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Wireless Communication Systems With Spatial
Diversity: A Volumetric Model

Leif Hanlen, Member, IEEE, and Minyue Fu, Fellow, IEEE

Abstract—This paper presents a novel physical-modeling ap-
proach to wireless systems with multiple antennas. The fundamen-
tal problem of modeling the communication channel is studied,
where the channel consists of a finite spatial volume for trans-
mitting, a finite spatial volume for reception, and an arbitrary
set of reflective-scattering bodies. The number of communication
modes (or degrees of freedom) for such a system is calculated,
using the procedure developed. We present a simple model for
multipath channels, which allows insight into the development
of a correlated multiple-input multiple-output (MIMO) channel
model. In particular, the model is independent of transmitter and
receiver elements and relies on the physical parameters of the
channel involved. Our work explains which physical parameters
determine the channel model and its channel capacity.

Index Terms—Information rates, multipath channels, multiple-
input multiple-output (MIMO) systems.

I. INTRODUCTION

MULTIPATH has been shown to improve capacity in
wireless communications under the assumption that the

channel model is a random matrix with independent identi-
cally distributed (i.i.d.) elements [1], [2]. More specifically, the
capacity of a multiantenna system with dense scattering has
been shown to grow proportionally with the minimum of the
numbers of transmitters and receivers [1], [2]. This is known as
the linear-growth property of MIMO systems.

Much of the early work on MIMO wireless systems assumed
that the channel model was a random matrix with i.i.d. ele-
ment distribution [1], [2]. In [3], an experimental system was
developed and tested for an indoor environment confirming
the increase in channel capacity when multiple antennas are
used. Recently several authors have addressed correlations in
the fading environment [4], [5], antenna separation [6], and
coupling between array elements [7]. A large amount of work
has also focused on modeling of channels for multiantenna
systems [8] and many authors have presented measurement
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campaigns addressing MIMO wireless channels. The diversity
benefits of nonline-of-sight (NLOS) indoor channels have been
investigated in the presence of dominant paths and polarization
[9], and in outdoor environments [10]. In each case, greater
or lesser improvements for channel capacity have been shown
dependent upon the channel correlation. This leads to the nat-
ural question “Given an arbitrary volume, containing transmit
elements, a second arbitrary volume containing receive ele-
ments and a group of scattering bodies, how many independent
parallel channels are available?”

In order to address this question we must move away from
standard point-defined multiple-antenna models to a functional-
analysis viewpoint. The modeling of multiple-element arrays
as collections of points is not appropriate for large numbers
of closely placed elements: correlation matrices and mutual
coupling hide the fact that antenna elements only sample a
continuous spatial signal, in an analogous way to the sampling
of a continuous-time signal. This has been examined in [11],
where a random i.i.d. channel model was used, but the un-
bounded growth is rectified using a scaling parameter. It has
been suggested that dense antenna arrays in the presence of
scattering should also exhibit such a limit [12], however the
authors’ focus was on the coupling of antenna elements rather
than an intrinsic capacity of the volume-to-volume communica-
tion channel. Some work has considered exploiting the coupling
effects of antenna elements [13] for multiple-antenna arrays.
The work of [7] and [14] has also addressed this concept.
Coupled with the theoretical work of [15] these results suggest
that there are fundamental physical limits to the capacity growth
of a given MIMO channel, independent of the number of
antenna elements.

We may view antenna elements as sampling functions, as
given in [16], and consider space as a continuous parameter
for input and output signals. We shall not address sampling in
this paper; it would suffice to say that different arrangements of
antenna elements correspond to different choices of sampling
functions in the same way that continuous-time signals may be
sampled at varying intervals. We provide a modeling technique
that allows the examination of fundamental properties of the
channel: we may consider correlation as an artifact of the use
of antenna elements, rather than a property associated with
spatial diversity. Consequently, once the volumetric approach
is adopted, we may examine how to best utilize the channel
in terms of the continuous spatial modes produced. The case
without scattering bodies has been examined in [17] and its
references for optical communications in free space. It is in-
teresting that the setting in [17] is general and the results are
equally applicable to radio communications.
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Fig. 1. Two-volume arrangement.

This paper provides a simple model for multipath scatter-
ing channels, which allows insight into the development of a
volumetric MIMO channel model. In particular, we present a
model that is independent of transmitter and receiver elements,
and instead relies on the physical parameters of the channel
involved. We show how to determine the number of commu-
nication modes (or degrees of freedom) for such a system.

This paper is arranged as follows. In Section II, we de-
tail the wireless model for the two-body case (in free space)
and provide a novel numerical approach in Section II-B for
calculating the transfer-matrix elements for arbitrary bodies.
In Section III, we generalize these results to include simple
reflective-scattering bodies. In Section IV, examples are used
to show how scattering bodies influence the channel model.
We discuss the results in Section V and draw the conclusion
in Section VI.

II. MODELING FOR TWO-VOLUME COMMUNICATIONS

Consider wireless communications between two arbitrary
volumes as described in Fig. 1, where VT is the transmitting
body and VR is the receiving body. The centers of the two
bodies are separated by a distance D. It is assumed that the
dimensions of the VT and VR are small compared to the distance
D. We choose the coordinates (x, y, z) such that the z-axis
is along the direction of D and the origin is the center of
VT. For simplicity, we consider single-frequency signals, and
we assume that the channel is memoryless. The work in this
paper may be generalized to the case where a finite frequency
bandwidth is available.

Under the above constraints we may consider “signals”
within VT and VR that are functions of space rather than time.
The intuition of continuous-time channels [18, Ch. 8] may
be applied with appropriate changes of variable. In particu-
lar, the channel between VT and VR may be represented in
MIMO-matrix form using a matrix Γ. However, unlike standard
wireless MIMO-matrix representations, where the matrix H
represents channel gains between pointlike antenna elements,
the matrix Γ represents channel gains between input signals and
output signals that are functions defined over space. We may
then consider exciting the channel with a particular choice of
transmit signal, and measuring the output against a particular
choice of receive signal.

It is shown in [17] that if the two bodies are hyperrectangles
with sides parallel to the x, y, z axes, there is a simple expres-
sion for Γ. More specifically, the eigenfunctions of the channel
may be expressed in terms of a focusing function and a set
of prolate spheroidal functions that are all easily computable.
These eigenfunctions form a set of complete orthonormal func-

tions in their respective volumes. Further, the corresponding
eigenvalues have roughly a constant magnitude up to a critical
number, after which the magnitudes are negligible. This crit-
ical number determines the number of communication modes
between VT and VR and is given by

nc =
VRVT

D2λ2(2∆zT)(2∆R)
(1)

where VT and VR are the volumes of the two bodies (with some
abuse of notation), 2∆zT and 2∆zR are their thicknesses in the
z direction, and λ is the signal wavelength. Consequently, the
transfer function between VT and VR is given by a diagonal
matrix of a finite dimension, with the diagonal elements being
the nonnegligible eigenvalues.

A. Transfer Function

Let Ψ(rT) be a transmit signal at any point rT ∈ VT and
Φ(rR) be the electrical potential of the received signal at any
point rR ∈ VR. Then, we have

Φ(rR) =
∫
VT

G(rR, rT)Ψ(rT)d3rT (2)

where G(·, ·) is the retarded Green’s function defined by

G(rR, rT) =
exp (−ιk|rR − rT|)

4π|rR − rT|
(3)

where ι =
√
−1 and k = 2π/λ, where λ is the wavelength

of the signal. Let {ψTi(rT), i = 1, . . . , NT} (respectively,
{φRj(rR), j = 1, . . . , NR}) be a finite set of orthonormal func-
tions in VT (respectively, VR). Then, given any ψTi(rT), the
received signal is given by

Φi(rR) =
∫
VT

G(rR, rT)ψTi(rT)d3rT. (4)

Define the projection of Φi(rR) on φRj(rR) as follows:

Γji =
∫
VR

∫
VT

φ∗Rj(rR)G(rR, rT)ψTi(rT)d3rTd3rR (5)

then, we have

Φi(rR) =
NR∑
j=1

ΓjiφRj(rR) + δΦ(rR) (6)

where δΦ(rR) is a residual term orthogonal to all φRj(rR).We
may write any transmit signal as

Ψ(rT) =
NT∑
i=1

aiψTi(rT). (7)
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The received signal is

Φ(rR) =
NR∑
j=1

bjφRj(rR) + δΦ(rR) (8)

where δΦ(rR) is a residual signal orthogonal to all φRj(rR)
and

bj =
NT∑
i=1

aiΓji. (9)

In a vector form, we have


 b1

...
bNR


 =




Γ11 · · · Γ1NT

... · · ·
...

ΓNR1 · · · ΓNRNT




 a1

...
aNT


 (10)

or in a compact form

b = Γa. (11)

If the sets {ψTi(rT), i = 1, 2, . . .} and {φRj(rR), j =
1, 2, . . .} are complete, then any transmit signal can be ex-
pressed as in (8) without the residual term δΦ(rR). In this
case, (11) represents the true transfer function of the commu-
nication system, regardless of the choice of the basis functions
{ψTi(rT)} and {φRj(rR)}.

Completeness of the function sets requires NT and NR to be
infinite—and consequently, Γ is infinite dimensional. However,
the channel between two finite volumes has a finite number
of communication modes [17], [19]. Equivalently, the number
of nonnegligible singular values of Γ is finite. If we choose
the eigenfunctions of the channel {ϕTi(rT)}∞i=1 as our basis
functions for the transmit signal, then the transfer matrix Γ is
diagonal with σi as the entries, ordered from largest magnitude
to smallest. Further, the number of communication modes nc
correspond to the number of nonnegligible singular values.

The functions ϕTi(rT) may be found through the analytic
solution of an eigenvalue problem [17]

σ2
i ϕTi(r′T) =

∫
VT

∫
VR

G∗(rR, rT2)G(rR, rT1)

× ϕTi(rT)d3rRd3rT (12)

where ϕTi(rT) is the ith (normalized) eigenfunction and the
set {ϕTi(rT)}∞i=1 is a complete orthonormal set. However, this
problem has tractable analytical solutions in only a small num-
ber of carefully designed geometric situations. The difficulty
lies in computing these eigenfunctions when we have arbitrary
bodies VT and VR.

Because the dimensions of the bodies are much smaller
than the distance D, we use a paraxial approximation [17] to
simplify G(rR, rT). We write the basis functions as [17]

ψTi(rT) = FT(rT)βTi(rT) (13)

where βTi(·) are new functions and FT(·) is the so-called
focusing function defined by

FT(rT) = exp
(
−ιk

(
zT −

x2
T

2D
− y2

T

2D

))
(14)

so we may write (with some abuse of notation)

βTi(rT) ≡ βTi(xT, yT) (15)

and similarly for βRj(xR, yR). Each eigenfunction
ψTi(rT)—or φRj(rR)—is the product of a three-dimensional
(3-D) focusing function and a two-dimensional (2-D) function.
This is a crucial step towards numerical solutions for the
transfer function between VT and VR.

We wish to find a computationally efficient method for de-
termining the channel eigenfunctions. We note that while direct
numerical solution (12) for arbitrary volumes is not efficient,
we may use the analytic results of [17] to provide a significant
computational saving in our numerical solution. To motivate
our numerical solutions, we first consider the case where both
VT and VR are hyperrectangles parallel to the x, y, z axes.
Suppose the dimensions of VT are given by 2∆xT, 2∆yT, and
2∆zT, and similarly for VR. This case is analyzed in [17] and
the solution is given as

βTi(xT, yT) =
S0m(cx, x̂T)S0n(cy, ŷT)√

∆xT∆yT∆zT
(16)

for m, n = 0, 1, . . ., where

cx =
k∆xT∆xR

D
(17)

and similarly for cy and

x̂T =
xT

∆xT
(18)

and similarly for ŷT . The function S0m(c, ξ) is the so-called
(0,m)th angular prolate spheroidal function [20], [21] with
eigenvalues vmthat are well studied. The eigenvalues obey the
relation

1 > |v1| > |v2| > · · · > 0. (19)

Only a finite number of vi have nonnegligible magnitudes
and for fixed values of c, the vi fall off rapidly for i > 2c/π
[21]. Further, functions {S0m(c, ξ)}∞i=1 are complete and or-
thonormal over the unit interval. Computational methods for
vm and S0m(c, ξ) are available in [20] and [22].

B. Numerical Solutions for Arbitrary Volumes

Consider now the (general) case where VT and VR have
arbitrary shapes, i.e., they are no longer prisms aligned along
the z-axis. In this case, the basis functions βTi(xT, yT) (or
βRi(xR, yR)) cannot be separated (analytically) into x and y
components of the form given by (16). We need to resort
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to a numerical solution. We achieve this by modifying the
eigenfunctions of the prism case to avoid solving (12) directly.

1) Project VT along the z direction to obtain a surface ST on
the xy plane.

2) Define ST to be the smallest rectangle, with sides parallel
to the xy axes, in the xy plane that covers ST.

3) The side lengths 2∆xT and 2∆yT are the lengths of ST

in the x and y directions, respectively.
4) The process is repeated for VR to obtain SR, SR, 2∆xR,

and 2∆yR.
We now have two rectangular surfaces that may be used

to generate functions β̄Ti(xT, yT) and β̄Ri(xR, yR), substitut-
ing the “volumes” VT = ST ×max(2∆zT) and VR = SR ×
max(2∆zR) in (16).

The “new” functions β̄Ti(xT, yT) and β̄Ri(xR, yR) are com-
plete in both ST and ST, although not necessarily orthogonal
or orthonormal. To see this, extend any function f(xT, yT),
defined over ST, to a function g(xT, yT), defined over the
whole rectangle ST by

g(xT, yT) =
{

f(xT, yT), (xT, yT) ∈ ST ⊆ ST

0, otherwise
. (20)

Then, g(xT, yT) may be expressed as a linear combination
of {β̄Ti(xT, yT)} over ST, since {β̄Ti(xT, yT)} is a complete
set in ST, i.e., g(xT, yT) =

∑
i αiβ̄Ti(xT, yT). The same com-

bination {α1, . . .} still holds over ST because ST ⊂ ST. A
similar claim holds for βR(xR, yR).

The set {β̄Ti(xT , xy)}may be transformed to a complete and

orthonormal set {β̃Ti(xT, yT)} in VT using the Gram–Schmidt
process. The norm is taken over VT, i.e.,

β̃T1(xT, yT) =
β̄T1(xT, yT)∥∥β̄T1(xT, yT)

∥∥
VT

(21)

where the volume integral in VT may be simplified to a scaled
surface integral on ST

‖f(xT, yT)‖2VT
=
∫
VT

f ∗(xT, yT)f(xT, yT)dxTdyTdzT

≈
∫
ST

2∆zT(xT, yT)f ∗(xT, yT)

· f(xT, yT)dxTdyT (22)

and 2∆zT(xT, yT) is the “thickness” of VT in the z direction
at point (xT, yT). We transform the set {β̄Rj(xR, yR)} to a

complete orthonormal set {β̃Rj(xR, yR)} in a similar way.
We now apply the paraxial approximation, which allows us

to write the 3D basis functions in terms of the 2D functions
βT(xT, yT) and a focusing function

ψ̃Ti(rT) = FT(rT)β̃Ti(xT, yT) (23)

and similarly

φ̃Rj(rR) = FR(rR)β̃Rj(xR, yR). (24)

We approximate the Green’s function in terms of the transmit
and receive focusing functions [17]

G(rR, rT) ≈ e−ιkD

4πD
F ∗T(rT)e

ιk
D (xRxT+yRyT)FR(rR). (25)

It follows that

Γji =
exp(−ιkD)

4πD

×
∫
VR

∫
VT

β̃Rj

∗
(xR, yR) exp

(
ιk

D
(xRxT + yRyT)

)

× β̃Ti(xT, yT)dxTdyTdzTdxRdyRdzR. (26)

Since the integrand is independent of zT and zR, we simplify

Γji =
exp(−ιkD)

4πD

∫
SR

2∆zR(xR, yR)

× β̃Rj

∗
(xR, yR)h(xR, yR)dxRdyR (27)

where

h(xR, yR) =
∫
ST

2∆zT(xT, yT) exp
(
ιk

D
(xRxT + yRyT)

)

× β̃Ti(xT, yT)dxTdyT. (28)

In the above, 2∆zT(xT, yT) is the thickness of VT in the z
direction at (xT, yT), and 2∆zR(xR, yR) is similarly defined.
The benefit of decomposing the integral as shown is that we
may significantly reduce the computation required to compute
Γji since we may compute h(xR, yR) using (28) once, for each
basis function in VT. This function is then constant in (27) for
each basis function in VR.

The functions β̃Ti(xT, yT) and β̃Rj(xT, yT) are not eigen-
functions of the channel between VT and VR, rather they are
eigenfunctions of the channel between VT and VR. Conse-
quently, the transfer matrix Γ is not diagonal. However, when
ST and SR are close to their bounding sets ST and SR, respec-
tively, and the thicknesses ∆zT(xT, yT) and ∆zR(xR, yR) are
roughly constant, the eigenfunctions corresponding to (VT, VR)
are similar to those corresponding to (VT, VR). As such, we
may manipulate Γ through the singular-value decomposition
(SVD) to obtain the correct basis functions.

C. Simplification of Transfer Function

In practice, only a finite number of terms of Γji are com-
puted, i.e., we obtain a truncated Γ. In order to measure the
accuracy of Γ, we resort to the sum rule of [17].

Suppose {ψ̃Ti(rT), i =1, 2, . . .} and {φ̃Rj(rR), i =1, 2, . . .}
are any two sets of orthonormal functions for VT and
VR, respectively, then (by Parseval’s theorem) for free-space
transmission

∑
i,j

|Γji|2 ≤
1

(4π)2

∫
VT

∫
VR

1
|rR − rT|2

d3rTd3rR (29)
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with equality if and only if the sets are complete. Under the
assumption that the dimensions of VT and VR are sufficiently
small compared to the separating distance D, (29) becomes

∑
i,j

|Γji|2 ≤
VTVR

(4πD)2
(30)

=
N∑
i

N∑
j

|Γji|2 + δE , δE > 0. (31)

From (31), if δE is sufficiently1 small, then the finite es-
timation of Γ is sufficiently accurate. If δE is too large (the
sum of |Γji|2 is too small), then we increase the number of
basis functions and compute a larger dimension Γ. By the
orthogonality of the basis functions, we may simply append
the additional terms onto the matrix Γ. As a rule of thumb, we
choose the dimension of the truncated Γ to be n̄c × n̄c, where
n̄c is the number of communication modes for (ST, SR). Recall
from (1)

n̄c =
SR · ST

D2λ2
. (32)

We then increase the dimension of Γ, if necessary, according
to (31).

In general, the dimension of Γ as obtained above is larger
than the number of communication modes for (VT, VR). This
is because ψ̃Ti(rT) and φ̃Rj(rR) are not necessarily the eigen-
functions for (VT, VR). In order to obtain a minimal represen-
tation of Γ, we perform a singular-value decomposition, i.e.,
we form

Γ = U ∗ΛV (33)

where U and V are unitary matrices and Λ is a diagonal matrix
containing the singular values of Γ in descending-magnitude
order. We may generate the optimal-diagonalizing-basis sets by
application of V and U

ψopt
Ti (rT) =

∑
j

ψ̃Tj(rT)Vi,j (34)

φopt
Ri (rR) =

∑
j

φ̃Rj(rR)Ui,j (35)

which means that the basis functions are now the eigenfunctions
of the channel. After the decomposition (33), we may have
several negligible singular values. These may be discarded to
provide a reduced-transfer function. The number of remaining
terms corresponds to the number of communication modes for
the system.

The unitary matrices U and V may be interpreted as optimal
energy distributions for the (suboptimal) basis functions used,
i.e., if we were forced to transmit using signals ψ̃T(rT) and
forced to receive using ψ̃T(rT), then U and V would provide
“steering” for our signals to ensure that the appropriate channel
modes were activated.

1For simulations, we chose δE < 1 × 10−8 as a threshold.

Fig. 2. Two-volume arrangement, with absorbing plane Ps and finite hole
S(s,n). Size of S(s,n) determines scatterer size.

III. MODELING FOR VOLUME COMMUNICATIONS WITH

SCATTERING BODIES

A. An Imaginary Exercise

Consider the two volume communication system in Fig. 2,
where we have placed an infinitely large absorbing plane Ps
at point s between VT and VR. The normal direction n of Ps
is arbitrary. The plane is fully energy absorbing except for a
hole S(s,n) in the middle, i.e., the only means for any signal to
reach VR from VT is through S(s,n). We ask “how large must
this hole be so that communication between the two volumes is
not affected?”

The answer to this question is as follows: If λ is sufficiently
small, then S(s,n) is the minimum area containing all the in-
tersection points of Ps and *(rT, rR), where *(rT, rR) is a line
linking rT ∈ VT and rR ∈ VR. If λ is not small compared with
S(s,n), then S(s,n) must be enlarged by several wavelengths
so that fringing and diffractions on the edges are negligible.
We denote S(s,n) as the viewing area (with respect to Ps).
If we replace the finite “hole” with a “scatterer,” we have the
smallest size scatterer, allowing all possible communication
modes between VT and VR. Smaller scatterers will only allow
partial communication.

B. Single Scatterer

Now we consider the scenario where there is a single scat-
terer S, as depicted in Fig. 3. We assume that S is a (purely) re-
flective plane, i.e., there is no penetration of the electromagnetic
field, using a similar model to that of [23]. This simplification
ignores the specular effects of scattering through clouds of
small particles. However, modeling scatterers as pure reflectors
becomes exact as the total path length, via a single scatterer,
becomes large with respect to the signal wavelength [24].

The reflective nature of S means that the reflection angle θr

is the same as the incident angle θi. The reflection involves a
loss that is represented by the following gain, cf. [25]

η(θi) = exp
{(π

λ
σh cos θi

)2
}

J0

{
8
(π
λ
σh cos θi

)2
}

(36)

where σh is the standard deviation of the surface height, and
J0(·) is the modified Bessel function of order zero. Note that
for a perfectly flat plane, σh = 0 and η(θi) = 1. The normal
angle n of the scatterer must be such that the reflected signals
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Fig. 3. Two-volume arrangement, with single finite reflective scatterer S.

are directed at VR, so that signal transmission from VT to VR is
possible.

To determine the field within VR, we mirror-image the body
VR with respect to the scatterer to generate a virtual body V ′R
(see Fig. 3). The scatterer S may be viewed as the “hole”
through which communications between VT and V ′R occurs.
The area of S must be larger than the corresponding viewing
area between VT and V ′R, in order for VT to fully communi-
cate with VR. Once this condition holds, the transfer function
between VT and VR can be computed using the result in
Section II-B. The algorithm becomes as follows.

Algorithm 1: Scatter channel model

1) The effective propagation distance is the total path length
Ds = D1 + D2.

2) The mirror-image body V ′R—the rotated mirror-imaged
copy of VR—is substituted for VR.

3) Using the propagation distance Ds and the receive body
V ′R, the process of Section II-B is applied.

4) The computed eigenfunctions for V ′R are rotated and
mirror-imaged back so that they become functions for VR.

Note that the same result can be obtained by mirror-imaging
VT—to generate V ′T—due to the symmetry between transmit
and receive volumes. Let us summarize the assumptions we use
for the scatterer.

A1) The normal direction n of S is such that the reflected
signals from VT reach VR.

A2) Each scatterer S is a (small) finite-size purely reflective
plane with loss given by (36).

A3) The distance D1 from VT to S is sufficiently large
compared to the size of S that for any point in VT,
the incident angle across the whole of S is roughly
constant. A similar condition holds for D2.

A4) Each scatterer is “local” to either VT or VR, i.e., either
D1 � D or D2 � D.

We note that it is possible to relax these assumptions, at
the expense of increasing the model complexity. We make the
following observations.

Obs1) A scatterer that is not appropriately aligned is equiv-
alent to a smaller (appropriately aligned) scattering
object.

Obs2) A scatterer S that is smaller than the necessary view-
ing area2 reduces the communication strength for the
path from VT to VR via S. Modeling is possible by
considering only the “visible” part of VR, i.e., by
considering transmission between VT and a smaller
VR. From (29), the reduction in effective volume
reduces the number of communication modes for the
link via this path.

Obs3) A scatterer S that is “too close”’ that A3 does not
hold may be considered as a collection of several
smaller scattering bodies {S1, S2, . . .} such that A3
holds for each.

Obs4) Any scatterer S that is not local to either volume is
ineffective for transmission.

To see Obs4 intuitively, when S is distant from both VT and
VR, the added propagation distance makes the received signal
significantly weaker. Further, the number of communications
modes available (1) through a link via S is very small, due
to the large propagation length independent of transmission
power. Consequently, the link via S appears as a low-power
link with a few degrees of freedom. This implies that a distant
scatterer will not contribute new orthogonal modes. Although
such a scatterer may improve the signal power received, the
contribution is dominated by any local scattering.

The consequence of Obs4 is that we only need to consider
scatterers that are local to VT and/or VR. A simple example
of this approach is the well known ring-scatter model [26],
[27]. An NLOS path (via a scatterer) may be comparable to
the line-of-sight (LOS) path, provided that assumptions A1–A4
are satisfied and the reflection loss (36) is not significant.

C. Multiple Scatterers per Path

The model described above may be easily extended to the
case where multiple reflections occur along a single path from
VT to VR. For a given scatterer S, we may consider a virtual
free-space transmission path PS from VT to VR. The communi-
cation modes are given by Algorithm 1.

For a path containing more than one scatterer, we simply re-
peat the mirror imaging of VR for each scattering body along the
path. In this way, a virtual path is generated that incorporates the
effect of each scattering body—concatenating the reflections
and losses from each body—along the way. Having “unwound”
the scattering path—performing a reflection for each scatterer
and incrementing the virtual path length—the communication
modes are calculated using Algorithm 1.

D. Multiple Paths

Consider the scenario in Fig. 4 with scatterers S(k), k =
1, . . . ,K, in accordance with assumptions A1–A4. Each scat-
terer provides a communication path and the transfer function
Γ(k) for each path can be computed using the method in
Section III-B. The true value of Γ cannot be obtained by directly
summing the various Γ(k) transfer functions, because each Γ(k)

uses different eigenfunctions.

2Either due to misalignment or small physical size.
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Fig. 4. Two-volume transmission, in the presence of multiple scatterers.

To obtain a correct Γ, we denote by {ψ(k)
Ti (rT), i = 1, 2, . . .}

and {φ(k)
Rj (rR), j = 1, 2, . . .} the two sets of eigenfunctions

corresponding to Γ(k) and let the dimension of Γ(k) be N
(k)
c ×

N
(k)
c . Then, we have the following mapping:

{
ψ

(k)
Ti (rT)

}
Γ(k)

�−→
{
φ

(k)
Rj (rR)

}
. (37)

Let {ψTi(rT)} and {φRj(rR)} be any sets of complete
orthonormal basis functions for VT and VR, respectively. In
particular, they may be the basis functions corresponding to the
direct transmission path. We can project each ψ

(k)
Ti (rT) onto

ψTj(rT), j = i, 2 · · · to obtain the following:

ψ
(k)
Ti (rT) =

∞∑
j=1

Γ(k)
ij ψTj(rT) (38)

where Γ(k)
ij are projection coefficients. In order to perform the

projection, we first note that both the eigenfunctions ψ
(k)
Ti (rT)

and the focusing function of the rotated-mirror-imaged volumes
must be projected back to a common reference.

Denote F (x, y, z) as the original focusing function and
F (k)(x, y, z) as the focusing function for path k—where we
have already carried out the rotation and mirror-imaging—we
may write

Γ(k)
ij =

∫
VT

ψ
(k)
Ri (xT, yT)F (k)(x, y, 0)F−1(x, y, 0)

· ψRj(xT, yT)dx dy dz. (39)

In vector form, we have

ψ
(k)
Ti (rT) = Γ(k)

ψ ψTi(rT) (40)

for some matrix Γ(k)
ψ with N

(k)
c columns and infinitely many

rows. For numerical calculations, Γ(k)
ψ is truncated in similar

form as Γ. Similarly, each function φRj(rR) may be projected

onto φ
(k)
Rj (rR), j = 1, 2, . . . to obtain

φRj(rR) = Γ(k)
φ φ

(k)
Rj (rR) + δφ

(k)
R (rR) (41)

for some matrix Γ(k)
φ with N

(k)
c rows and infinitely many

columns, where δφ
(k)
R (rR) is the residual term orthogonal to

all φ(k)
Rj (rR). The elements of Γ(k)

ψ and Γ(k)
φ may be computed

numerically.
With the above projections, we can express the mappings

from ψT(rT)to φR(rR) through S(k) as follows:

ψT(rT)
Γ

(k)
ψ�−→ ψ

(k)
T (rT) Γ(k)

�−→ φ
(k)
R (rR)

Γ
(k)
φ�−→ φR(rR). (42)

Thus, the overall transfer function is given by

Γ =
K∑
k=1

Γ(k)
φ Γ(k)Γ(k)

ψ . (43)

The only difficulty is that there is no sum rule to determine
the numerical accuracy of the computation, i.e., (29) is invalid
for transmission in scattering environments. This implies that
Γ(k)
φ and Γ(k)

ψ must have large dimension to ensure numerical
accuracy. Once Γ is obtained, the singular-value decomposition
in (33) can be performed to obtain the eigenfunctions, singular
values, and number of communication modes.

We may easily include an LOS path. Denote its transfer
function and the corresponding projection matrices by Γ(0),
Γ(0)
φ , and Γ(0)

ψ , respectively. Then, (43) is modified to

Γ =
K∑
k=0

Γ(k)
φ Γ(k)Γ(k)

ψ . (44)

Using (44), the direct transmission path is simply one of
many possible transmission paths, each with their respective
transfer-matrix and basis functions.

IV. SIMULATION

We compare a direct (nonscattering) transmission with var-
ious scattering environments. We consider a 3-GHz transmis-
sion frequency giving λ = 0.1 m. The volumes VT and VR

are hyperrectangles. VT has side lengths of 15λ× 9λ× 9λ
and VR has side lengths of 18λ× 9λ× 9λ. The volumes
are separated by D = 10 m. For this arrangement, the num-
ber of communications modes for direct transmission (1) is
Nc ≈ 2.6. We have used [28] for the numerical computation
of (16).

The arrangement has been deliberately chosen to ensure a
small nonnegligible number of direct transmission modes to
emphasize the effect of scattering. Physically, such a model
may correspond to placing antenna elements within two of-
fice filing cabinets, and placing the cabinets within adjacent
offices. Under this arrangement, we may ask “how many well-
connected parallel channels exist between the filing cabinets?”
Examining this question provides insight into the effect of
scattering upon the wireless channel. The physical channel is
of less importance than the concept of the continuous modes.

Fig. 5 shows the squared singular values for the different
scattering environments. The squared singular values provide
the channel gains for the effective parallel channels from VT
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to VR. The singular values are not normalized, which allows
comparison among the various channel scenarios.

The direct-transmission case is shown by the solid line.
The singular values σ̂k drop sharply beyond k = 3. This cor-
responds to the value of Nc for this arrangement. The first
singular value σ1 = 0.0067 represents the channel gain, and
gives an indication of distance (and other) losses.

Using the same physical arrangement, we introduced scatter-
ing, in both an NLOS and LOS case. Scatterers were modeled
as reflective planes with a gain (36), η = 1. Each scatterer
was placed in a random location, between VT and VR, with a
random orientation. Monte Carlo simulations were then used,
to generate average-case results.

The NLOS transmission is shown by the solid line with
squares. In this situation, transmission was possible only via
the reflective scatterers, where K = 20 scatterers were used.
Physically, this corresponds to using an absorbing region be-
tween VT and VR that prevents any direct transmission. It can be
seen that the channel gain σ1 = 0.0058 is similar to the direct-
transmission case. As additional scatterers are introduced, this
gain tends to increase—as the total signal power received at
VR increases with each additional path. Comparing the NLOS
case with the direct-transmission case, scattering has provided
approximately double the number of equal-strength commu-
nications modes. This can be seen by comparing the value k
for which the direct-case singular values σdirect and σNLOS

fall below some threshold (say 1× 10−3). This corresponds to
a significant improvement in the number of parallel channels.
Equally, the relative magnitude of the singular values in the
NLOS case is much smaller, which may be interpreted as a less
correlated channel than the direct-transmission case.

This case may be compared with the single-scatterer NLOS
channel, where a scatterer was placed randomly at a distance
from both VT and VR. As can be seen, the channel gain in this
case is significantly reduced. The pinhole channel suffers from
two reductions in singular values.

1) The scatterer is at an angle to the volumes, so the number
of well-connected modes is reduced (although there may
be several poorly connected modes).

2) The distance from VT to VR is larger than the direct-
transmission path length, so the gain is also reduced.

The LOS case is shown by the circled line. Here, communi-
cation occurred via both dense scattering (K = 20) and direct
transmission. The channel gain σ1 = 0.0068, and this can be
seen in the same way as the channel-gain improvement in
the NLOS case. Each scatterer provides an additional commu-
nication path, and consequently, additional signal power at
the receiver. This is precisely the effect seen when using a
parabolic-dish antenna around a radio transmitter: the presence
of the dish improves the power gain of the point-to-point chan-
nel. Comparing with NLOS, we see a significant improvement
in the number and strengths of effective communication modes
as expected.

In Fig. 6, we have plotted the (normalized) magnitude
of the first and second communication modes for a direct-
transmission case Γd, pinhole NLOS case, Γn and LOS case,
and Γl between the hyperrectangles VT and VR described in

Fig. 5. Squared magnitudes of singular values of transfer operator Γ ranked
in order of magnitude. Cases considered are direct (no scattering), NLOS (ten
scatterers, transmission only via scattering bodies), LOS (ten scatterers plus
direct transmission) and NLOS-pinhole (all transmission via single scatterer).

Section IV. The pinhole NLOS case was generated by placing
a single scatterer along the diagonal of VT, and the LOS case
generated by combining both the direct and pinhole NLOS
channels. It was assumed that the gain of the scatterer (36), was
η = 0.5. The LOS channel and the direct channel are related by

Γl = Γd +
1
2
ΓψΓnΓφ. (45)

We note that the low-order modes of the LOS scenario are
similar to those of the direct (nonscattering) scenario, while the
NLOS modes are significantly different.

V. DISCUSSION

Let us consider two volumes in free space, i.e., the direct-
transmission case. We have a set of basis functions, which may
be calculated as described in Section II. Although there are
infinitely many orthonormal functions in the sets ψTi(rT) and
φRj(rR), only a finite number nc have nonnegligible connec-
tion strengths, corresponding to the well-connected modes.

For every scatterer S(k), a new pair of basis sets ψ(k)
Ti (rT) and

φ
(k)
Rj (rR) are generated. These are not necessarily the same as

those of the direct path. Some of the basis functions ψ
(k)
Ti (rT)

(and φ
(k)
Rj (rR)) have components that are parallel to the well-

connected direct-path modes and some have components that
are orthogonal to all of the well-connected direct-path modes.
Further, if the path length via S(k) is approximately equal to the
direct-path length D, and the sizes of VT and VR are unchanged,
each scatterer path has the same sum of path gains as the direct
case (ignoring reflection loss) given by the sum rule.

The components of ψ(k)
Ti (rT) and φ

(k)
Rj (rR) that are orthogo-

nal to existing eigenfunctions produce additional (orthogonal)
modes of communication. These orthogonal modes correspond
to additional parallel-communication channels that are un-
available for direct transmission. The remaining components
(parallel to existing eigenfunctions) contribute to the gain of
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Fig. 6. Magnitude of low-order eigenmodes in VT for direct transmission Γd, NLOS transmission Γn, and LOS Γl transmission. NLOS transmission via single

scatterer. LOS matrix calculated according to Γl = Γd + (1/2)ΓψΓnΓφ. Note similarity between direct modes and LOS modes. (a) Direct mode 1, |ψ(d)
T1 (rT)|.

(b) Direct mode 2, |ψ(d)
T2 (rT)|. (c) NLOS mode 1, |ψ(n)

T1 (rT)|. (d) NLOS mode 2, |ψ(n)
T2 (rT)|. (e) LOS mode 1, |ψ(l)

T1(rT)|. (f) LOS mode 2, |ψ(l)
T2(rT)|.

the corresponding modes. The gain contribution may be either
constructive or destructive, depending on phases. A particular
example of this is the parabolic dish: the various pieces of
the dish may be considered as reflective scatterers. No new
modes of communication are created. However, the power
gain of the channel is markedly improved over a free-space
LOS case.

It is clear that we cannot increase the number of communica-
tion modes indefinitely because there is a finite area that can be
illuminated by scattering—each scatterer shadows those behind
it. The theoretical limit is reached when scatterers essentially
act as a lens. As such, scattering provides improvements in
channel capacity by:

1) increasing the gain of particular communication modes
by constructive interference; and

2) increasing the number of well-connected communication
modes.

VI. CONCLUSION

We have presented a numerical approach for the compu-
tation of the number and strength of communication modes
between two arbitrary volumes. We have extended these numer-
ical computations to account for transmission in the presence
of reflective-scattering bodies. We have shown that multipath
scattering may be modeled by iteratively considering each
scatterer as a particular instance in a general multipath field.
This has been used to provide an insight into the physical
channel characteristics necessary to achieve “rich” scattering.
We have shown that the continuous channel may be considered
as the limiting case for densely placed receiver and transmitter
elements.

We have shown that reflective scattering can improve channel
capacity through a combination of two methods: increasing
channel gains, and increasing the number of communication
modes. The first case is predominant in the “pinhole” channel,
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where scatterers are placed closely together. In this case, the
number of communication modes are dominated by the direct
transmission. In the second case, so-called “dense” scattering,
where scatterers are placed randomly, provides additional or-
thogonal communication modes over those already present in
direct transmission. Simulation results have been used to show
the improvement scatterers provide to the low-order singular
values of the transfer matrix, and the conditions under which
scattering can increase the number of communication modes.
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