available.

Once is obtained, the nonlinear block can be esti-
mated by using the information of and . We con-
sider two cases.

1) The nonlinear function is static and
nonparametric. In this case, the functioncan be graphed
using pairs of s and the estimated s. From the
graph, the nonlinear function can be estimated, pro-
vided that enough pairs of ( ) are availabe
in the range of interest. Clearly, the pseudo-random bi-
nary noise sequence (PRBS), which can generate only
two pairs of ( ), is certainly not a good choice.
This is a well-known fact in the literature.

2) The nonlinear function is in the general form of (1), and
then, can be estimated by minimizing

(21)
In particular, if is linear in the unknown

with known s and unknown s, then, by defining

we have

(22)

and can be estimated using, e.g., the recursive LMS
algorithm

V. SIMULATIONS

In this section, we provide a simulated numerical example.
Let the unknown transfer function of the continuous time system
be

or in the state-space equation form

With the sampling interval , the corresponding discrete
transfer function is given by

Note that the norm of numerator coefficient vector of is
normalized to 1. The unknown nonlinearityis assumed to be
a static second-order polynomial parameterized by the unknown

The purpose of the identification is to estimate the unknown
coefficient vectors of the numerator, denominator, and the poly-
nomial

For the simulation, 100 Monte Carlo runs were calculated.
For each Monte Carlo run, the input ,
is uniformly distributed in [ 5,5], and the noise is uniformly
distributed with magnitude 0.1. The estimate of at each
Monte Carlo run is obtained by the blind identification algo-
rithm proposed in the previous section. For the nonlinear part
vector , we apply the indirect identification approach as dis-
cussed before, i.e., we first obtain the estimate of
and then find by minimizing

The normalized root mean square error (NRMSE) is used to
show the performance of the proposed method. Let, ,
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TABLE I
SIMULATION RESULTS

Fig. 2. Estimated nonlinearity drawn by the inputu[kT ] and the estimated
x[kT ].

and represent the estimates of, , and at the th Monte
Carlo run, respectively. The NRMSE error is defined as

Table I shows the mean values of the 100 Monte Carlo runs as
well as the corresponding NRMSE errors.

Fig. 2 shows the true nonlinearity and 100 esti-
mated nonlinearities by using the input and the estimated

for each Monte Carlo run.
Finally, we compare the proposed blind approach to other ex-

isting methods for the Hammerstein model identification, espe-
cially the popular iterative and stochastic methods. The advan-
tage of the iterative method lies in its simplicity. Usually, the
convergence rate of the iterative method is fast, provided that it
converges. However, there is no guarantee for the convergence,
and in fact, it can be divergent [17]. Moreover, it is impossible
to check whether the method converges or nota priori. The sto-
chastic method works in a similar way as the proposed blind ap-
proach, i.e., it identifies the linear part first. However, to achieve
this, a white input assumption was imposed and used explicitly
in the stochastic approach. Our approach does not require white
inputs, and any input can apply. With the PE condition, e.g., a
sinusoidal input with enough frequency content, convergence is
guaranteed by using the proposed blind approach.

VI. NONSAMPLED HAMMERSTEIN SYSTEMS

In the previous sections, we have proposed identification
algorithms for the sampled Hammerstein systems using blind
techniques. Because we cannot do fast sampling for non-
sampled systems, these algorithms are not directly applicable
here. In this section, we show how to extend these results to
nonsampled discrete-time Hammerstein systems. We will focus
on the key ideas for brevity.

Consider a nonsampled discrete-time Hammerstein system
with static polynomial nonlinearity

Hold the input constant over the window of so that for

This implies

Note that

Therefore, at , we have

This equation is similar to (11), and s can be estimated by
many algorithms. Once s are obtained, can be calculated
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Finally, ( ) can be projected into
and by minimizing the Frobenius norm of

...
...

...

This problem was solved in [2]. Let

...
...

...

be the singular value decomposition(SVD), wheres are the
singular values, and s and s are - and -dimensional or-
thonormal vectors, respectively. Then, a solutionand is

where is the sign of the first nonzero entry of. This guar-
antees that and that the first nonzero entry is positive.

VII. CONCLUDING REMARKS

In this paper, we have proposed blind approaches for Ham-
merstein model identification. The main interest of the paper is
on sampled discrete-time systems where the linear part is origi-
nated from a continuous-time system. Using fast sampling at the
output, the linear part can be obtained using only the output mea-
surements. Convergence results in terms of PE conditions that
apply to a large class of signals are also derived. We have also
shown how to extend our results to nonsampled discrete-time
models where fast sampling is not permitted.

Our focus in this paper has been on presenting the idea, and
therefore, not much effort has been devoted to study the perfor-
mance of the proposed algorithms under various type of model
uncertainties and noises. This issue is certainly an interesting
one for further study, and we expect that results will be quite dif-
ferent from the traditional linear system identification because
of noise structure in the error equation. It will also be inter-
esting to characterize conditions for sufficient richness for spe-
cific types of nonlinearities and inputs.
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