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A Linear Matrix Inequality
Approach to Robust Filtering

Huaizhong Li and Minyue Fu,Senior Member, IEEE

Abstract—In this paper, we consider the robustH1 filtering
problem for a general class of uncertain linear systems described
by the so-called integral quadratic constraints (IQC’s). This
problem is important in many signal processing applications
where noises, nonlinearity, quantization errors, time delays, and
unmodeled dynamics can be naturally described by IQC’s. The
main contribution of this paper is to show that the robust H1
filtering problem can be solved using linear matrix inequality
(LMI) techniques, which are numerically efficient owing to recent
advances in convex optimization. The paper deals with both
continuous and discrete-time uncertain linear systems.

Index Terms—H1 filtering, integral quadratic constraints,
linear matrix inequalities, robust filtering.

I. INTRODUCTION

T HE filtering technique has been widely studied
for the benefit of different time and frequency domain

properties to the filtering technique. In the setting, the
exogenous input signal is assumed to be energy bounded rather
than Gaussian. An filter is designed such that the
norm of the system, which reflects the worst-case “gain” of
the system, is minimized. The advantage of using an filter
in comparison with an filter is twofold. First, no statiscal
assumption on the input is needed. Second, the filter tends to
be more robust when there exists additional uncertainty in the
system, such as quantization errors, delays, and unmodeled
dynamics [23]. These features make filtering technique
useful in certain applications. One such application is reported
in [21] for seismic signal deconvolution. Applications of
filters in multirate signal processing are studied in [4] and
[5]. We also note that the well-known equiripple filters are in
fact a class of filters because the design objective is to
minimize the norm of the difference between the filter to
be designed and a given ideal filter [19], although the term

is rarely used.
There are three approaches to filtering:

1) algebraic Riccati equation (ARE) approach (see, e.g.,
[1], [15]);

2) polynomial equation approach (see, e.g., [13], [14]);
3) interpolation approach (see, e.g., [8]).
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The polynomial approach and the interpolation approach use
transfer functions directly. That is, they both are frequency
domain approaches. They seem to be most suitable when
specific frequency domain information, such as zeros, poles,
bandwidth, etc., is available. In addition, frequency weighting
on filtering errors and noise signals can be easily performed
without worrying about the dimension increase of the weighted
system, which may add the computational complexity. In
fact, the standard design method for equiripple filters is a
kind of interpolation approach. In this case, neither the ideal
filter nor the weighting function can be expressed by a finite-
order transfer function. The main problem with the frequency
approaches is that the formula are quite complicated, especially
in the multivariable case. The ARE approach is a state-space
approach. It is more popular due to the fact that solutions
are expressed in simple formula and that efficient numerical
algorithms exist for solving ARE’s.

However, the works mentioned above require that the sys-
tem does not have any uncertainty, apart from the exogenous
noise input. Therefore, the robustness of the filter deserves
consideration. Several results have been obtained on robust

filtering for continuous-time and discrete-time linear
systems; see [6], [9], [24], and [26], for example. These results
deal with the so-called norm-bounded uncertainty and are
obtained using the ARE approach. The problem of robust

filtering contains two aspects: filter analysis and
filter synthesis. The analysis aspect is to determine the

worst-case performance when a filter is given, whereas
the synthesis aspect is to design a filter such that the worst-
case performance is satisfactory. The ARE approach in
[9], [24], and [26] involves a conversion of the robust
filtering problem into a “scaled” filtering problem, which
does not involve uncertainty. This is done by converting the
norm-bounded uncertainty into some scaling parameters. The
conversion used there significantly simplifies the robust
filtering problem and makes it possible to use the standard

filtering results. However, the introduction of the scaling
parameters makes the resulting “scaled” ARE’s difficult to
solve. Indeed, these scaling parameters enter the ARE’s non-
linearly. Further, the norm-bounded uncertainty assumption is
somewhat conservative in many applications.

In this paper, we consider a new approach to the robust
filtering problem for continuous- and discrete-time uncertain
systems. Apart from an energy bounded exogenous noise
input, the system is allowed to have uncertainties described by
the so-called integral quadratic constraints (IQC’s), which are
more general than the norm bounded structure. Similar to [9],
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[24], and [26], the robust filtering problem in this paper
also involves two aspects, namely, the filter analysis and
the filter synthesis. We apply the so-called-procedure
to deal with the IQC’s and provide solutions to the robust
filtering problem in terms of linear matrix inequalities (LMI’s).
An LMI is a semidefinite inequality that is linear in unknown
variables. Due to recent advancement in convex optimization,
efficient algorithms exist for solving LMI’s; see [3] for a
tutorial and [12] for a Matlab Toolbox. It turns out that the
analysis problem can be solved using a single LMI. However,
the synthesis problem is more complicated as it involves two
matrix inequalities that are separately linear but not quite
jointly linear. We then discuss two special cases where these
two matrix inequalities are jointly linear. Our results reduce to
those in [9], [24], and [26] when the norm-bounded uncertainty
assumption is enforced.

This paper is organized as follows: Section II gives a
brief overview for the filtering problem; Section III
discusses IQCs; Section IV presents the problem statement and
preliminaries; Section V studies the robust filter analysis
problem; Section VI deals with the robust filter synthesis
problem; Section VII offers illustrative examples; and some
concluding remarks are given in Section VIII.

We use the following notational table throughout this paper.

Notation Continuous Discrete

II. OVERVIEW OF THE FILTERING PROBLEM

In this section, we briefly review the standard filtering
approaches for linear systems without model uncertainty.

Let denote a stable operator from signalto signal
, where in the continuous-time case, and

in the discrete-time case. The norm of
is defined as

(1)

If is linear time invariant, then

(2)

where denotes the largest singular value.
In the following, we will review the results for continuous-

time systems only. The discrete-time cases can be addressed
similarly.

Consider the following system:

(3a)

(3b)

(3c)

where

state;
exogenous noise input in ;

output to be estimated;
measured output.

The following assumptions are standard:

A1) is stabilizable and detectable.
A2)

The filter structure is

(4a)

(4b)

where and are the estimated state and
output, respectively, and is well known as the Kalman gain.

The estimation error is defined by

(5)

Therefore, the error dynamics are

(6a)

(6b)

where is the state estimation error.
The filtering problem associated with the system (3) is

as follows: Given , find a filter of the form (4) such that
the corresponding error dynamics (6) is asymptotically stable
and satisfies

(7)

We now briefly discuss how this problem is tackled using
two different approaches.

A. ARE Approach

It is straightforward to verify that the error dynamics (6) are
equivalent to the control system model

(8a)

(8b)

(8c)

(8d)

Using the control system model (8), it is a standard result
from [7] that the filtering problem is solvable if and only
if the algebra Riccati inequality

(9)

has a solution.
If such exists, then one of the suitable Kalman gains,

called the “central solution,” is given by

(10)
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B. Frequency Domain Approach

From the control system model (8), we have

(11)

(12)

(13)

where

The transfer function from to is

(14)

Thus, the filtering problem is equivalent to

is stable (15)

such that Equation (15) is a standard optimiza-
tion problem.

III. I NTEGRAL QUADRATIC CONSTRAINTS

The IQC is a very general tool for describing properties
of linear and nonlinear operators. In particular, they can be
used conveniently to describe uncertain parameters, noises,
time delays, quantization errors, unmodeled dynamics, etc. The
notion of IQC is introduced by [28] and [29] for robust stability
analysis of feedback systems involving linear and nonlinear
parts. An effective method called theprocedure for treating
these IQC’s is also introduced in [28] and [29]. The purpose
of this section is to show that many kinds of uncertainties in
signal processing problems can be described by IQC’s.

Definiton 1: Consider a stable LTI operator
(or ), which has the state

space realization

(16a)

(16b)

Let be a quadratic form, i.e.,

for some constant matrix The associated (weak) IQC
is given by

or (17)

and the strong IQC is given by

or (18)

where (or ) denotes the extended real
(or ) space. In the rest of the paper, we

will use the (weak) IQC only.
Note that in the discrete-time case, an IQC is actually asum

quadratic constraint, but we will call it IQC for consistency
with the continuous time case.

Obviously, the IQC used to describe the passivity of an
operator is simply given by

(19)

If we want to put the above in the form of (17), we simply
take and note that

For a comprehensive list of uncertain components that can
be described by IQC’s, refer to [20] and [25]. These compo-
nents include time delays, uncertain parameters, unmodeled
dynamics, and many nonlinear functions.

IV. PROBLEM STATEMENT AND PRELIMINARIES

Consider the uncertain linear system

(20a)

(20b)

(20c)

where

state;
exogenous noise input belonging to
in the continuous-time case and in the
discrete-time case;
output to be estimated;
measured output;
uncertain variables satisfying the IQC’s

as (21)

with

In addition, and
are constant matrices of appropriate dimensions. To sim-

plify notation, we define

(22)

(23)
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Remark 1: The uncertainty represented by the IQC’s (21) is
very general. Apart from examples mentioned in the previous
section, several special cases of the system (20) have been
treated in the literature. For example, [2], [6], [9], [18],
[22]–[24], [26], and [27] consider the system

(24)

(25)

(26)

with norm-bounded uncertainty

(27)

where Another widely used system
uncertainty description in analysis involves the so-called
linear fractional uncertainty (see, e.g., [17]), where

(28)

(29)

(30)

is considered with

(31)

However, to our knowledge, there is no existing fil-
tering result available for linear systems with linear fractional
uncertainty. It is easy to see that the aforementioned norm-
bounded and linear fractional uncertainties are special cases
of the IQC’s (21) with

Consider the filter

(32a)

(32b)

where

estimated state;
estimated output;
measured output of (20).

and are constant matrices of appropriate
dimensions to be chosen.

Define the filtering error as

(33)

Then, the filtering error dynamics are given by

(34a)

(34b)

where

(35)

(36)

(37)

(38)

Remark 2: Note that the robust state estimation prob-
lem is a special case of the above robust filtering problem
with and

We further define the notion of bounded-state (BS) stability.
Definition 2: The filtering error dynamics (34) is called BS

stable if for all , all in the continuous-
time case and in the discrete-time case, there
exists such that

(39)

We also recall the well-known -procedure [29].
Lemma 1: Let be real valued func-

tionals defined on a set Define the domain of constraints

and two conditions

a)
b)

such that

Then, b) implies a).
Remark 3: The procedure of replacinga) by b) is called

the procedure. This procedure is a very convenient way
of handling inequality constraints and is known to be conser-
vative in general. Despite its conservatism, the simplicity of
this procedure has attracted a lot of applications in stability
analysis problems and optimization problems; see [3], [20],
[28], and [29]. In particular, note that searching for optimal
scaling parameters is often a convex optimization problem,
as we will see in the sequel.

V. ANALYSIS OF ROBUST FILTERS

The robust filter analysis problem associated with the
uncertain system (20) is as follows: Given and a filter
of the form (32), determine if the error dynamics (34) is BS
stable and satisfies

as

(40)

for all admissible uncertainty satisfying the IQC’s (21).
The parameter is a tolerance level, which can be regarded

as an indication of the quality of the filter. A small tolerance
level indicates a small estimation error in the worst case.
However, a small tolerance level requires a large filter gain
in general, which may cause implementation difficulties in the
continuous-time case or a numerical problem in the discrete-
time case. Further, the transient behavior of the error dynamics
may be of concern if the tolerance level is too small. In general,
there is no simple interpretation of the tolerance level in terms
of a linear quadratic cost function. However, it is known that
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for linear time-invariant systems, the filter approaches a
special Kalman filter when , see, e.g., [13], [14], [21],
and [23].

Applying the -procedure, we have the following result.
Lemma 2: Given that (34) is BS stable and that (40) holds

for all admissible uncertainty satisfying the IQC’s (21) if there
exists a positive definite matrix and scaling
parameters such that the following condition
holds:

For the continuous-time case:

(41)

For the discrete-time case:

(42)

Proof: Integrating or summing up the left-hand side of
the inequality in (41) or (42) along any trajectory of the error
dynamics (34), for , we have

(43)

Using (21), it follows that

as

Hence, the BS stability of the error dynamics is implied.
Now, take It follows from (43) and (21) again that
(40) holds.

Remark 4: Assume that (34) is zero detectable, i.e.,
as implies as Then, (41) for

the continuous-time case and (42) for the discrete-time case
guarantee that the error dynamics (34) with uncertainty (21) is
asymptotically stable. To make this point clear, we take
Using (43) and (21), it follows that

as

Hence, as implies as

Using Lemma 2 and denoting

(44)

diag (45)

we obtain our main result of continuous-time systems for this
section.

Theorem 3—Continuous Time:The following conditions
are equivalent, and they all guarantee the solution to the robust

filter analysis problem associated with the uncertain
system (20) and the filter (32).

i) There exist and such that
(41) holds.

ii) There exist and in (45) solving the
LMI in (46), shown at the bottom of the page.

iii) There exist and in (45) solving the
LMI

(47)

iv) There exists in (45) such that the auxiliary system
in (48) and (49) is asymptotically stable and that the

-norm of the transfer function from to is
less than 1:

(48)

(49)

Moreover, the set of all ’s satisfying iv) is convex.
Proof: “ i) ii) ”: The inequality (41) can be rewritten as

(50)

which is equivalent to

(51)

i.e,

(46)
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“ ii) iv)”: Denote

(52)

(53)

(54)

and

(55)

The auxiliary system in (48) and (49) can be rewritten as

(56)

(57)

In addition, the matrix in (46) can be expressed as

(58)

That is, if and only if It is well known

that matrix is asymptotically stable and
if and only if for some

Hence,ii) is equivalent toiv).

“ (ii) (iii) ”: Note that if and only if

(59)

holds. Equation (59) is derived from the well-known Schur

complements that

(60)

The equivalence between and can be estab-
lished by similar manipulations used on and The details
are omitted.

Similarly, we have the following theorem for discrete-time
systems:

Theorem 4—Discrete Time:The following conditions are
equivalent, and they all guarantee the solution to the robust

filter analysis problem associated with the uncertain
system (20) and the filter (32).

i) There exist and such that
(41) holds.

ii) There exist and in (45) solving the
LMI in (61), shown at the bottom of the page.

iii) There exist and in (45) solving the
LMI in (62), shown at the bottom of the page.

iv) There exists in (45) such that the auxiliary system
in (64) is asymptotically stable and that the -norm
of the transfer function from to is less than 1:

(63)

(64)

Moreover, the set of all ’s satisfyingiv) is convex.

Proof: The proof is similar to the continuous-time case.

VI. SYNTHESIS OF ROBUST FILTERS

For the synthesis problem, we need the following assump-
tions:

A1) is asymptotically stable.
A2) is detectable.

The filter synthesis problem associated with the uncer-
tain system (20) is as follows: Given , find a filter of the
form (32) such that the corresponding error dynamics (34) are
BS stable and satisfy

as

(65)

for all admissible uncertainty satisfying the IQC’s (21).

(61)

(62)
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Before proceeding further, we need the following lemma,
which was originally used for the control problem [11].

Lemma 5 [11]: Consider

(66)

(67)

(68)

where is a stabilizable and detectable triple.
Let (respectively, ) be any matrix whose columns
form a basis of the null space of (respectively,

). Then, there exists a controller of the form

(69)

(70)

such that the closed-loop system has norm less than 1 if
and only if there exist symmetric matricesand satisfying
the following LMI’s:

For the continuous-time case:

(71)

(72)

(73)

For the discrete-time case:

(74)

(75)

(76)

It is straightforward to see that the auxiliary system (48) and
(49) for continuous-time or (63) and (64) for discrete-time is

the closed-loop system of the open-loop auxiliary system

(77)

(78)

(79)

with the controller

(80)

(81)

Note that the robust filter synthesis problem of the
original system (20) with the filter (32) is converted into
the standard control synthesis problem for the open-loop
auxiliary system in (77)–(79) with the controller in (80) and
(81). It is interesting to see that the auxiliary controller in (80)
and (81) is exactly the same form as the filter in (32), which
is to be designed. This observation leads to the following
theorem, which is the main result for the synthesis problem:

Theorem 6: Given , consider the robust filter
synthesis problem as described above. Denote by any
matrix whose columns form a basis of the null space of

Then, the robust filtering synthesis prob-
lem is solvable if there exist symmetric matrices
and in (45) such that the following LMI’s hold:

For the continuous-time case:

(82)

(83)

(84)

For the discrete-time case:

(85)

and (86), shown at the bottom of the next page, as well as

(87)
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Proof: Note that the columns of diag
form a basis of the null space of
Comparing (77)–(79) with (66)–(68), we find that

The corresponding matrix that
forms the basis of the null space of is given by

Apply Lemma 5 to the auxiliary system (77)–(79), it is
tedious but straightforward to verify that the LMI (83) is the
version of (72) for the continuous-time auxiliary system, but
left and right multiplied by diag In addition,
the LMI (82) corresponds to (71). The discrete-time part can
be proved similarly.

Remark 5: The LMI (82) is jointly linear in and
, whereas the LMI (83) is jointly linear in and

Therefore, the LMI’s (82)–(84) are not jointly linear in
A similar problem occurs for the discrete-time counterpart
(85)–(87). To overcome this difficulty, two methods can be
used to find The first one is a simple gridding method.
To do this, we first rescale by defining
Obviously, if and only if Then, we assign a
uniform grid on each For each grid point of ,
we can search for a solution for (82)–(84) or (85)–(87), which
is a simple LMI problem. The second method is an iterative
procedure. With this method, we add a term to the left-
hand side of each inequality in (82) and (83) or (85) and (86),
where is a scalar variable. An initial is guessed. Then,

and are searched for so that is maximized. This is
an LMI problem. Then, let and be fixed, and find to
further maximize , which, again, is an LMI problem. If the
maximum is negative, repeat the above procedure until either

becomes nonnegative, in which case, a feasible solution is
found, or a prescribed number of iterations is reached in which
the iterative method fails.

The tradeoff of the two algorithms above lies in the fact
that the first algorithm can guarantee a near optimal solution,
provided the grid size is sufficiently small, whereas the second

algorithm is more numerically efficient but with the possibility
of missing a global feasible solution.

Remark 6: In the following, we show two special cases for
which (82) and (85) can be reformulated so that the resulting
matrix inequalities will be jointly linear in

Case 1: Suppose , i.e., This is called the
“single IQC” case. In this case, we left and right multiply (82)
by

diag

Then, the LMI (82) is equivalent to

(88)

Following the well-known Schur complement

and

(89)

the LMI (82) is further equivalent to (90), shown at the bottom
of the page, where Similarly, the LMI (85) is
equivalent to (91), also shown at the bottom of the page.

Then, LMI’s (90) and (83) and (84) for continuous-time
systems as well as LMI’s (91) and (86) and (87) for discrete-
time systems are jointly linear in and Note that is a
given tolerance level. It is always possible to find a suboptimal

using simple iterative procedures.
Case 2: Assume That is, the uncertain variables

are independent of the state variables. Left and right
multiplying (82) by

diag

(86)

(90)

(91)
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the LMI (82) is equivalent to

(92)

We claim that (92) and (84) are equivalent to

(93)

Obviously, (92) implies (93). To see that (93) implies (92)
and (84), we recall the assumption thatis asymptotically
stable and that Therefore, there exists such
that Simply by scaling up large enough will
ensure both (92) and (84).

Now, the LMI’s (83) and (93) for continuous-time systems
are jointly linear in and Similarly, the LMI’s (86) and
(93) can be used for discrete-time systems.

Remark 7: Assume
, LMI’s (82)–(84) for continuous-time systems, and

LMI’s (85)–(87) for discrete-time systems naturally reduce to
ARE’s that are the same as in [9] and [26]; see [9] and [26]
for details about the corresponding ARE’s.

Remark 8: We note that Theorem 6 does not offer an
explicit formula for constructing robust filters. The fol-
lowing is a design procedure cited from [10]:

Step 1) Solve the LMI’s (82)–(84) for continuous-time case
and LMI’s (85)–(87) for discrete-time case. If the
LMI’s are feasible, we will obtain a feasible solu-
tion and

Step 2) Decompose the matrix into

where and are matrices with full column
ranks. This can be easily done via singular value
decomposition.

Step 3) Solve from

It is guaranteed [10] that that the
solution is unique, and that this solution is also
a suitable for (47) for continuous-time systems
or (62) for discrete-time systems.

Step 4) Since and are computed, solving (47) or
(62) for and is once again an
LMI problem. The solution is guaranteed to exist,
as mentioned in the previous step. The resulting

and will form the desired robust
filter.

We note that the robust filter is not unique because
many feasible solutions and for (82)–(84) or (85)–(87)
exist. It is even possible to characterize the family of the
solutions and therefore the family of robust filters cor-
responding to a given However, we do not dive into the
details here. The interested reader is referred to [10].

VII. EXAMPLES

Example 1: Consider the continuous-time linear system

where

The aim is to design a robust filter (32). We consider
two design methods for comparison purposes: The first one
is the nominal filter design based on the nominal system
with , and the second one is our robust filter
design that takes the uncertainty into account. Given the
disturbance attenuation level , a nominal filter
is obtained with the filter matrices

Next, we use the IQC approach and take

With the design method proposed in this paper, the filter
matrices of the robust filter are obtained using the
Matlab LMI Toolbox [12] as follows:

and the matrices and the scaling parameterare given
by

The error dynamics using both the nominal
filter and the robust filter are compared. In Fig. 1, we plot
the maximum singular value for versus frequency
for different constant values of An 0.1 increment for
is used, and the effect of is observed in Fig. 1. It is clear
that the robust filter is less sensitive to the variations in

Fig. 2 shows the singular value comparison for
again taken to be constant. We observe from

Fig. 2 that in the nominal case for
the nominal filter is less than that for the robust filter.
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Fig. 1. Maximum singular value plots.

Fig. 2. Singular value comparison. —: robustH1 filter; - � -: nominalH1 filter.

However, for the nominal filter gives
a larger than the robust one. The tradeoff is clear.

Example 2: Our second example takes a communication
channel that has the transfer function

(94)

where and are known. The delay is unknown
but bounded by some upper bound The term
represents an echo in the communication channel. The problem
is to design a filter such that the input signal is recovered
from the output signal in the sense that the norm of
the corresponding error dynamics is minimized. If the delay

, the problem is relatively simple since the optimal
filter transfer function is , provided that
the nominal system is proper and bistable, or
an approximate inverse can be found that gives a small
tolerance level when is strictly proper. When

is used as the filter, the estimation error
will be when there exists a delay.

Note that is an echo signal of
Therefore, we assume that and have the same
denominator for simplicity. Denote

(95)

(96)
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Fig. 3. jjTew(s)jj1 � jjTne(s)jj1 versus�:

Suppose a state-space realization for (95) and (96) are
and , respectively. Then, we

can rewrite (94) in state-space form as

(97a)

(97b)

(97c)

(97d)

where and have

(98)

in the frequency domain. It is obvious that

(99)

Using , we obtain the
IQC

(100)

Choose an overbounding filter with a state-space
realization such that

One of the overbounding filter takes the state-space
system matrices

(101a)

(101b)

Note that it is always possible to use higher order filter to
get a tighter overbound.

The augmented system (97) and (101) is given by

(102a)

(102b)

(102c)

(102d)

where

and the IQC (100) is replaced with the IQC

(103)

For our example, we take
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and Then

Using Theorem 6 and theLMI Toolbox [12], we find that
the robust filtering problem is solvable for (al-
though a slightly smaller can be achieved). A corresponding
solution is given by and

We then use the design procedure described in Remark 8.
The robust filter

is then obtained.
In comparison, we observe that the optimal filter for

is given by

For , we can define the error dynamics corresponding
to the nominal filter

and that to the robust filter

A fine grid of frequency is used to approximate
and Fig. 3 shows the curve of

as a function of It is seen from Fig. 3 that
the nominal filter is better than the robust filter for

, but the situation is reversed for
As in Example 1, the tradeoff between a nominal filter
and a robust filter is clearly shown.

VIII. C ONCLUSION

In this paper, we have provided an LMI approach to
the robust filtering problem for linear systems with
uncertainty described by IQC’s. Our approach has several
features. First, the IQC description of uncertainty is very
general and is suitable for many signal processing applications.
The use of IQC’s is demonstrated in Remark 1 in Section III
and the examples in Section VII. We also refer to [20] and
[25] for more examples of IQC’s. Second, the LMI approach is
computationally efficient owing to recent advances in convex
optimization [16]. The robust filter analysis problem is
solved in terms of LMI’s. The synthesis problem, however,

is solved in terms of matrix inequalities that are linear except
for some scaling parameters. Methods have been proposed to
overcome this difficulty. Further, we have shown that in two
special cases, these matrix inequalities can be converted into
LMI’s. The first special case, which requires the number of
IQC’s to be limited to a single one, is of particular interest
because this is the case in many applications.
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