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A Blind Approach to Hammerstein
Model Identification
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Abstract—This paper discusses the Hammerstein model iden- o] -
tification using a blind approach. By fast sampling at the output, nonlinear ] linear + 0
it is shown that identification of the linear part can be achieved
based only on the output measurements that makes the Hammer- block system +

stein model identification possible without knowing the structure

of the nonlinearity and the internal variables. Fig. 1. Sampled Hammerstein system.

Index Terms—Hammerstein systems, nonlinear systems, param-

eter estimation, system identification. the overparameterized system is linear in the unknown parame-
ters, and then, any linear estimation algorithm applies. The dif-
I. INTRODUCTION ficulty with this approach is that the dimension of the resulting

) ) ) ) ~linear system can be very large, and therefore, convergence or

T HE Hammerstein model is a special kind of nonlinegf,siness becomes an issue. In general, this approach is lim-
system where a nonlinear block is followed by a linegfe 1o the Hammerstein system where the unknown nonlinear
system. The Hammerstein model has applications in magyck is parameterized linearly by unknown parameters. The
engineering problems including control, signal processingqchastic method [5], [8], [13] uses white noise properties to
and communication [8], [10], [14]. For instance, the HamMsenarate the nonlinear part from the linear part and works only
merstein model finds applications in modeling distortion i e input is white. The idea of the separable least squares [1],
nonllne_arly ampl!ﬂed digital communl_catlon signals (satell|t?16] is to write one set of variables as a function of the other
and microwave links) followed by a linear channel [8], [14]get hased on the first-order necessary and sufficient conditions.
Therefore, the Hammerstein model identification has begfys the dimension of the optimization space is reduced. This

an active research area for many years [4], [8], [14] in th@ethod is found particularly useful for hard or nonsmooth non-
control and signal processing communities. There exists a lajgR arities [1].

number of research papers on the topic of the Hammersteiny his paper, we consider identification of a discrete-time
model identification in the literature. Existing methods can b§;mmerstein system. We will mainly focus our study on sam-

roughly divided into four categories: pled Hammerstein systems, as shown in Fig. 1, but we will also
1) iterative method [12], [15], [19]; extend our results to nonsampled discrete-time Hammerstein
2) overparameterization method [2], [6], [7], [9]; systems.
3) stochastic method [5], [8], [13]; A discrete-time Hammerstein system is shown in Fig. 1. The
4) separable least squares method [1], [16]. goal of the Hammerstein system identification is to estimate the

The idea of the iterative method [12], [15], [19] is the altertransfer function of the equivalent sampled linear system for the
native estimation of parameters. Although there are some vaigren sampling interval” and to estimate the unknown non-
tions, the parameter set is usually divided into two subsets. Qfear functionf based only on the measurementwofind y.
finds the optimal values for the first set while the second sghe internal signak: is not available. The order of the linear
is fixed. Then, two sets are switched to find the optimal valug/stem is knowr priori.
for the second set while the first one is fixed. This method canQur approach in this paper is different from all four methods
often provide good results. However, convergence is a problediscussed above and is based on the idea of our previous work
In fact, it was shown in [17] that the method can be divergersn blind system identification [3]. We identify the linear part
Some modifications were proposed in recent years [15] to ovesksing the output measurements only, i.e., no information on the
come this problem. The overparameterization method [2], [§hputw[k77] and the interval variable[k7] are needed. In gen-

[7], [9] is to overparameterize the Hammerstein system so thatl, blind system identification is not possible only based on the
output measurements because different systems coupled with
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Hammerstein models was studied in a recent paper [18]. Fidre discrete transfer function frowjx7’] to y[kT] is, accord-
a given sampling intervdl’, the transfer function at the sam-ingly, given by
pling intervalT/(n + 1), wheren is the order of the system,

was derived. However, it is not clear in [18] whether the infor- G(2) =c(2I — ®)7'T' = @

mation of the transfer function &t/(n + 1) is enough to de- » _QO‘(Z) ~

rive the transfer function &t. In the current paper, this problem _ bz A bz A A b2 (4)
is completely solved. We show that the transfer function at the l—az7t —apz72 = —apz "

given sampling interval” can be identified based only on th&form somea;s andb;s. The goal of the Hammerstein system
output observations. The current paper also contains two adggntification is to estimaté/(z) in terms of its parameterss
tional minor contributions. The first one is that our proposegndbj& as well as the unknown nonlinear functiphased only
algorithm applies to a wide range of inputs, and moreover, tag the measurement afandy.

persistent excitation condition that guarantees convergence angle now make an assumption on the sampled system (3)

robustness is obtained, whereas in [18], the input is restrictedf@oughout the paper.

white noises. The second minor extension is that [18] deals withassumption 1:It is assumed that the sampled system (3) at

control systems where the input is piecewise constant, and {hg sampling interval is minimal (reachable and observable).

current paper is in the digital signal processing setting where therhe following lemma can be easily verified [3].

input is a discrete pulse sequence. Lemma I1.1: Consider the continuous system (2) and the
The outline of the paper is as follows. Section Il establish@gmpled system (3). Then, we have the following.

some preliminary results. Some assumptions on the system are, The sampled system is minimal at the sampling interval
also given in this section. Section Il studies blind identification h = T/p for some positive integes > 1 Im(\ —
- = T

of the linear part and convergence issues. Section IV devotes N)) # 2kn/h, k = 0,41,+2, ... wheneverRe(\; —
to identification of the nonlinear block and several methods are '’ ' PR .
proposed. A numerical simulation is provided in Section V. Ex-
tension to nonsampled discrete Hammerstein systems is pro-
vided in Section VI. Section VII gives some final remarks.

A;) = 0, where);s are the eigenvalues of the continuous
system.
* The sampled system is minimal at any sampling interval
h =1T/p,p > lifitis minimal at the sampling interval’.
Our approach in this paper is based on blind system identifica-
Il. PROBLEM STATEMENT AND PRELIMINARIES tion, i.e., to estimaté&/(z) using only the output measurements.
As mentioned in the previous section, we will focus on th&he idea is fast sampling at the output that results in a sampled
sampled Hammerstein system first. Extension to nonsampRy$tem at a higher sampling rate or a smaller sampling interval.
Hammerstein systems will be made in Section VI. Consider.&t the output sampling interval be
sampled Hammerstein model in Fig. 1, which consists of a non-
linear block and a continuous linear time-invariant system. For a h = 7’ p=1

given sampling intervel’, the inputu[£T] is a discrete pulse se- o o
guence. The output of the nonlinear blagkwhich is the input for some positive integer, which is referred to as the oversam-

to the linear system, is also a discrete sequence pling ratio. For giver¥” andp, consider the following sequences:
=0 =0, b7 KT [k} = Yy ()= 3 ylkh]=
x[kT] =f (U’[kT]v s 7“’[(k - m)T]fV) 1) k=0
wheref is a nonlinear function with known or unknown struc- {Y[kT]} < Y(2)= Z y[kT]z ="

ture parameterized by an unknown parameter vegtar R'.

The model of (1) covers a large class of nonlinear functions.

The most common static nonlinear modek?| = f(u[kT]) {YlkT + h]} <= Yr1(2)
in the Hammerstein representation is obviously a special case

o~
Il
S

y[kT + hlz™"

M

o~
Il
S

of (1). Some nonlinearities with memory, e.g., hysteresis, also i L

belong to (1). In such a case, the memory lengtis assumed WIFT+2h]} <= Yr2(2) = Z ylkT+2h]

to be known. k=0

Let the continuous linear time-invariant system be repre- oo

sented by a state-space equation {WkET+(p-Dh|} <= Yrpa(2)= Z ylkT+(p—1)h]z~*.
W(t) =Aw(t) + ba(t), 7,y € R, A€ R =0 5)
y(t) =cw(t). . N -

Although the input sampling interval is fixed Atand
Itis aroutine exercise to derive its equivalent discrete time equa- -
tion for a given sampling interv&l when the input is a discrete [u[kT]} = U(z) = Z W[k

pulse sequence [3]

k=0

w[(k + 1T =dw[kT] 4 T'z[kT]

x(kT X(z2) =
y[KT| =cw[kT]. ©) {z[kT]} = X(2)

z[kT)z=* (6)

NgE

o~
I

0
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we can writeX () in terms of the output sampling intervial Lemma I1.2: Let 7" = ph for some integep > 1. Suppose
- the transfer functiouis,(z) at the sampling interval = T'/p is
X,(2) :Zx[kh]z—k in the form of
k=0 (z) _ /317(2) _ BP(Z) )
=z[0]+z[h)z 7 4 4 2[T — hlz~ P 4z [T]27P r ap(z)  (1—s127) (1 —s2271) - (1 —sp271)
+a[T+hlz~ P o g2 — Rl B D 4 Write
— R 0 - (n+1)p—1
=N akT)z PR =X (7). @) ik N
Z::o Bp(2) H Z sptz = Z Q2"
k=1 \m=0 k=1

Denote byG,(z) the discrete transfer function fromjkh] to

y[kh] and byGri(2), 0 < i < (p — 1) the discrete transfer Then, the transfer functio6'(z) at the sampling interval” is

functions fromz [T to y[kT + ih), i.e., given by
_/3(2) . sz_l +QQpZ_2+~~-+qnpz—"
Yp(2) = Gp(2)Xp(2), Yri(2) = Gra(2) X (2). )=o) T A= (- B D) (- D)
The transfer functions afr;(z) can be easily derived [3]: 9)

Proof: Under the minimality assumption, it is clear that

wi(k+ DT + ih] =@wlkT + ] + L 2[kT] is a pole of the continuous time systemy= ¢*" is a pole of

+ Diza[(k + 1)T] G,(z), ande*T is a pole ofG(z). This implies that the denom-
y[kT + ih] = cw[kT + ih] inator of G(z) is
wherel';; = 0,1 < i < p—1,andl;s = 0, ¢ = 0. Thus, the a(z)=(1—stz7") (1—shz7") - (1—shzt)
transfer function ;(z) is given by n
=TI
3 (2 o
Gri(z) _Gx) ezl — @) Ty + Tizz) k=1
ai(z) To determine the numeratg(z), note
bio + bizz o bz
:1_ sl g2 _ ... g, 0 (8) 2
a;1 2 ;2% Ain 2 o (ZP) — H (1 _ Szz_f’)
It is interesting to note the following. k=1
* All G7;(%)s share the same denominator, i.e., _ H (1 sp2Y) (1 TR A Sﬁ_lz_(p_l))
a/il:a/lva/i2:a/27"'7a/in:a/n7OSiSp_]-' k=1

n

=ap(2) [T (14502 a2 o 12070
k=1

b00:07b01:b17"'7b0n:bn- L iy _
=, (z) <Z ST (10)

* Gro(z) = G(z) is strictly proper and3r;(#)s, 4 = k=1
1,...,p — 1 are proper but not strictly proper. Moreovergq recall
by, =0,andi =1,...,p— 1.

It will be shown later that by fast sampling at the output, Yp(2) = Gp(2) Xp(2), Yri(2) = Gri(2) X (2).

Gp(#) can be identified based only on the outputmeasuremeq?.addition, we have the equation shown at the bottom of the

The difficulty is thatG,(#) is the transfer function at the sam- I -
pling intervalh = T'/p, which is not the desired transfer func%ag(jf)' ;h(il)as;nedq?h?!t?/mls l:[:sm (7)- On the other harid) =
tion G(z) at the sampling interval’. Thus, we have an identi- ~#*"/= 7" P
fiability problem, i.e., how to find7(z) from G,(z). We have  f,(2) _ B(2?)

the following result. ap(z)  a(zP)

» Gro(z) = G(2) asin (4), and this implies

1A () g =D Bp—1 ()

s () s ()

<

Yo (2) =y[0] + yhl= ™" + -+ +yl(p — DAl 7Y
+u[T]z P +y[T +hle P o y[T 4 (p— D]z B 4 y[2T]2 % -
=Y (2P) 4+ 27 Y (P) 4+ Z—(J/J—l)YTm_1 (#7)
- (G () + 27 Gry (P) + -+ 2~ P VG (zp)) X (27)

= (G (Zp) + Z_IGT71 (Zp) + -+ Z_(p_l)GTJ,,l (Zp)) Xp(z)
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Now, from (10) and the fact that all(») and«;(>) are the same, We have

we have P
n /pei yIT] = ¢1[l]a. 12)
m_—m | _ —1
B 1] <Z g % ) = A 2 p () A This equation is linear in the unknown All other variables
k=1 \m=0

y[{T] and¢! [!] consist of output measurements only, and there-
fore, the denominator coefficientscan be estimated by many
standard algorithms, e.g., the recursive LMS or recursive least
oyfluares method.

+2~ N3 (2.

This completes the proof.

Before closing this section, we observe that the paramet
zation of the Hammerstein model is actually not unique. Sup- Estimation of the Numeratet, ;1 (=)
pose the nonlinear block and the linear block are represented by
some functionf and the transfer functiof¥(z), respectively. ~ TO estimate the numeratgk, ,,(z) of G, 41(z) at the sam-
Then, any pair of - f and c~1G(z) for some nonzero con- Pling intervalh = T'/(n + 1), consider two sequences
stantc would produce the identical input—output measurements. Z

y[kh]z "

In other words, any identification setting cannot distinguish be- {ykh]} <= Y1 (2

tween (f, G(z)) and ¢f,c~1G(z)). To obtain a unique param-
eterization,(¥(z) needs to be normalized, e.g., set= 1. The —Gn+l(V)Xn+l(z)
problem with this approach is that it indirectly presurhgs- 0, h . i R .
which may not be the case. To avoid this problem, we assume {U [kh + 5} } = Yo (2) = ZU [kh + 5} #
the following assumption throughout the paper. k=1

Assumption 2:Consider G(z) of (4). Assume that =Gny1(2)Xn41(2)

[|(b1,ba,. .., b

.,,,)||2 =1 and that the sign of the first nonzerg,, .. x
element ofb; is positive.

ni1(2) = Z,foo [kh] = X(2"*1). As discussed in
(4) and (8),G)+1(2) is strictly proper, and?n+1( ) is proper
but not strictly proper. In additiort7,, andG,, share
[ll. | DENTIFICATION OF THE LINEAR BLOCK G(2) thue same Idexcp))miﬁator HenlclerG +1(2) +1(2)

In this section, we will provide an algorithm for estimating

bo + bz~ - Bn_ 2= (D) 3n z
G() based only on the output measurements. The idea of 0 rn+1(z) = — 1 _1 — &1 = é +1E7;.
approach is to estimat&,, , ; ( ») first and then to computé'( ») ! " s
using the result of Lemma I1.2. To avoid unnecessary complicglearly
tions, we assume in Sections III-A and B that noige = 0. Grg1(2)Yi1(2) — Grg1(2)Yng1(2) = 0

The convergence of the algorithm in the presence of noise will
and this implies
A. Estimation of the Denominater,, ;1 () Prt1(2)Ynt1(2) —

Given the input sampling intervdl, let the output sampling or in the time domain
interval beh = T'/(n + 1). Write G,,41(#) as

be discussed in Section IlI-D.
Brs1Yn1(z) =0

<y[kh], oo ylkh = (n = 1)A],

312 bz Y4 boz 24 bz ™
Graa(z) = Desle) _ _rT s 4 b
apy1(2)  l—ag27l —Gez=2 — - —@,2z—" B B
for some unknowrd;s anda;s. Its time domain expression is —-¥ {kh —h+ 5} ) -y {kh —nh+ §D
given by . ) ,
" -(bo,...,bn_l,El,...,En)
ylkh] = Zav k=R + Y bal(k — 5)h]. =0,k =1,2,...

i=L

The input sequence(t) is nonzeroonly it = kT = k(n+1)h.
In other wordsz[kh] is nonzero only ifk =
moreover

2[((n+1) — k] = - = 2[(I(n + 1) — n)h] = 0.

Now, at the sampling instants: = I(n + 1), we have
[[{(n+1)h]= Zazu (n+1)—4)h]. (11)
Define
P[] =T — k], y[IT — 2h],...,y[IT — nh])

—!

a :(@17@27"'7an)'

I{n+ 1), and

Again, from (8), Gn+1( ) is proper but not strictly proper, and
this impliesbo # 0. Define

¢/2[k]:<y [kh—thg} ,...,y{kh—nh—i-g},

—ylkh — R, ..., —ylkh — (n — 1)h]>
B/ (b17 7bn7~b17 bn 1)
bo
It follows that
ylkh] = ¢ IHD. (13)
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This is again linear in the unknown variable and all other D. Convergence Analysis
variablesy[kh] andg) k] are available. The unknown numerator \yhether ¢

T . 5 (z) converges toG(z) depends on whether
coefficientsb can thus be estimated by any standard algorithrpy +1(2)

converges taG,+1(z). Therefore, it boils down to
C. Algorithm for Estimating?(z) the parameter convergence?qff a; andb; — b;. Itis WeII_
] B ) . ) . known that both parameter estimates converge asymptotically
Now, we are in a position to provide the algorithm estimating #1[1] and ¢,[k] are persistently excited (PE) at least in the
G(#) based only on the output measurements. absence of noise. Therefore, it is important to establish the PE
Blind Identification Algorithm for Estimating¥(z): condition ong, [I] and¢.[k]. In fact, the PE condition ot;[k]
1) Given input sampling interval’. Seth = 7'/(n + 1). has been developed in our early work on the subject of blind
2) Sample and collect output measuremefyfih]} and system identification [3]. However, the PE condition #7]

{ylkh + h/2]}. Define iS new.
fr Lemma lll.1: Consider the parameter estimation algorithms
0 =W+ Dh— B, yfi(n + Dh — nh]) (14) and (15). Then, we have the following.
Ph[k] = <—y[kh —h], ..., —ylkh — (n — 1)A],  Suppose the spectral measure:Bf’] is not concentrated
onm < n points. Theng,[{] is PE.
h h « Suppose the numerators@f, ., (=) andG,, 1 (=) do not
Y [kh —h+ —} REERY} [kh —nh+ —} ) . share any common factor and that the spectral measure of
x[kT] is not concentrated om < 2n points. Theng;[k]
3) At eachk, apply either the recursive least squares or the is PE.
recursive LMS algorithm to estimateusing (13), for in- Proof: The second part has been shown in [3]. We only
stance, the recursive LMS-type algorithm provide the proof for the first part. By a simple calculation, we
“ “ ¢2 [k'] “ have
blk] = Bk = 1]+ T2 (vlkh] - G [R1ETE - 11) )
+ @[kl p2[K] (14) $1[l] = AP¢1 [l — 1] + g=[IT]
whereb[k] = (b1, ...,ba,—1)" € R?"" 1 is the estimate where
of b attimek, and at eacth = I(n +1),71 =0,1,2,...,
apply either the recursive least squares or the recursive @ @2 ... Gn-l Qn
LMS algorithm to estimate using (12), for instance, the A= 1 0 o 0 0
recursive LMS-type algorithm : : . : :
. . [l _— 0o 0 ... 1 0
all = all =+ gt G = lan - 1) @8
vyhere&[k] = (ag, ..., &n)’.e R" is the estimate of; at by by by b,
timek =I(n+1). The estimat&r,,1(z) of G,,41(2) is - 0 0 0 0
defined as g=A""" L |+A ] L [+ A ]
l—aiz=t —agz==—---—a,z—"

From Assumption 1 and Lemma 1, the discrete time system is
minimal, and therefore, each eigenvalue of the mattjxin-
cluding the repeated ones, can only have one Jordan block. Let

4) By using Lemma Il.2, compute the estima(é(z)
of G(z), which is the transfer function at the sam
pling interval 7', in terms of its coefficient estimates

a = (1,....0,) andb = (by,...,b,) based on A0 0
Gny1(z). Because|lbll; = 1 and the first nonzero 01 I
element ofb is positive, we normalizé by MAM™t = A = 2 o

b= 0 0 ... A

q

b

2 where each\; is a Jordan block with the dimensidn What

and seb = —bifthe first nonzero element dfis negative. We have to show is that the system is reachable; therefore, the
Finally, the estimaté(z) of G(z), at timek, is obtained. sufficient richness of the input[/7] implies PE of¢, [I]. From
Assumption 1 and Lemma Il.1, we know that#{, g) is reach-

o=l 7 -2 i o,—n . =
G(z) = blf + be +--t be ) able if (4, 7) is reachable. Note that( 7) is reachable—>
T— 12t —Ggz—2— - —@a,2—" (A, Mb) is reachable= rankAI — A, Mb) = n for all
5) Setk = k + 1, and go to Step 2. A =M e where);s are the eigenvalues of the contin-

Only output measurements are needed to implement the 4gus-time system. Now, let the first column of the matvixbe
gorithm. The algorithm is recursive and produces the estimate

~

G(z) at eachk. (t1ye sttty ety ty)
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It follows that we have the equation shown at the bottom of tivehere
page. From Assumption k)" #£ A=t if ¢ £ m. Hence,

(A, Mg) is reachable—> the last row of each v [l] =u[IT]
n ~ n B h
. t'i t'i t'i volk] = — z_: brv[kh — ih] + z_: biv {kh —ih+ 5} .
Aj bt A N Co b =0 =1
t. t. t.

1 1

L - i If the noise is bounded, i.esup, |v(t)| < ¢, then bothe; [{] and
=1, (bl (MY by ()T by bn) vo[k] are bounded

is not zero. The term inside the bracket is not zero; otherwise, sup {|vi[l]], |v2[k]|} £ 16

™" would be both a zero and a pole of the discrete-time system.

This would contradict Assumption 1and Lemma 1. Thus,§)  for some constant; > 0, and this leads to the following well-

is reachable if;, is notzeroj = 1,2,. .., q. To show that those known result in the system identification literature [11].

#,S are not zero, observe that any eigenvatiie” of Aisnot  Theorem II1.1: Consider the parameter update algorithms

zero, and moreover, #*~" is an eigenvalue associated with thg14) and (15) with bounded noisewp, |v(t)] < e. Suppose

mth Jordan block\,,, with multiplicity /,,,, the corresponding that ¢, [I] and ¢,[k] are PE. Then, the parameter estimation

eigenyector aqd generalized eigenvectors are the columns ofdhg) s &[1] — @) and é[k] — b) converge exponentially to a ball

following matrix: centered at the origin with radiuse for some constant, > 0,
wherec, relies on the level of the PE.

—em=DAml < n—1 ) e(n—lm)Am e Clearly, if noise is absent, the parameter estimates converge

- to the true values exponentially.

lrn

—e.Amh 0 E. Sufficient Richness efiT]
-1 o 0 From the convergence analysis, we see that parameter conver-
gence depends on the PE conditions/efi] and ¢»[%], which
Note thatM —! = (M, Ma, ..., M,) and rely on the spectral contents ofxT]. This is often referred to
as the sufficient richness condition in the system identification
adj (M—l) C literature [3], [11]. I_-|owever:¢ is the intern_al vari_able that is not
= ot ) = ot e measurable and directly controllable. It is desirable to have the
richness conditions in terms of the inpw{:7’] over which we
may have control. Translation of the richness condition from
x to u is actually difficult because of the nonlinearify For
instance, lew:[k7T] be a pseudo-random binary noise sequence
(PRBS) taking values-1 andz [kT] = u[kT]*. u[kT] contains

M= (M)

where C’ is the adjoint matrix formed by the cofactoes;.
Thus,t;, = cy,/det(M 1), wherecy,, is the determinant of
some nonsingular matrix formed by deleting the first row &nd

-1 e f =
column ofM 7, and this implies;, 7 0foralli =1,2,...9. yfnitely many spectral lines and[kT] = 1, containing only

Th|§ completes_ the proof. one spectral line. Thus[k7"] may not be sufficiently rich when
Finally, we discuss the parameter convergence. In the pref

. . ukT] is.
ence of noise, (12) and (13) become, respectively However, in the case of polynomial nonlinearities =

¢ rt and sinusoidal inputa[k7] = Y7 ¢; cos(%k),

=

y[IT] =1 [la + [l the PE condition can be easily established. If the input has a
y[kh] =¢5[k]b + v2[k] single spectral lines[kT] = /9%, 2[kT] = Y9 rjed*
i1 i1 i1
AP b A | b ] O
t, t, t,
b1 bo by, t2 to t2
- . 0 s 0 0 AL bt A [ bt | s
Mb=A"M]| . |[+A" M| . |+ --+M]| . =
. . . tlz tlz tlz
0 0 0
tq tq tq
AP7HL s bt A [ bt B
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hasg spectral lines unless some frequendiBs are the same with known f;s and unknowny;s. Then, by defining
module 2. If

Pa[k] = <Zb J1 (kT — 4T, .. ulkT — T — mTY),
ulkT] = 2201(305 (k) Z (CjQik_i_C_jQik)

=t Z —iT],...,u[kT—iT—mT]))
has 2n spectral linesg[£T7] is in the form of the equation shown .
at the bottom of the page. Therefore, foe> 2, z[£T] has all —y[kT] - Z i
the frequencies =

Q0 £ Q£ Qg Q€ [0,Q0, Dy, Q] (16) can be rewritten as
= arg mln Z — h k]’y) . (18)
unless it is in a pathological case, where either the coefficients

are zeros or the frequencies are the same module 2 . . .
q Allvariables¢s[k] and{[k] are available, angl can be estimated

v N 5 by many standard algorithms. For example, using the recursive

. | DENTIFICATION OF THE NONLINEAR BLOCK LMS algorithm, we get

A. Direct Approach $alk]
. .. p . SR — AT — g A TR
Once the linear pai(z) is identified, we have the estimates 7[F1 =3[k = 11+ — PATRENT (§[k] — s[k]A[k —1]) .

;S andb ;s of a;s andb;s. The unknown parameter vectothat

parameterlzes the nonlinear block can be estimated directly W remark that the most common polynomial nonlinearity rep-
minimizing resentation

n z[kT ' (kKT
A = arg m;%nz <u[kT] - Z a;y[kT — T 1= Z’Y ]

=t in the Hammerstein model literature is a special case of (17)

n 2 3 .
=S bif KT = 4T, .. ulkT — iT — mT],’y)) . (16 With £ (ulkT], ... ulkT —mT]) = ulkTV.
B. Indirect Approach

The convergence and computational complexity of the mini- In this approach, our goal is to recover the unknown internal
mization depends, of course, on the nonlineafityHere, we signal z[xT] first and then to estimate the nonlinear block
are particularly interested in the linear parameterization stru¢sing the information ofu[#T] and xz[+T]. This approach

ture is particularly useful when the nonlinear block is static
x2[kT] = f(u[kT]) but lacks structure. Because of unknown
F kT, ... ulkT — mT],fy) structure, it is not possible to estimate the nonlinear funcfion
in terms of parameter estimation. However, if the daltel]
— Z yifi Wk, ..., ulkT —mT]) (17) @andz[kT] become available, the complete picture fofcan

be easily graphed. This graphical picture provides us accurate

T :zq:n [zm: c; (ejQ*k —i—e_jQ*k)]

!
i=1 p71+p72+ R Di1 pz? - Pim-
Pi1Pi2s e Pim 20

. <ejpi191k _,’_pﬂej(Pn—l)Qlke—lek
+ Di1 (pi,l — 1) . Pt —2)Quk =2k 4t e—Ipnthk
2!

.. <ejp7-m9mk +pimej(Pim—l)kae—ijk + Pim (p;n, —-1)

. I Pim =D k(=520 k NI C—JPiQOk>.
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information on the unknowrf as long as there is enough pair with known f;s and unknowny;s, then, by defining
(u[kT], z[£T]) in the range of interest.

The first step of this indirect approach is to recover the urq) 4 (kT],..., ulkT —mT])
known z[£T7]. To simplify notation, suppose the transfer func- oo Ju(ulkT], - u[RT — mTT))
tion G(z) is available. If not, its estimaté(z) can be obtained we have
by applying the blind identification algorithm presented in the
previous section. = arg mlnz [KT] — ¢4[k17)? (22)
Now, recall

and#4 can be estlmated using, e.g., the recursive LMS
Y(z) = G(2)X(2) algorithm

whereY (z) is the Z-transform of y[k7]}, which is available. ] = 4k — 1] + P[] (a[KT] — &K — 1]).

Supposing tha®( ) is minimum phaseg[k7"] can be recovered 1+ ¢ [k]palk]
by taking the inverse
X(2) =G H2)Y(2) V. SIMULATIONS
or, in the time domain In this section, we provide a simulated numerical example.
1 ) . .
S[ET] = 2 (—bow [(k — DVT] = - — b [(k — 1+ 1)T] Ik_)gt the unknown transfer function of the continuous time system
1
+y [(k+ 1)T] — ary[kT] — - - — any [(k — ¢ — n)T7]). 0.4095s + 1.0921
If, however,GG(z) is nonminimum phase, inversion becomes s2 4+ 0.32s + 0.02

problematic. To this end, suppo&g ;1 (= )andGn+1( ) do not

share any common zeros. Then, from the Bezout identity, thé:ire'n the state-space equation form

exist two stable transfer functiod(») and F(») such that . < 0 1 ) 0
w(t) = _ )+ x(t)
F(2)Grg1(2) + F(2)Coa(2) = 1. (19) 002 ~05 :
o y(t) =(1.0921,0.4095)w(t).
This implies
- . - With the sampling intervdl” = 0.6, the corresponding discrete
F(2)Ynt1(2) + F(2)Yota(2) = (F(Z)G"“(z) transfer function is given by
+F(z)Gn+1(z)) Xpar (2) &) 093972~ — 0.3420~~2
zZ) = .
X1 (7). (20) 1 — 1.82872—1 4 0.83532~2

Note that the norm of numerator coefficient vectorcefz) is
normalized to 1. The unknown nonlinearifyis assumed to be
a static second-order polynomial parameterized by the unknown

Thereforez[kh] and, consequently;[k7'] can be obtained by
filtering y[kh] andy[kh + (h/2)] using F(z) and F(z). Note
that calculations of'(z) and F'(z) are straightforward it7(z)
andG(~») are available.

Oncex[kT] is obtained, the nonlinear block can be esti-
mated by using the information efi+7"] andx[£T]. We con-

sider two cases. o _ The purpose of the identification is to estimate the unknown
1) The nonlinear functiorf is staticz[k7] = f(u[kT]) and coefficient vectors of the numerator, denominator, and the poly-
nonparametric. In this case, the functipnan be graphed nomial

using pairs oft[£T’|s and the estimatee(kT|s. From the 0.9397 1.8987 1
= (i) o= () =)

a[kT) = kT + yulkT]?, y =2 =1

graph, the nonlinear functioli can be estimated, pro- —0.3420 —0.8353 1

vided that enough pairs ol[tT], z[£T]) are availabe
in the range of interest. C|ear|y, the pseudo_random bi- For the simulation, 100 Monte Carlo runs were calculated.

nary noise sequence (PRBS), which can generate ofiigr €ach Monte Carlo run, the inpuftT], & = 1,...,300
two pairs of @[]{/-T] [kT]) is Certa|n|y notagood choice. is Unlformly distributed in {—5 5] and the noise is Unlformly
This is a well-known fact in the literature. distributed with magnitude 0.1. The estimate(éfz) at each
2) The nonlinear function is in the general form of (1), anfylonte Carlo run is obtained by the blind identification algo-
then,y can be estimated by minimizing rithm proposed in the previous section. For the nonlinear part
2 vector~, we apply the indirect identification approach as dis-
=arg mmZ [FT] = f (u[kT],... u[kT = mT],7)". cussed before, i.e., we first obtain the estimiftel’] of z[kT

(21) and then findy by minimizing
In particular, if f is linear in the unknowry 300 )
FOATY BT =] ) = ougmin 3 (¢ = ol = 30k 1)

— Z%fz (KT, ..., ukT — mT]) The normalized root mean square error (NRMSE) is used to
show the performance of the proposed method.d{8t "),
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TABLE |
SIMULATION RESULTS

estimates NRMSE error
b= (0.9397, —0.3420)" | (0.9403, — 0.3404)' | 0.0062
= (1.8287, —0.8353)' | (1.8260, — 0.8326)' | 0.0043
vy=(1, 1) (0.9990, 0.9976)' 0.0062
35 T T

5 . . ; . . . . . )
5 -4 -3 -2 -1 0 1 2 3 4 5

Fig. 2.
z[kT].

Estimated nonlinearity drawn by the inpy&7’] and the estimated

and¥® represent the estimates @fb, and~ at theith Monte
Carlo run, respectively. The NRMSE error is defined as

100
ANRMSE = 100||a|

100

1 > 2

s = i 2|97
NRMSE 100][8]2 ;

100 )
YNRMSE = 100“ | ’YH :

Table | shows the mean values of the 100 Monte Carlo runs as

well as the corresponding NRMSE errors.
Fig. 2 shows the true nonlinearity= « + %% and 100 esti-
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VI. NONSAMPLED HAMMERSTEIN SYSTEMS

In the previous sections, we have proposed identification
algorithms for the sampled Hammerstein systems using blind
techniques. Because we cannot do fast sampling for non-
sampled systems, these algorithms are not directly applicable
here. In this section, we show how to extend these results to
nonsampled discrete-time Hammerstein systems. We will focus
on the key ideas for brevity.

Consider a nonsampled discrete- tlme Hammersteln system
with static polynomial nonlinearity = EZ LY

Z a;yl —L]+be — j]+v[k]

Z _L]+Zzbj%

=1

— j] + v[k].

Hold the input constant over the window@f + 1)A so that for
1=1,2,...

w[(l=D(n+1)]=u[l—-D(n+1)+1]
=u[l-1)(n+1)+n].

This implies

z[(l-D(n+1)] ==

(I-D(n+1)+1]
c=z[(l-1)(n+1)+n].

Note that

Yl + 1] =Y eyl +1) ]

=1

+) bx[i(n+1) = jl+v[i(n+ 1)
j=1

y[l(n—i—l)—1]:Zaiy[l(n+1)—1—i]

+zn:bjx[l(n+1)—1—j]
j=1
+uovll(n+1)—1].

mated nonlinearities by using the inpLjt:7"] and the estimated

Z[kT] for each Monte Carlo run. Therefore, al = 1,2,...,
Finally, we compare the proposed blind approach to other ex-

isting methods for the Hammerstein model identification, espe [{(n + 1)] — U[ (n+1)-1]

cially the popular iterative and stochastic methods. The advan-

tage of the iterative method lies in its simplicity. Usually, the —Z a; (

convergence rate of the iterative method is fast, provided that it

converges. However, there is no guarantee for the convergence, + vli(n + 1] = vli(n +1) —1].

and in fact, it can be divergent [17]. Moreover, it is |mp053|bki,~hIs equation is similar to (11), angs can be estimated by

to check whether the method converges oraiptiori. The sto- many algorithms. Oncé;s are obtamedngyj can be calculated

chastic method works in a similar way as the proposed blind ap-

proach, i.e., itidentifies the linear part first. However, to achieve

this, a white input assumption was imposed and used explici{ly171; - - -

in the stochastic approach. Our approach does not require white

inputs, and any input can apply. With the PE condition, e.g., a

sinusoidal input with enough frequency content, convergence is

guaranteed by using the proposed blind approach.

we have
[n+1)—d -y

[n+1)—1—14])

) = i

n n l
2 duulhk =+ 303 bk
i=1 j=1i=1
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Finally, G171, . .., bny) can be projected intb= (by,...,b,) [
and$ = (%1,.-.,%)" by minimizing the Frobenius norm of
b1y b 8]
(b, ’Ay) = arg min : — by
TR X " )
This problem was solved in [2]. Let 110]
lﬁ IZ;I min(n,l)
BTSN IR 1)
bavt bayt =t 12
be the singular value decomposition(SVD), whete are the
singular values, ang;s and;s aren- andi-dimensional or-
thonormal vectors, respectively. Then, a solutiand? is [13]
5235517 ¥ =o18em [14]
wheres is the sign of the first nonzero entry ¢f. This guar-
antees thafib|| = 1 and that the first nonzero entry is positive. |15
[16]

VII. CONCLUDING REMARKS

In this paper, we have proposed blind approaches for Ham17]
merstein model identification. The main interest of the paper is
on sampled discrete-time systems where the linear part is origjts]
nated from a continuous-time system. Using fast sampling at the
output, the linear part can be obtained using only the output meggg
surements. Convergence results in terms of PE conditions that
apply to a large class of signals are also derived. We have also
shown how to extend our results to nonsampled discrete-time
models where fast sampling is not permitted.

Our focus in this paper has been on presenting the idea,
therefore, not much effort has been devoted to study the per
mance of the proposed algorithms under various type of mo
uncertainties and noises. This issue is certainly an interest
one for further study, and we expect that results will be quite d
ferent from the traditional linear system identification becau
of noise structure in the error equation. It will also be intel®
esting to characterize conditions for sufficient richness for spc
cific types of nonlinearities and inputs.
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