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Abstract

This paper discusses discrete Hammerstein model
identification using blind system identification approach.
By sampling faster at the output for the sampled Ham-
merstein systems, it is shown that identification of the
linear part can be achieved based only on the output mea-
surements that makes Hammerstein model identification
possible without knowing the structure of the nonlinearity
and the internal variable. The fundamental identifiability
problem is solved and several schemes are presented.

1. Introduction

The Hammerstein model is a special kind of nonlin-
car system [7] wherc a nonlinear block is followed by a
linear system. The Hammerstein model has applications
in many cngineering problems and therefore, identifica-
tion of Hammerstein model has been a rescarch topic over
three decades. There exists a large number of research
papers on the topic of Hammerstein model identification
in the literature. Existing methods can be roughly di-
vided into four categories: the iterative method [9], the
over-parameterization method {2], the correlation method
[5, 6] and the separable least squares method [1].

In this paper, we consider identification of discrete
Hammerstein systems. In particular, we focus our study
and explain our ideas in detail for the sampled Hammer-
stein systems as shown in Figure 1. Then, we will extend
results to non-sampled discrete Hammecrstein systems.
Consider the sampled Hammerstein system in Figure 1
with sampling interval T, the goal of the sampled Ham-
merstein system identification is to estimate the transfer
Junction of the equivalent sampled linear system for the
given sampling interval, and to estimate the unknouwn non-
linear function [ based only on the meesurement of u and
y. The internal signal z is not assumed 1o be available.
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Figure 1: Sampled Hammerstein system
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Qur approach in this paper is different from all four
methods discussed above and is based on the idea of our
previous work on blind system identification {3]. We iden-
tify the linear part using the output measurements only
and no information on the input u[kT] and the interval
variable 2[kT] are nceded. In general, blind system identi-
fication is not possible only based on the output measure-
ments because different systems coupled with appropriate
inputs can produce identical outputs at the sampling in-
stants kT. However, by faster sampling at the output
and keeping the input sampling interval unchanged, blind
identification based on the output measurements is pos-
sible. Omce the linear part is obtained, identification of
the nonlinear part can be carried out in a number of
ways. We remark that the blind system identification
techniques for IR system was first developed in our early
work [3]. The techniques were introduced to the identi-
fication of the sampled Hammerstein model in a rccent
paper [11]. However, some important questions were left
unanswered. The most important onc is the identifiabil-
ity question. Recall that the goal of Hammerstein model
identification is to find the cquivalent sampled linear sys-
tem for a given sampling interval 7. Because of faster
sampling requircd by the blind system identification tech-
nique, the transfer function at the given sampling interval
T was not obtained in [11] and instead a transfer func-
tion at a much highcr sampling rate is calculated. It was
not clear whether the transfer function at the given sam-
pling interval T is obtainable without reconstructing the
internal variable z[kT]. This fundamental identifiability
question is investigated with a positive answer in this pa-
per which shows that such a transfer function is obtainable
without reconstructing x[kT].

2. Problem statement and preliminaries
Consider a sampled Hammerstein model in Figure 1,
which consists of a Zero Order Hold, a nonlinear block
and a continuous linear time-invariant system. For a given
sampling interval T, the input [T is a discrete sequence.
The output of the nonlinear block z, which is also the in-
put to the lincar system, is also assumed to be a piecewise
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constant signal represented by

z(t)
2(kT)

okT), KT <t<(k+1)T
f(“[lev u{(k - m)TL v)

(2.1)

where f is a nonlinear function with known or unknown
structure parameterized by an unknown parameter vector
~v € R'. Let the continuous time system be represented
by an nth order state space cquation. Then, the discrete
transfer function from z[AT] to y[kT] is given by

_B2) bz l4ber 4 b
Ta(z) T 1-apzmt —agz? — . —auz"

G(z)

(2.2)

form some a:’s and b;’s. The goal of the Hammerstein
system identification is to estimate (z) in terms of its pa-
rameters a;'s and b;’s, as well as to estimate the unknown
nonlinear function f bascd only on the measurement of
and y.

We now make an assumption on the sampled system
throughout the paper.

Assumption 1: It is assumed that the sampled system
at the sampling interval T is minimal {reachable and ob-
servable).

This assumption actually implies that [3] the sampled
system is minimal at any sampling interval h = T/p for
any integer p > 1.

Our approach in this paper is bascd on blind system
identification, i.e., to estimate G{z) using only the output
measurements. Let the output sampling interval be

h=T/p, p>1

for some positive integer p, referred to as the over-
sampling ratio. For given T and p, consider the following
scquences

{yikA]} = Y(z) = reoylkRlz7*
{y[*T1} = Y(E) =Y, ulkT)F
{ykT + R} = Yra(z) =3 oulkT + hlz7*

(2.3)
Although the input sampling interval is fixed at T and

{ulkT]} = U(z)= 0, ulkT)e™"

bT)) = X6 =Sl O
X(z) can be written as
X, (2) = i:x[kh]z"‘ (2.5)
k=0

= z[0] + .’,l‘[h.]z_l +..+z[T - h}z%p—l)
+z[T]e ™" + z[T + h]z‘(ﬁﬂ) 4. +a2T - h]z~(2p—1) s

=14z + .+ NX (7).

Denote by G,{z) the discrete transfer function from
z[kh] to y[kh] and Gr:(z), 0 € 7 £ (p — 1), the discrete
transfer functions from z(kT] to y[kT + ih], i.e.,

Yi(2) = Gp(2)Xp(2), Yri(2) = Gri(2)X (2).
The transfer functions of G i(z) can be casily derived
_ Biz) A e

o(z) 1-aizl—alz=2— .. —aiz""

(2.6)

GT‘,'(Z)

It is interesting to note that
o All Gr;{z)’s share the same denominator, i.e.,

ay =Gy, Q3 =03,..,4, =an, 0<e<p—-1.

s Gro(z) = G(z) as in (2.2) and this implics

bg = bo, b? = bl, eeey b?l = bn.
e Gro(z) = G(7) is strictly proper and from (2.6),
Gri(z)s,1=1,...,p— 1, are proper but not strictly
proper.

Lemma 2.1 Let T = ph for some integer p > 1. Sup-
pose the transfer function G,(z) at the sampling intcrval
h=T/p is in the form of

Bp(z) Bp(2)
Gplz) = apy(z) T - sz 01— 522—1)4..(1 — 827 1)
Write '
n p-1 (n+1)p-1
Q4. 42 CNE8 T stz = >0 @z
k=1 m=1 k=1

Then, the transfer function G{z) ot the sampling interval
T is given by

CB(2) g 4 gpz P A Gy
GG = afz) (1 -—I;fz‘l)(lp— sha~1) (1 _P sha~1)’
(2.7)

Before closing this scction, we observe that the pa-
rameterization of the Hammerstein model is actually not
unigue. Suppose the nonlinear block and the lincar block
arc represented by some function f and the transfer func-
tion G(z) respectively. Then, any pair of ¢- f and ¢~ 1G(z)
for somc non-zere constant ¢ would produce the identical
input-output measurements. In other words, any identifi-
cation setting can not distinguish between (f, G(z)) and
{cf, ¢ 1G(z}). To obtain a unique parameterization, G{(z)
necds to be normalized, e.g., set by = 1. The problem with
this approach is that it indircctly presumes by # 0 which
may not be the case. To avoid this problem, we assume
the following assumption throughout the paper.
Assumption 2: Consider G(z) of (2.2). Assume that
[[{b1, b2, ...; 0202 = 1 and the sign of the first non-zero
clement of b; is positive.
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3. Identification of linear block G(z)

To avoid unnecessary complications, we assume in
Sections 3.1-3.2 that noise v(:) = 0. The convergence in
the presence of noise will be discussed in Scction 3.4

3.1. Estimation of the denominator o, (z)
Given input sampling interval T, let the output sam-
pling interval be h = T/(n + 1). Write G,+1(z) as

L I e s R -

G z) = =
w+1(2) anp1(z)  1—81770 — @z — L — Bpz?

for some unknown b;'s and @;’s. Its time domain expres-
sion is given by

ylbh] = 3 auy((k - OB + 3 byal(k — )h].
i=1 i=1
In particular, at £ = i{n + 1), ! = 0,1,2,..., or kh =
In+ 1)%1_) = IT, we have

T
n+1

k] = 4T} = 3 acpliT—i

i=1

T _ . T
]"‘j;lbj-’”[lT*Jm]

ylkh — ] = ylIT — k] = D" ayliT - (i + UE‘-THH

i=1
n ~ . T
Z bjaliT = (j + 1) =]
3=1
Since the input sampling interval is fixed at T and
T
_ —IT - — _<IT-
(-1)T=IT-(n+ 1)n+1 <IT —nT/{n+ 1)

<..<IT- T <IT,
n+1
it follows that
T T
.'L'{(l - I)T] = .'EHT - nm] =..= .’L‘UT - m]
This implies that at k=I{n+ 1), 1 =0,1,2, ...
YIT)-4iT-H = ¥ ai(yUT ik —y[IT— i+ DA]). (3.1)
i=1
Define
Ayll] = yliT) - ylIT - H,
&[] = (WIT — k] —y{IT = 24}, ..., y(IT — nh] - [l — )T
a' = (61,82, ..., an).
We have
Ayll] = ¢4 [Nz (3.2)
This equation is lincar in unknown @ and thus the de-
nominator cocfficients @ can be estimated by many stan-

dard algorithms, e.g., the recursive LMS or recursive least
squares method.

3.2. Estimation of the numerator 3,,:(z}
To cstimate the numerator of G4 (2) at the sampling
interval h = T/(n + 1}, consider two sequences

{ulFH} == Yaia(2) = 3 plhhlz™ = Grsi ()Xo (2)
k=1

{ylkh + 1/} = Vopa(2) = 3 ylkh + h/j2)27*
k=1
= Gn41(2) Xns1(2)
where Xny1(2) = Yo afkh] = 1+ 27+ .. +
z") X (z**1).  As discussed in (2.2) and (2.6), Gny1(2)
i strictly proper and Gr1(2} is proper but not strictly

proper. Also Gngq(z) and Gngi(2) share the same de-
nominator. Hence,

= EQ+512_1+...+5nz_" }én (Z)
Gon(z) = = _: @)

T l—@iz — . —@nz "
Clearly
Gns1(2)¥n41(2) ~ Gy (2) Vg (2) = 0
and this implies
But1 (2Wo41(2) = Bot1 Vo1 (2) =0
(ylkhl, ..., y[kh—nh], ~y[kh—h+h/2], .., —y[kh—nh+k/2])-
(Boy s b by, oo By) =0, k=1,2, ...
Again from (2.6), C:’n_,.)(z) is proper but not strictly
proper and this implies by # 0. Define
@o[k] = (—ylkh ~ h], ..., ~y{kh — nh],
ylkh — h + 1/2], ..., y[kh — nk + R/2))
B = (B, s by By s B) .
It follows that _
ylkh] = ¢3[k]b.

This is again linear in the unknown variable & and all other
variables y[kh} and ¢4[k] are available. The unknown nu-
merator coefficients b can be estimated by any standard
algorithms.

(3.3)

3.3. Algorithm for estimating G(z)

Now, we are in a position to provide the algorithm
estimating G(z) based only on the output measurcments.
Blind Identification Algorithm for Estimating
G(z):

1. Given input sampling interval T'. Set b = T/(n41).

2. Sample and collect output measurements {y[kh]}
and {y[kh + k/2]}. Define Ay[l], ¢ (] and ¢hk]-
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3. At each k, apply either the recursive least squares
or the recursive LMS algorithm to estimate b using
(33). Atcachk =i(n+1),1=0,1,2, ..., apply ci-
ther the recursive least squares or the recursive LMS
algorithm to estimate a using (3.2). The estimate
Grs1(z) of Gopa(2) is defined as

) b=l 4 b2=2 4 :n —n
Gn.H(Z) 127+ bazT + L+ bz

1—G27 ! —Goz—2 — ... — Gpz—™

4. Compute the estimate G(z) of G{z), which is the
transfer function at the sampling interval T, in
terms of its coefficient estimates & = (@1, ..., 4,) and
b= (by,....b,)" based on &,4,(z) by using equation
{2.7). Because ||b]]2 = 1 and the first nonzero cle-

ment of b is positive, we normalize b by b= and

b

. B el
set & = —b if the first nonzero element of b is nega-
tive. Finally, the estimate G(z) of G(z}, at time k,

is obtained.

bz Y b bez" 24 4+ bz
1- &12_1 - &22_2 — .= &nz*“'

G(z) =

5. Set k =%k + 1 and go to Step 2.

Only output measurements are nceded to implement
the algorithm. The algorithm is recursive and produces
the estimate G(z}.

3.4. Convergence analysis

Whether G(z) converges to G{(z) depends on whether
Gny1{z) converges to Gny1(z). Thercfore, it boils down
to the parameter convergence of &; — &; and b; — b;.
It is well known that both paramecter estimates converge
asymptotically if ¢,[l] and ¢o[k] are persistently excit-
ing(PE) at least in the absence of noise. In fact, the PE
condition on ¢»{k] has been developed in our carly work
on the subject of blind system identification [3]. The PE
condition on ¢;[{] is however much involved.

Lemma 3.1 e Suppose the spectral measure of
Azll] = o[IT} — z[{l — 1)T] is not concentrated on
m < n points. Then, ¢1]l] is PE.

o Supposec the numerators of Goy1(z) and Gny1(2) do
not share any common factor and the spectral mea-
sure of x[kT| is not concentrated on m < 2n points.
Then, ¢[k) is PE.

Clearly, if noise is absent, the parameter estimates
converge to the true values asymptotically. In the presence
of noise, the parameter estimation errors converge to a ball
centered at the origin with radius ¢ for some constant
¢z > 0, where ¢o relies on the level of the PE and the
bound of the noise.

3.5. Sufficient richness of z[kT]

From the convergence analysis, we sce that the param-
cter convergence depends on the PE conditions of ¢q[/]
and ¢2[k] which rely on the spectral contents of z[kT] and
Az[l], often referred to as the sufficient richness condition
in the adaptive litcrature [3, 8]. Howcever, z is the in-
ternal variable which is not measurable and directly con-
trollable. It is desirable to have the richness conditions
in terms of the input v{kT| which we may have control.
Translation of the richness condition from z to w is actu-
ally difficult because of the nonlinearity f. For instance,
let u[4T] be a Pseudo-Random Binary Noise Sequence
(PRBS) taking values %1 and z[kT] = ulkT}:. u[kT)
contains infinitely many spectral lines and z[kT] = 1,
containing only one spectral line. Thus, u{kT] is suffi-
ciently rich but z[kT] may be not. On the other hand,
let w[kT] = sin{0.1k) that has two spectral lines and
z[kT] = u[kT]* = {cos(0.4k) — 4cos(0.2k) + 3]/8 which
contains 5 spectral lines because of harmonics genecrated
the nonlinearity f. Therefore, without knowing the exact
form of f and/or u[kT7], sufficient richness u[kT"} does not
necessarily gives risc to a sufficiently rich z[kT] and vice
versa.

However, in the following two practical situations,
richness rclationship between u[kT] and z[kT)] can be es-
tablished. The first case is the i.i.d. random input u[kT).
Suppose that x[kT] = f(u[kT}) is static and assumes
at least two distinctive values with nonzero probability,
Then, z[kT] is also ii.d. and its autocorrelation func-
tion is given by R.{7) = &(7)o?, where a® is the vari-
ance of 2[kT]. Morcover, the autocorrclation function of
Az[l] = z[IT] — z[(I — 1)T] is in the form of

-2 T+1
Ba(t)=<% 2-0% 7=0
0 otherwise

Clearly, both z[kT] and Az{lj have infinitcly many spec-
tral lines and this implics that ¢;[{] and @2[k] are PE. The
second casc is the pelynomial nonlinearity z = 37, riv’
and sinusoidal input u[kT) = Y"1 ; c;cos({%;k). This is the
casc when input is periodic by the Fourier series represen-
tation. If the input has a single spectral line u[kT] = ¢/%*,
z[kT) = 3.7, r:e?M* has ¢ spectral lincs unless some fre-
quencics 4’s arc the same module 27, If

m m
ulkT} = Z 2c;co8({hk) = Z i@ 4 eI
i=1 =1

has 2m spoectral lines, 2[kT) has all the frequencies

+0, 04+ £ Qiq, Q€ [0, Ql, Qg, ...,Qm]

unless in a pathological case where cither the coefficients
arc zeros or the frequencics are the same module 27,
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4. Identification of the nonlinear block
4.1. Direct approach
Once the linear part G(z) is identified, we have the
estimates d;'s and f)fs of ¢;" and b;’s. The unknown pa-
rameter vector v that parameterizes the nonlinear block
can be estimated directly by minimizing

4 =arg mii_n Z(y[kT] - i a,y[kT — iT) (4.1)
k i=1

= Zn:f?if(u[kT —4T), ..., u[kT — iT — mT], 7).

i=1

The convergence and computational complexity of the
minimization depends, of course, on the nonlinecarity f.
Here, we are particularly interested in the lincar parame-
terization structure

]
FIKT), o sTKT =T}, ) = 5 3 fe(wlkT], ooy ulkT=mT))
i=1
(4.2)
with known f;’s and unknown +;’s. Then, by defining

¢5k] = O befs (ulkT — iT), ..., w[kT — iT — mT)), ...
i=1
i bi fi(u[kT — iT}, ... u[kT —iT — mT})
1=1

K = ykT) - 3 aaylhT - T).

=1

Equation (4.1) can be re-written as

7 = argmin 3 (¢[k] - 5k17)° (4.3)
k

All variables ¢s[k] and [k} are available and 4 can be
cstimated by many standard algorithms, c.g., the recursive
LMS algorithm

¢a k]

Akl =4[k - 1]+ TT o, ikoa A

(k] — 3 [k]4[k — 1))

We remark that the common polynomial nonlincarity
! -
ofkT] =3 v [pT)
i=1

in the Hammerstein model representation is a special case
of (4.2) with f;{(u[kT],...,u[kT — mT]) = u[kT)’.

4.2. Indirect approach

In this approach, our goal is to recover the unknown
internal signal [T first and then to cstimate the nonlin-
car block using the information of u[kT] and z[kT]. This
approach is particularly useful when the nonlinear block
is static 2[kT] = f(u[kT]) but lacks of structure. Because
of unknown structure, it is not possible to estimate the
nonlinear function f in terms of parameter estimation.
However, if the data u[kT) and z[kT] become available,
the complete picture of f can be easily graphed. This
graphical picture provides us accurate information on the
unknown f as long as there is enough pair (u[kT], z[kT))
in the range of interests.

The first step of this indirect approach is to recover
unknown z[kT]. This can be done by recovering z[kT)
or z[kh] because z is held constant between kT < t <
(k + 1)T. To casy notation, suppose the transfer func-
tions G(z), Gnp1(2) and G, 41 (z) are known. If not, their

——

estimates G(2), Gny1(2) and Gny1(2) can be obtained by
applying the Blind Identification Algorithm presented in
the previous section.

Now, recall

Y{z) = G(Z)X(Z), Yow1(z} = G (2} X g (2},

Yat1(2) = Gry1(2)Xnta(2)

where Y(2), Yay1(2), Yay1(z) and Xopi(2) are Z-
transforms of {g[kT1}, {¢[kh]}, {y{kh+R/2]} and {=[kh]}
respectively. Also note all ylkh], ylkh + k/2] and y[kT)
arc available. Suppose one of G(z), Gn1(2) and Gy (z)
is minimum phase, z[kT] or z{kh] can be recovered by
taking the inverse

X(2) =G @)Y (2),0r Xnsa (2} = (Gnpa1(2)) Yara (2),

Xns1(2) = (Grpr (2)) Waia (2)

or in time domain

2[kT] = %(—bgz[(k — 1T - ... = bua[(k — n + D)T)
+y[(k + 1)T) — ary[kT) — ... — @ny[(k — i — n)T))
z[kh] = %(ufyzz[(k — 1] = ... = bax[(k — n + 1}A)
+yl(k + 1)) — @rylkh] — ... - @nyl(k — 1 — n)h))
2ikh] = 5—1[;(—5133[(k — 1)A] = ... = B[k — n)A]

+ylkh+h/2]—ay[(k—1)h+R/2]— ...~ dy[(k—n)h+h/2])
If, however, G(z), Gny1(z) and G,.i(z) are all non-
minimum phase, inversion becomes problematic. To this
end, suppose Gn11(z) and G, 1{z) do not share any com-
mon zeros. Then, from the Bezout identity, there exist two
stable transfer functions £(z) and F(z) such that

F(2}Gni1(2) + F(2)Grp1(2) = 1. (4.4)
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This implies

F(2)Yot1(2) + F(2)Ynpa(2) = (4.5)

(F(2)Gn1(2) + F(2)Gns1(2)) Xng1(2) = Xu1(2).

Therefore, z[kh] and consequently z[kT] can be obtained
by filtering y[kh] and y[kkh + h/2] using F'(z) and F(z).
Note that calculations of F(z) and F(z) are straightfor-
ward if G(z) and G(z) are available,

Once z[kT) is obtained, the nonlinear block f can be
estimated by using the information of u[kT] and z[kT].
We consider two cases:

1. The nonlinear function f is static z[kT] = f(u[kT])
and non-parametric. In this case, the function f
can be graphed using pairs of w[kT]’s and thc esti-
mated z[kT]’s. From the graph, the nonlincar func-
tion f can bec ostimated and approximated. We
remark that to extract useful informations about
J from the graph, enough pairs of (u[kT), «[kT})
in the range of interests arc preferable. Clearly,
the Pscudo-Random Binary Noise Sequence (PRBS)
which can generate only two pairs is certainly not a
good cheice. This is a well known fact in the litera-
ture.

2. The nonlinear function is in the gencral form of (2.1)
and then v can be estimated by minimizing

¥ = argmin > @RT]=f(ulkT], ., u[kT -mT], %))".

(4.6)
In particular, if f is linear in the unknown «,

i
FlkT), ., ulkT — mT),v) = 3 %fs

i=1

with known f;’s and unknown =,’s, then, by defining
#a[k] = (f1, -, fo)-
wa have

% = argmin ) _(a{kT] - ¢4[k)7)° (4.7)
k

and 4 can be estimated by many standard algo-
rithms.

1K) = 31k~ 11+ e ORI k),

1+ g[klgalk

5. Concluding remarks
In this paper, we have proposed blind approaches for
Hammerstein model identification. By sampling faster at
the output or holding the input over a period of time, the

lincar part may be obtained using only the output mea-
surements. Convergence results in terms of PE conditions
are also derived which apply to a large class of signals. Our
focus in this paper is to present the idea and therefore, not
much effort was devoted to study the performance of the
proposed algorithms under various type of model uncer-
taintics and noises. This issue is certainly an interesting
one for further study and we cxpect that results will be
guite different from the traditional linear system identi-
fication because of noise structure in the error equation.
It is also interesting to characterize the sufficient richness
condition for some specific nonlinear functions and inputs.
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