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Abstract—In this paper, we consider the robustH filtering  The polynomial approach and the interpolation approach use
problem for a general class of uncertain linear systems described transfer functions directly. That is, they both are frequency

by the so-called integral quadratic constraints (IQC's). This  gomain approaches. They seem to be most suitable when
problem is important in many signal processing applications

where noises, nonlinearity, quantization errors, time delays, and Spec'f'(_: frequenc_y doma'n 'nformat_'qn' such as Zeros_' PQ'GS’
unmodeled dynamics can be naturally described by IQC’s. The bandwidth, etc., is available. In addition, frequency weighting
main contribution of this paper is to show that the robust .. on filtering errors and noise signals can be easily performed
filtering problem can be solved using linear matrix inequality \ithout worrying about the dimension increase of the weighted
(LMI) techn_lques, which are _nurr_]erlcally efficient owing to recent system, which may add the computational complexity. In
advances in convex optimization. The paper deals with both . .. . .
continuous and discrete-time uncertain linear systems. fact, the standard design method for equiripple filters is a
kind of interpolation approach. In this case, neither the ideal
filter nor the weighting function can be expressed by a finite-
order transfer function. The main problem with the frequency
approaches is that the formula are quite complicated, especially
I. INTRODUCTION in the multivariable case. The ARE approach is a state-space

HE H.. filtering technique has been widely studied@pproach. It is more popular due to the fact that solutions
T for the benefit of different time and frequency domaifre expressed in simple formula and that efficient numerical
properties to theH, filtering technique. In théf,, setting, the algorithms exist for solving ARE's.
exogenous input signal is assumed to be energy bounded rathétowever, the works mentioned above require that the sys-
than Gaussian. A, filter is designed such that thH,, tem does not have any uncertainty, apart from the exogenous
norm of the system, which reflects the worst-case “gain” #Wise input. Therefore, the robustness of thg filter deserves
the system, is minimized. The advantage of usingag filter consideration. Several results have been obtained on robust
in comparison with arH, filter is twofold. First, no statiscal Hxo filtering for continuous-time and discrete-time linear
assumption on the input is needed. Second, the filter tendsSistems; see [6], [9], [24], and [26], for example. These results
be more robust when there exists additional uncertainty in tgal with the so-called norm-bounded uncertainty and are
system, such as quantization errors, delays, and unmodeddtpined using the ARE approach. The problem of robust
dynamics [23]. These features makg,, filtering technique Hoo filtering contains two aspects,,, filter analysis and
useful in certain applications. One such application is reportét filter synthesis. The analysis aspect is to determine the
in [21] for seismic signal deconvolution. Applications Hf,, Wworst-casel., performance when a filter is given, whereas
filters in multirate signal processing are studied in [4] andhe synthesis aspect is to design a filter such that the worst-
[5]. We also note that the well-known equiripple filters are igaseH. performance is satisfactory. The ARE approach in
fact a class ofH,, filters because the design objective is t¢9], [24], and [26] involves a conversion of the robust,,
minimize theH, norm of the difference between the filter tdiltering problem into a “scaledH, filtering problem, which
be designed and a given ideal filter [19], although the terflpes not involve uncertainty. This is done by converting the

Index Terms—H,, filtering, integral quadratic constraints,
linear matrix inequalities, robust filtering.

H, is rarely used. norm-bounded uncertainty into some scaling parameters. The
There are three approachesHq, filtering: conversion used there significantly simplifies the robtst
1) algebraic Riccati equation (ARE) approach (see, e.jltering problem and makes it possible to use the standard
[1], [15]); H, filtering results. However, the introduction of the scaling
2) polynomial equation approach (see, e.g., [13], [14]); Parameters makes the resulting “scaled” ARE’s difficult to
3) interpolation approach (see, e.g., [8]). solve. Indeed, these scaling parameters enter the ARE’s non-

linearly. Further, the norm-bounded uncertainty assumption is
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[24], and [26], the robusH, filtering problem in this paper z(¢) € R" output to be estimated;

also involves two aspects, namely, tHe, filter analysis and  y(¢t) € R* measured output.

the H., filter synthesis. We apply the so-calléiprocedure  The following assumptions are standard:

tp de_:al with the IQC’S and prowde solgthns to th_e robHst, Al) (A,B,Cy) is stabilizable and detectable.
filtering problem in te_rr_ns Qf Ilnear matrlx_lne_quallt]es (LMI’s). A2) DD’ >0.

An LMI is a semidefinite inequality that is linear in unknown
variables. Due to recent advancement in convex optimization,
efficient algorithms exist for solving LMI's; see [3] for a .
tutorial and [12] for a Matlab Toolbox. It turns out that the Ep(t) = Awy(t) + K(y(t) — Couy(t)) (4a)
analysis problem can be solved using a single LMI. However, 2f(t) = Crag(t) (4b)
the synthesis problem is more complicated as it involves two

matrix inequalities that are separately linear but not quitgherez;(t) € R™ andz;(¢t) € R" are the estimated state and
jointly linear. We then discuss two special cases where theygiput, respectively, andl is well known as the Kalman gain.
two matrix inequalities are jointly linear. Our results reduce to The estimation error is defined by

those in [9], [24], and [26] when the norm-bounded uncertainty

The H, filter structure is

assumption is enforced. e(t) = 2(t) — z(t). (5)
This paper is organized as follows: Section Il gives a

brief overview for the H, filtering problem; Section Il Therefore, the error dynamics are

discusses IQCs; Section IV presents the problem statement and

preliminaries; Section V studies the robust, filter analysis ie(t) =(A = KO (t) + (B — KD)w(t) (6a)

problem; Section VI deals with the robukt,, filter synthesis ot) = Chare(8) (6b)

problem; Section VII offers illustrative examples; and some
concluding remarks are given in Section VIII.

We use the following notational table throughout this pape\fyherexe(t) = z(t) —24(?) is the state estimation error.

"The H, filtering problem associated with the system (3) is
as follows: Giveny > 0, find a filter of the form (4) such that

Notation Continuous Discrete : ' ! -
- the corresponding error dynamics (6) is asymptotically stable
ba(t) (t) z(t+1) and satisfies
T T
sT)l&)2 A|m@m%h RG] Tl <7, 2.(0) =O. @
t=0
We now briefly discuss how this problem is tackled using
Il. OVERVIEW OF THE H, FILTERING PROBLEM two different approaches.

In this section, we briefly review the standatfl,, filtering
approaches for linear systems without model uncertainty. A ARE Approach
Let 7., denote a stable operator from signalto signal _ . . .
2, wherew € Lo[0,00) in the continuous-time case, and It_|s Ttrilqthti(r)]rwardtto Iverlf)t/ that th((aj elrror dynamics (6) are
w € £3[0,00) in the discrete-time case. ThE., norm of equivaient to the control system mode
T.. is defined as

el Zo(t) = Azc(t) + Bw(t) + u(t) (8a)

[Zeulloo = sup 700 (1) e(t) =Crae(t) (8)
Y y(t) = Caze(t) + Du(t) (8c)

If 7., is linear time invariant, then w(t) = —Ky(t). (8d)

1 Tzwlloo = supT(Lzw(jw)) ()
“ Using the control system model (8), it is a standard result
whereo denotes the largest singular value. from [7] that the H,, filtering problem is solvable if and only
In the following, we will review the results for continuous-f the algebra Riccati inequality? = P/ >0
time systems only. The discrete-time cases can be addressed

similarly. _ (A— BD'(DD")~'Cy)P + P(A— BD'(DD')~LCyY
Consider the following system: + P(y"2CL0, — CH(DD)) " Cy) P
#(t) = Ax(t) + Buw(t) (3a) +B(I - D'(DD')"'D)B' <0 9)
z2(t) = Cra(t) (3b)
y(t) = Coz(t) + Dw(t) (3c) has a solution. _ _
If such P exists, then one of the suitable Kalman gains,
where called the “central solution,” is given by

z(t) € R" state;
w(t) € R? exogenous noise input ih2[0, co); K = (PCy+ BDY(DD')™ L. (10)
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B. Frequency Domain Approach

From the control system model (8), we have
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Obviously, the IQC used to describe the passivity of an
operatorG is simply given by

o(5) = Gew(s)w(s) + Geuls)uls) (D i ST(—w/(u(r) <0, Vo € L§[0,00) (or £5[0,00))
y(s) = Gy ()w(s) + Gyu(s)u(s) (1 T o 19)
u(s) =—Ky(s) (13)
where If we want to put the above in the form of (17), we simply
Gew(s) =Ci(s] — A)LB;  Geuls) = C(sI — A)~! takeuw = [v* '] and note that
Gyu(s) =Ca(sl —A)"'B+D 1
Gyuls) =Cals — 4) ~wlv=—pwesim =]} e

The transfer function fromw(s) to e(s) is
1 For a comprehensive list of uncertain components that can
Tew(s) = Gew(s) = Geu(s)(I+KGyu(s)) T KGyu(s)- (14)  pe described by 1QC's, refer to [20] and [25]. These compo-
Thus, theH. filtering problem is equivalent to nents include time delays, uncertain parameters, unmodeled

) dynamics, and many nonlinear functions.
Ymin = Ir}in {|Tew(8)|]oc: A — KCy is stablé (15)
+$

such thaty,,;, < . Equation (15) is a standaid,., optimiza- IV. PROBLEM STATEMENT AND PRELIMINARIES

tion problem. . -
Consider the uncertain linear system

Il INTEGRAL QUADRATIC CONSTRAINTS

The 1QC is a very general tool for describing properties 6z(t) = Az(t) + Bw(t +ZH11§} (20a)
of linear and nonlinear operators. In particular, they can be
used conveniently to describe uncertain parameters, noises,
time delays, quantization errors, unmodeled dynamics, etc. The 2(t) = C1x(t) + Diw(t) + Z Hy&i(t)  (20b)
notion of IQC is introduced by [28] and [29] for robust stability
analysis of feedback systems involving linear and nonlinear
parts. An effective method called tt#eprocedure for treating y(t) = Coa(t) + Dyw(t) + ZH?”& (20c)
these 1QC's is also introduced in [28] and [29]. The purpose
of this section is to show that many kinds of uncertainties in

) . . , where
signal processing problems can be described by 1QC's. .

Definiton 1: Consider a stable LTI operatg: L,[0, 0o) — x(t) € " state; o _
Ls[0,00) (or G:45[0,00) — ¥£3]0,00)), which has the state w(t) € R éxogenous noise !nput belonging 1@[9700)
space realization in the continuous-time case a0, oc) in the

discrete-time case;
6x(t) = Azx(t) + Bu(t), x(0)=0 (16a)  »(¢) e R output to be estimated;
y(t) = Cz(t) + Du(t). (16b)  y(t) € R measured output;

) ) &i(t) € R* uncertain variables satisfying the IQC’s
Let ¢(z,y,u) be a quadratic form, i.e.,

T SENEDI SSTI | Evia(t) + Eaiw(t)+ Esié ()]
Q(xvyvu):(x Y U’)Q Yy aST—>oo, t1=1,---,p (21)
u
for some constant matri@ = ()'. The associated (weak) IQC with
is given by
Tlgr;o S¥aq(z,y,u) <0, Vu € L§[0,00) (or £5[0,00)) (17) ) =6 - &1

and the strong IQC is given by In addition, A B Cl,CQ,Dl,DQ,HlZ,HQZ,Elz,EQZ, and

ST g(,y,u) <0, VT'>0, u € LSO, or 50, 18) Es: are constant matrices of appropriate dimensions. To sim-
0@y < " 2[0, 20) or 5[0,20)) (18) plify notation, we define

where L§[0,00) (or #5[0,00)) denotes the extended real

Ls[0,00) (or £3[0,00)) space. In the rest of the paper, we

2 Hy =[Hy - -Hy; Hy=[Hy - Hyl
will use the (weak) IQC only.

[
Note that in the discrete-time case, an IQC is actuabym H‘j’ - [H/31 o H/?’P] / / / (22)
quadratic constraint, but we will call it IQC for consistency Ey =[E) By By =[Ey - By
with the continuous time case. Ey=[FE3 - Ey)]. (23)
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Remark 1: The uncertainty represented by the IQC’s (21) is Remark 2: Note that the robusk ., state estimation prob-
very general. Apart from examples mentioned in the previolesm is a special case of the above rohHst filtering problem
section, several special cases of the system (20) have beéh D; =0,H, =0,D; =0,C; =1, andC; = I.
treated in the literature. For example, [2], [6], [9], [18], We further define the notion of bounded-state (BS) stability.
[22]-[24], [26], and [27] consider the system Definition 2: The filtering error dynamics (34) is called BS
stable if for allz.(0), all w(¢) € Ls[0, c0) in the continuous-

bu(t) =(A+ Ad)(t) + Bu(?) (24) time case andv(t) € ¢2[0, o) in the discrete-time case, there
2(t) = Cra(t) (25) exists M > 0 such that
y(t) =(Ca + AC)z(t) + Daw(?) (26)
with norm-bounded uncertainty lee®ll < M, £20. (39)
[AA} - {Hl } FQ)E 27) We also recall the well-knowi$-procedure [29].
AC H> Lemma 1:Let F(-),1(-), -+, Vi(-) be real valued func-

where F'(t)F(t) < I,¥¢t > 0. Another widely used system tionals defined on a sel. Define the domain of constraints
uncertainty description i, analysis involves the so-called?
linear fractional uncertainty (see, e.g., [17]), where D={AeAV(\) >0, Vi(}) > 0}

bz(t) = (A+ Ad)x(t) + Bu(t) (28) and two conditions

#t) = Cra(t) @93 £ > 0,vA € D
y(t) = Cox(t) + Dow(t) B0 b) I >0,--, 7 >0
is considered with such that
AA=HF(t)I - EsF(t) " E; K
FI®F@) <I, Vt>0. (31) S(r,\) =FN) =) 7YVi(}) 20, Viea
j=1

However, to our knowledge, there is no existif,, fil-
tering result available for linear systems with linear fractional Then, b) implies a).
uncertainty. It is easy to see that the aforementioned norm-Remark 3: The procedure of replacing) by b) is called
bounded and linear fractional uncertainties are special cages § procedure. This procedure is a very convenient way

of the 1QC’s (21) withp = 1. of handling inequality constraints and is known to be conser-
Consider the filter vative in general. Despite its conservatism, the simplicity of
_ this procedure has attracted a lot of applications in stability
bxs(t) =A t)+ Bry(t 32a
s (®) 5258 + Bry(t) (322) analysis problems and optimization problems; see [3], [20],
25(t) = Cras(t) + Dyy(?) (32b) [28], and [29]. In particular, note that searching for optimal
where scaling parameters is often a convex optimization problem,

z4(t) € R estimated state; as we will see in the sequel.

zp(t) € R"  estimated output;

y(t) measured output of (20). V. ANALYSIS OF ROBUST H., FILTERS
Ay, By, Cy, and Dy are constant matrices of appropriate The robustH., filter analysis problem associated with the
dimensions to be chosen. uncertain system (20) is as follows: Givern>0 and a filter
Define the filtering error as of the form (32), determine if the error dynamics (34) is BS

e(t) = () — z4(2). (33) stable and satisfies

Then, the filtering error dynamics are given by

bxe(t) = Acwe(t) + Bew(t) + Hy (1) (34a)

e(t) = Coze(t) + Dow(t) + Ho&(t) (34b) for all admissible uncertainty satisfying the 1QC’s (21).
The parametey is a tolerance level, which can be regarded
where as an indication of the quality of the filter. A small tolerance

So lle®I* <7?Sgllw®?, asT — oo, w(t) #0
z.(0) =0 (40)

[ =(t) level indicates a small estimation error in the worst case.

ze(t) = x () (35) However, a small tolerance level requi I fil i
EX; , quires a large filter gain

A 0 B in general, which may cause implementation difficulties in the
A = B;Cs AJ; B. = {BfDJ (36)  continuous-time case or a numerical problem in the discrete-
C. = [-Cl —D;Cy i D.=Di—D;Ds 37) time case. Further, the transient behavior of the error dynamics

may be of concern if the tolerance level is too small. In general,
H,. = BH}_I } . Hp. = Hy — D Hs. (38) there is no simple interpretation of the tolerance level in terms
[Prit3 of a linear quadratic cost function. However, it is known that
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for linear time-invariant systems, th#. filter approaches a Hence,e(T) — 0 asT — oo implies z.(7) — 0 as
special Kalman filter when — ~o, see, e.g., [13], [14], [21], T — cc.

and [23]. Using Lemma 2 and denoting
Applying the S-procedure, we have the following result.
Lemma 2: Given that (34) is BS stable and that (40) holds Eye =By 0] (44)
for all admissible uncertainty satisfying the IQC’s (21) if there J =diag{rilp,, -, mpdx, } (45)
exists a positive definite matriR = P’ € R**™ and scaling
parametersr, - - -, 7, >0 such that the following condition we qbtain our main result of continuous-time systems for this
holds: section.
For the continuous-time case: Theorem 3—Continuous Tim&.he following conditions
are equivalent, and they all guarantee the solution to the robust
21, P(Acte + Bew + H1.€) - filter analysis problem associated with the uncertain
P system (20) and the filter (32).
+Z”(||E”$+E2iw+E3i£”2 =& i) There existP = P’ >0andr, >0, ---,7,> 0 such that
=t s ol (41) holds.
+[Cetre + Dew + HzeE[" = 77wl |” <0 i) There existP = P’ >0 and.J >0 in (45) solving the
Y(ap,w', &) #0. (41) LMI in (46), shown at the bottom of the page.
. : iii) There exist? = P’ >0 and.J >0 in (45) solving the
For the discrete-time case: LMI
(Acwe + Bew + H18) P(Acxe + Bow + H1£) — 2 Pxe AP+ PA. PB, PH. C. EJ
P B.P —~21 0 Dl ELJ
+ 3 rlllBve + Eaiw + Bag? = [1611) L-| mr o -s H EJl|<o
i=1 C., D. Hy -1 0
+ ||Cette + Dew + Hac€||* = +2||w||* <0 JEL. JE; JEs; 0  —J
V(@ w', &) #0. (42) (47)

Proof: Integrating or summing up the left-hand side of jv) There exists/ > 0 in (45) such that the auxiliary system
the inequality in (41) or (42) along any trajectory of the error in (48) and (49) is asymptotically stable and that the
dynamics (34), forw # 0, we have H_,-norm of the transfer function frond(-) to &(-) is

(1) P (T) — . (0) P, (0) less than 1:
» () = Ae@(t) + [y BeHye J 7Y 2ib(t) (48)
+ > mi{ S| Era(t) + Exw(t) + Esi&(t)])? o
i=T1 " ., e(t) = {Jl/QeEl }ﬁ:(t)
= S5 IIEMIPY +{Sg [l = >S5 [lw(®)|[*} <0. 1D, Ho 172
(43) + [ -1 12, J1/22€E J-1/2 | W w(t). (49)
Using (21), it follows that Moreover, the set of alll’s satisfyingiv) is convex.
2 (T)Pze(T) <. (0)Px.(0) + ’7255||w(t)||2 Proof: “i) < ii)": The inequality (41) can be rewritten as
asT — oc. 20 P(Acte + Bew + Hie€) + (B}, +w'Ey + €'E})
Hence, the BS stability of the error dynamics is implied. J(Brexe + Eow + E3€) — €' J¢
Now, takez.(0) = 0. It follows from (43) and (21) again that + (2.0 +w' D, + € Hy )(Cote + Dew + Hoo€)
(40) holds. O _ ’VQw'w < 0’ (.’L’ w 75 ) 7& 0 (50)

Remark 4: Assume that (34) is zero detectable, i€7) —
0 asT — oo implies z.(T) — 0 asT — oo. Then, (41) for \yhich is equivalent to
the continuous-time case and (42) for the discrete-time case
guarantee that the error dynamics (34) with uncertainty (21) is Te
asymptotically stable. To make this point clear, we take: 0. [z, w' E)Li|w | <0, V(z,,w', &) #0  (51)
Using (43) and (21), it follows that 3

STle®)|* < 2.(0)Pz.(0), asT — oo. i.e, £1<0.

AP+ PA.+F, JE,.+C.C. PB.+FE| JE:+C.D. PH;.+ C.Hs. + E{ ,JE3
L= BéP + EéJEle + D;Ce —’YQI + D;De + EIQJEQ DéHQe + EéJEg
H|.P+ H}C. + E,JE, Hb.D. + E4JE —J + Hj Hy. + E4JEs

<0 (46)
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“il) < iv)": Denote

B =[y'B.Hy . J7Y? (52)
¢l =[CLE . J? (53)

—1 —1/2

2N Y De H2€J /
e — |:’7_1J1/2E2 J1/2E3J—1/2 (54)

and
i - [4P+PA +CIC. PB.+ClD. (55)
1= B'P+D.C, —I1+ DD,

The auxiliary system in (48) and (49) can be rewritten as ii)

@(t)
(t).

(56)

+ B.
+ D, (57)

>

In addition, the matrixC; in (46) can be expressed as

£y = diag {I,,,y "1, JY2V L, diag {I,,,v 11, J~Y/?}.
(58)

That is, £, <0 if and only if £, <0. It is well known
that matrix A, is asymptotically stable anflD. + C.(sI —
AT Be|loo < 1 if and only if £; <0 for someP = P’ > 0.
Hence,ii) is equivalent toiv).

“(ii) < (iii)": Note that £, <0 if and only if

_ [AP+PA. PB. C
Ly=| BP —-I D.|<0 (59)
Ce D, -I
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The equivalence betvveezfi}z <0 and £, <0 can be estab-
lished by similar manipulations used @n and£;. The details
are omitted. O

Similarly, we have the following theorem for discrete-time
systems:

Theorem 4—Discrete TimeThe following conditions are
equivalent, and they all guarantee the solution to the robust
H, filter analysis problem associated with the uncertain
system (20) and the filter (32).

i) There existP = P’ >0andr >0,---,7,> 0 such that

(41) holds.

ii) There exist? = P’ >0 and.J >0 in (45) solving the
LMI in (61), shown at the bottom of the page.

There existP = P’ >0 and .J >0 in (45) solving the

LMl in (62), shown at the bottom of the page.

iv) There exists/ > 0 in (45) such that the auxiliary system
in (64) is asymptotically stable and that ti&,.-norm
of the transfer function fromi(-) to () is less than 1:

Bt 4 1) = Aca(t) + [y BeHpe J Y20 (t) (63)
, c. .
t) = t
)= | pufo, |80
-1D, Hyd=2 .
+ |:’7_,}1J1/2E2 J1/22E3J—1/2 w(t) (64)

Moreover, the set of alJ’s satisfyingiv) is convex.
Proof: The proofis similar to the continuous-time cdse.

VI. SYNTHESIS OF ROBUST H,,, FILTERS
For the synthesis problem, we need the following assump-
tions:
Al) A is asymptotically stable.
A2) (A,C5) is detectable.
The H, filter synthesis problem associated with the uncer-

tain system (20) is as follows: Given> 0, find a filter of the
form (32) such that the corresponding error dynamics (34) are

holds. Equation (59) is derived from the well-known SchuBS stable and satisfy

complements that

Xy

X
P (60

:|<0<$X1 +XéX2<0.
Xo

56 lle()I? <~*SE (D)1,
z.(0) =0

asT — oo,

w(t) #0
(65)

for all admissible uncertainty satisfying the IQC'’s (21).

APA, — P+ E{ JE1. + C.C.

A PB.+ E! JE,+ C'D,

A/ePHle + CéHQe + Eieng

Li=| B.PA.+E{JE.+D.C. —+*1+B.PB.+D.D.+ E3JE;, B!PH,. + D.Hs. + E}JE;3 <0
H!_PA,+ H), C.+ ELJE, H!_PB, + H D, + E4JE, —J + H{ PHi. + H) H>. + E}JE; -
A.PA, — P AL PB, ALPH,, c E.J
B!PA.  —~4*I+B.PB. B!PH,. D, ELJ
L>=| H| PA. H| PB. -J+H| ,PH,, H) E)J|<0 (62)
Ce D, Ho, -I 0
JEle JEQ JEg 0 —-J
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Before proceeding further, we need the following lemmahe closed-loop system of the open-loop auxiliary system
which was originally used for thél, control problem [11].

Lemma 5 [11]: Consider S(t) = A#(t) + [y~ BH1J ™ Jib(t) (77)
~ o :| . |: ’y_lDl HQJ_1/2
c(t) = z(t)+ | _ _
8x(t) = Ax(t) + Brw(t) + Baul(t) (66) © [Jl/QEl OF [ymrnrzm, g2 e
Z(t) = C’la:(t) + Dllw(t) + Dmu(t) (67) . Ifl(t) + |:_é:| U,(t) (78)
y(t) :ng(t) + Dglw(t) (68) ; -
y(t) =Co(t) + [y Dy HzJH/?Ji(t) (79)
where (A, B;,C;) is a stabilizable and detectable triple. ith th iroll
Let Ny (respectively,Ns) be any matrix whose columns! € controfler
form a basis of the null space ¢B; Dj,] (respectively, §24(t) = Ay 1(t) + Byy(t) (80)
[C2  Dasi]). Then, there exists a controller of the form (£) = Cra s (8) + Dyylt) (81)
u =Cfxy fy .

u(t) = Cexe(t) + Dey(t)

(69)  Note that the robust.. filter synthesis problem of the

(70) original system (20) with the filter (32) is converted into
the standardd.,, control synthesis problem for the open-loop
auxiliary system in (77)—(79) with the controller in (80) and
(81). It is interesting to see that the auxiliary controller in (80)
and (81) is exactly the same form as the filter in (32), which
is to be designed. This observation leads to the following
theorem, which is the main result for the synthesis problem:

such that the closed-loop system Hdg, norm less than 1 if
and only if there exist symmetric matricésand S satisfying
the following LMI’s:

For the continuous-time case:

N AR+ RA’ RC; B Theorem 6: Given ~ >0, consider the robust, filter
R _0 C1R I Dy synthesis problem as described above. DenoteAMy any
0 I B p ‘ 7 matrix whose columns form a basis of the null space of
i L L 11 - [C2 D2 Hs)]. Then, the robusH,, filtering synthesis prob-
Ngr 0 lem is solvable if there exist symmetric matricRsS € R**"
o | I <0 (1) andJs>0in (45) such that the following LMI’'s hold:
- - , For the continuous-time case:
N 0 A'S+AS SB Cq
s |V B|S .y D), AR+ RA” RE] B  HyJ!
0 I EiR —J1 FEy Egj_l
Cy Dy ‘ -1 <0 (82)
S B E, ‘ 2L 0
S 1 Tl <o 72y L J7'H{  JT'E, 0 —J7!
| 0 AS+SA SB  SH; B
R I / B'S -1 0 1 By
[I 5} z 0. (73) s 1O mis 0 -J | Hy EyJ
o | L0V e b h ‘ 1 0
For the discrete-time case: JE, JE, JE;s 0 —J
r_ ' [Ns 0
N, ARA /R ARCY / B ' <0 (83)
- CiRA" —I4+CRC] | Dn 0 I
0 1 p p -
) By 11 ‘ -1 [R I} > 0. (84)
Ngr 0 I S
<0 (74) . :
| 0 1 For the discrete-time case:
N 0 A'SA-S SB1 A Cq
[ S || BiSA -I+BiSB | Dy ARA' — R ARE, B HJ!
0 I o Dy ‘ _7 E\RA  —-J '+ ERE E, B!
[Ns | 0 B Ej —21 0
<0 (75) J H] JLE} 0 -—J!
L 0 <0 (85)
L N (76)
I sS|= and (86), shown at the bottom of the next page, as well as
It is straightforward to see that the auxiliary system (48) and {R 1 } > 0. (87)
(49) for continuous-time or (63) and (64) for discrete-time is I s
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Proof: Note that the columns of didd, v, JY/?}Ns algorithm is more numerically efficient but with the possibility
form a basis of the null space ¢, [y~'D, H3J~'/?]]. of missing a global feasible solution.
Comparing (77)—(79) with (66)—(68), we find that Remark 6:In the following, we show two special cases for

[B Di,] = [0 —I 0]. The corresponding matrix thatwhich (82) and (85) can be reformulated so that the resulting
forms the basis of the null space [d@); Dj,]is given by  matrix inequalities will be jointly linear in/.
I 0 Case 1: Supposep = 1, i.e., J = 7 I. This is called the
Ne=l0 0 “single IQC” case. In this case, we left and right multiply (82)
0 I by
Apply Lemma 5 to the auxiliary system (77)—(79), it is diag{.J'/%, J*/2 I 1}.

tedious but straightforward to verify that the LMI (83) is the
version of (72) for the continuous-time auxiliary system, buthen, the LMI (82) is equivalent to
left and right multiplied by diad1,I,1,1,J'/?}. In addition,

the LMI (82) corresponds to (71). The discrete-time part can [ARJ + RJA’ RJE) JY2B  H J1/?

be proved similarly. E.RJ -1 JY2E, EsJ-1/2
Remark 5: The LMI (82) is jointly linear in R, J~! and 12 1/2 2

+%, whereas the LMI (83) is jointly linear irf, J, and 2. J‘]_l/f._], JJ_l/;EEQ, ‘ _’(7) I 3_1

Therefore, the LMI's (82)—(84) are not jointly linear id. <0 1 3 - (88)

A similar problem occurs for the discrete-time counterpart
(85)—(87). To overcome this difficulty, two methods can be )
used to findJ. The first one is a simple gridding method. Following the well-known Schur complement
To do this, we first rescale; by defining \; = 7 /(1 + 7).

Obviously,; > 0 if and only if A; € (0,1). Then, we assign a {ﬁl §é} <04 X, <0 and
uniform grid on each\;. For each grid point of Ay, -+, \,), 2 a4
we can search for a solution for (82)—(84) or (85)—(87), which X1 - XXX <0 (89)

is a simple LMI problem. The second method is an iterative

procedure. With this method, we addpd term to the left- the LMI (82) is further equivalent to (90), shown at the bottom

hand side of each inequality in (82) and (83) or (85) and (8&)f the page, whereR = R.J. Similarly, the LMI (85) is

where p is a scalar variable. An initial/ is guessed. Then, equivalent to (91), also shown at the bottom of the page.

R and S are searched for so thatis maximized. This is  Then, LMI's (90) and (83) and (84) for continuous-time

an LMI problem. Then, let® and S be fixed, and findJ to systems as well as LMI's (91) and (86) and (87) for discrete-

further maximizep, which, again, is an LMI problem. If the time systems are jointly linear iff, R, and S. Note thaty is a

maximumyp is negative, repeat the above procedure until eithgiven tolerance level. It is always possible to find a suboptimal

p becomes nonnegative, in which case, a feasible solutiomyis;, using simple iterative procedures.

found, or a prescribed number of iterations is reached in whichCase 2: AssumeE; = 0. That is, the uncertain variables

the iterative method fails. &(t) are independent of the state variables. Left and right
The tradeoff of the two algorithms above lies in the faanultiplying (82) by

that the first algorithm can guarantee a near optimal solution,

provided the grid size is sufficiently small, whereas the second diag{I, J,1,J}
A'SA-S A'SB A'SH; Cci ELJ
/ _~2 / / / /
N 0 B/SA -1 ;1— B'SB B Sf/]l D} E/QJ N 0
L Dy H, ‘ -1 o L9 T
JE, JE, JEs 0o -J
AR+ RA' +~472BB'J + HiH; RE|+~"?BE}J+ H.E} <0 (90)
E1R+~72E,B'J + E3Hj —I +~y72Ey,E4J + E3E)
ARA' — R+~7?BB'J + HiH|{ ARE|+~"?BE}J + H.E} <0 o1)
E{RA +~72E,B'J 4 E3H| —I +~72EyEYJ + B3 B} '
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the LMI (82) is equivalent to VIl. EXAMPLES
AR+ RA 0 B H, Example 1: Consider the continuous-time linear system
0 -J JE, E .
R 2 o @ #(t) = Au(r) + Bu(t) + Hi£(1)
f}/ ?j ‘ -1 I OJ #(#) = Cra(t)
o ’ N y(t) = Cau(t) + Dyw(t) + Hal(t)
We claim that (92) and (84) are equivalent to £() = F(E) Bra(t) + Byw(t) + st (t)
) | I8 B f(t) €[0,1], v
ELT —~2T 0 <0. (93)
EzJ ‘ ?) _J where ) 1 )
Obviously, (92) implies (93). To see that (93) implies (92) A= [—8.8 _2} B = [1}
and (84), we recall the assumption thatis asymptotically cn o= ) B
stable and thaf > 0. Therefore, there exist® = R’ > 0 such 1 =[208]; Cx=[-1 06 Dx=11
that AR+ RA’ < 0. Simply by scaling upk large enough will H, = [ 0 } Hy =02
ensure both (92) and (84). 11y '
Now, the LMI's (83) and (93) for continuous-time systems E; =006 04]; FE»=035 F3=04.

are jointly linear inJ and S. Similarly, the LMI's (86) and L ) i .
(93) can be used for discrete-time systems. The aim is to design a robudf, filter (32). We consider

Remark 7: Assumep = 1, By = 0, E3 = 0, Hy = 0,D; = WO design methods for comparison purposes: The first one
0,D; = 0, LMI's (82)—(84) for continuous-time systems, and’s_the nominalH . filter design based on the nominal _system
LMI's (85)—(87) for discrete-time systems naturally reduce tW'th_ J(#) =0, and the second_one_ls our robust,, f!lter
ARE's that are the same as in [9] and [26]; see [9] and [2 sign that takes the uncertainty into account. Given the
for details about the corresponding ARE's. isturbance attenuation level = 0.62, a nominalH,,, filter

Remark 8:We note that Theorem 6 does not offer afP oPtained with the filter matrices
explicit formula for constructing robust ., filters. The fol- A, = —0.0203  1.0122 | B, — —0.0203
lowing is a design procedure cited from [10]: = 186696 —2.0783|° /T | 0.1304

Step 1) Solve the LMI's (82)—(84) for continuous-time case Cy=[2 08]; Dj=0.

and LMI's (85)—(87) for discrete-time case. If the

LMI's are feasible, we will obtain a feasible solu- Next, we use the IQC approach and take

tion R, S, and J. T ) T )
Step 2) Decompose the matrix — RS into /0 1€ dt < /0 | E1z(t) + Baw(t) + Es&(H)|]” dt
MN' =1—-RS V1 >0.

where M and N are matrices with full column  With the design method proposed in this paper, the filter
ranks. This can be easily done via singular valumatrices of the robustd,, filter are obtained using the

decomposition. Matlab LMI Toolbox  [12] as follows:
Step 3) Solve P from —0.1828 —4.9978 —0.0135
R Il_[1 s Af:{ 1.4976 —2.4775}’ Bf:{ 0.0256}
Plar o= lo v
O =[-15.0497 22.5981]; D; =0

It is guaranteed [10] thaP = P’ >0, that the and the matricesz, S, and the scaling parametérare given
solution P is unique, and that this solution is alsdy
a suitableP for (47) for continuous-time systems [ 6.3095 —2.5066 }

or (62) for discrete-time systems. = 1925066  37.5045
J =0.2200.

Step 4) Since P and J are computed, solving (47) or
(62) for Ay, Bs,Cy, and Dy is once again an
LMI problem. The solution is guaranteed to exist, The error dynamicsly,,(s) using both the nominaH,
as mentioned in the previous step. The resultingter and the robusH., filter are compared. In Fig. 1, we plot
Ay, By,Cy, and Dy will form the desired robust the maximum singular value fdF,,,(jw) versus frequency
Ho, filter. for different constant values ¢f(t). An 0.1 increment forf (¢)
We note that the robusH,, filter is not unique becauseis used, and the effect ¢f(¢) is observed in Fig. 1. It is clear
many feasible solutiong, S, and.J for (82)—(84) or (85)—(87) that the robust filter is less sensitive to the variationg (it).
exist. It is even possible to characterize the family of the Fig. 2 shows the singular value comparison ffft) =
solutions and therefore the family of robuAft,, filters cor- 0,0.3,0.6,0.9, again taken to be constant. We observe from
responding to a givery. However, we do not dive into the Fig. 2 that in the nominal casgf(t) = 0), ||Tow(s)||eo for
details here. The interested reader is referred to [10]. the nominalH ., filter is less than that for the robu&t., filter.

?

G — 25.0040 2.4267
T 24267 3.2236
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Fig. 2. Singular value comparison. —: robust,, filter; ---: nominal H, filter.

However, forf(t) = 0.3,0.6,0.9, the nominalH,, filter gives 7 = 0, the problem is relatively simple since the optimal
a larger||T..,(s)||- than the robust one. The tradeoff is cleaffilter transfer function is(Go(s) + G1(s))~1, provided that
Example 2: Our second example takes a communicatioime nominal systendy(s) + G1(s) is proper and bistable, or

channel that has the transfer function an approximate inverse can be found that gives a siall
Y(s) tolerance levely whenGy(s)+ G4 (s) is strictly proper. When
W(s) = Go(s) +e¢77°G1(s) (94) (Gol(s) + G1(s))~! is used as the filter, the estimation error
will be (e~ — 1)G1(s)W(s) when there exists a delay.

whereGo(s) and Gy (s) are known. The delay is unknown  Note thate™ ™G (s)W (s) is an echo signal offo(s)W (s).
but bounded by some upper boumid The terme="2G;(s) Therefore, we assume thély(s) and G1(s) have the same

represents an echo in the communication channel. The probl@@nominator for simplicity. Denote

is to design a filter such that the input sign&lt) is recovered
from the output signal(¢) in the sense that th&., norm of Yi(s) = (Go(s) + G1(s))W(s) (95)
the corresponding error dynamics is minimized. If the delay Ya(s) = G1(s)W (s). (96)
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Suppose a state-space realization for (95) and (96) aréOne of the overbounding filtef(s) takes the state-space
{A4,B,Cy,D,} and {A, B, E1, E»}, respectively. Then, we system matrices
can rewrite (94) in state-space form as

Note that it is always possible to use higher order filter to
t) = Erz(t) + Eyw(t) (97d) get a tighter overbound.
The augmented system (97) and (101) is given by

—1.56 —0.6084 1
i(t) = Az(t) + Bw(t) (97a) A= 1 0 } i Be= [0} (101a)
2(t) =w(t) (97b) C.=[-0.66 —1.0988]; D.=2. (101b)
y(t) = Cax(t) + Daw(t) +£(1) (97¢)
(®)

where {(¢) and y»(t) have

=(s) = (= — 1Ya(s) (98) ! Eg - jft(;) - Bul) 88;3
in the frequency domain. It is obvious that y(t) = Coi(t) + Dow(t) +£(1) (102c)
o G2(t) = EL@(t) + Eyw(t) (102d)
/ E(jw)Z(jw) dw
o0 - where
= [ WG e G, @) a4 o 1B
B A= [%BCEl %AJ? B= [%BCEJ

Using e %7 — 1 = —2je~9«7/2 sin (wr/2), we obtain the Co=[Cy 0, Ei=[D.E, C.; E»=D.E,.
IQC

| =zt ) j
o / 6@ dt < / [G2(t)l| dt, asT —co.  (103)
< [ 07 ) s (2sin (o /2)) (V2 ()) o 0 0
(100) For our example, we take

and the IQC (100) is replaced with the 1QC

—_ |_

. . . 1.552 +0.55 + 0.05
Choose an overbounding filte with a state-space G, =
g f () p o(s) 957 - 45+ 2

realization{A., B.,C., D.} such that Y
_ 1.58"+ 5.5+ 6.8

|f(Gw)| > |2sin(w)], Yw >0. o 28244s5+2
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and7 = 0.45. Then is solved in terms of matrix inequalities that are linear except
5 _ for some scaling parameters. Methods have been proposed to
2 1 1 - e -
A=17 f B=lg|} Ce=I[0 1.925] overcome this difficulty. Further, we have shown that in two

. . . . special cases, these matrix inequalities can be converted into
Dy =15 B =[125 265 E;=075. LMI's. The first special case, which requires the number of
Using Theorem 6 and tHeMI Toolbox [12], we find that 1QC’s to be limited to a single one, is of particular interest
the robustH., filtering problem is solvable fory = 1.1 (al- because this is the case in many applications.
though a slightly smallet can be achieved). A corresponding
solution is given byJ = 0.1089 and

r171.2643 —65.2981 64.9193 66.3846 REFERENCES
R —65.2981 37.0121 —34.4426 35.6283 (] D. S. Bemstei d'W. H. Haddad. “Steadv-state Kal fiteri h
= [ . S. Bernstein and W. H. Haddad, “Steady-state Kalman filtering wi
64.9193  —34.4426 3189277 —251.5274 an H. error bound,”Syst. Contr. Lett.vol. 12, pp. 9-16, 1989.
L 66.3846 35.6283 —251.5274 535.9718 [2] P. Bolzern, P. Colaneri, and G. D. Nicolao, “Optimal robust state
- _ 1K estimation for uncertain linear systems,” Broc. IFAC Symp. Robust
38.1222 8}'?393 11.1980 15.1932 Contr. Des, Rio de Janeiro, Brazil, Sept. 1994.
g = 81.2393 185.5393 —23.0484 —34.2142 [3] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnamear Matrix
T | —=11.1980 —23.048 3.4702 4.3528 | * Inequalities in System and Control TheoryPhiladelphia, PA: SIAM,
- . 1994.
[—15.1932 —34.2142 4.3528 6.3717 [4] W. M. Campbell and T. W. Parks, “Design of a class of multirate
: : : systems,” inProc. ICASSPvol. 2, 1995, pp. 1308-1311.
We then use t.he design procedure described in Remark §>] T. Chen and B. Francis, “Design of multirate filter banks B
The robustH ., filter optimization,” IEEE Trans. Signal Processingol. 43, pp. 2822—2830,
Dec. 1995.
Gy(s) = [6] C. E. de Souza, U. Shaked, and M. Fu, “Robu#t. filtering for

continuous time varying uncertain systems with deterministic input

4 3 2 2 r
0.1122s% 4 10.29765" + 38.1741s" + 21.7468s” + 1.0953 signal,”|[EEE Trans. Signal Processingol. 43, pp. 709-719, Mar. 1995.

s% 4+ 85.8304s3 + 353.7919s2 + 265.6439s + 22.4681 [7] J. C. Doyle, K. Glover, P. P. Khargonekar, and B. A. Francis, “State-
. . space solutions to standafh andH . control problems,IEEE Trans.
is then obtained. Automat. Contr.vol. 34, pp. 831-847, Aug. 1989.

In comparison, we observe that the optimal filter fo= 0 [8] M Fu, “Inte_rpolation approach taH.. optimal estimation and its
interconnection to loop transfer recovengyst. Contr. Lett.vol. 17,

is given by pp. 29-36, 1991.
962 1 4 9 [9] M. Fu, C. E. de Souza, and L. XieH . estimation for continuous-time
G (3) _ (G (3) +G (s))_l _ s”+4s+ uncertain systems,” iffroc. 1st IFAC Symp. Des. Methods Contr. Syst.
nf 0 1 3524+ 65+ 6.85" Zurich, Switzerland, Sept. 1991.
[10] P. Gahinet, “Explicit controller formulas for LMI-baséfl synthesis,”
For 7 < 7, we can define the error dynamics corresponding to be published.

; ; [11] P. Gahinetand P. Apkarian, “A linear matrix inequality approacHtg
to the nominal fllterG"f(S) control,” Int. J. Robust Nonlinear Contrvol. 4, pp. 421-428, 1994.
_rs 12] P. Gahinet, A. Nemirovskii, A. J. Laub, and M. ChilaliMI Control
The(s) = Gp(s)(Go(s) + €77 G1(s)) — 1 12 T o MathWorks, 1995.
. [13] M. J. Grimble, ‘H design of optimal linear filters,” iinear Circuits,
and that to the robust filtef?;(s) Systems, and Signal Processing: Theory and Applicatibni. Byrnes,
C. F. Martin, and R. E. Saeks, Eds. Amsterdam: North-Holland, 1988,
Tew(s) = Gp(s)(Go(s) + e 7°G1(s)) — 1. pp. 533-540. . o _
[14] M. J. Grimble and A. E. Sayed, “Solution of tHé.. optimal linear fil-
A fine grid of frequency is used to apprOXim#ﬂw(S)lloo te_ring problem _for discrete-time system$E£EE Trans. Acoust., Speech,
) Signal Processingvol. 38, pp. 1092-1104, July 1990.
and ||Tne(3)||oo Fig. 3_ shows th? curve OﬂTew(S)Hoo — [15] K. M. Nagpal and P. P. Khargonekar, “Filtering and smoothing in an
|| The(s)||oo @s a function ofr. It is seen from Fig. 3 that Ho setting,”IEEE Trans. Automat. Contrvol. 36, pp. 152—166, 1991.

; ; i ; [16] Y. Nesterov and A. Nemirovskynterior Point Polynomial Methods in
the nominal filter is better than the robuit,, filter for + € Convex Programming Philadeiphia, PA: SIAM, 1993,

[0,0.027), but the situation is reversed far ¢ [0.027,0.45]. [17] A. Packard and J. C. Doyle, “Quadratic stability with real and complex
As in Example 1, the tradeoff between a nomiél, filter perturbations,IEEE Trans. Automat. Conttvol. 35, pp. 198-201, 1990.

- : [18] I. R. Petersen and D. C. McFarlane, “Robust estimation for uncertain
and a robust, filter is Clearly shown. systems,” inProc. 30th IEEE Conf. Decision ContrBrighton, U.K.,
Dec. 1991.

[19] L. R. Rabiner and B. GoldTheory and Application of Digital Signal

VIII.- CoNCLUSION Processing Englewood Cliffs, N.J.: Prentice-Hall, 1975.
In this paper, we have provided an LMI approach t&20] A. Rantzer and A. Megretsky, “System analysis via integral quadratic

L . . constraints,” inProc. 33rd IEEE Conf. Decision ConfrLake Buena
the robustH, filtering problem for linear systems with Vista, FL, 1994, pp. 3062-3067.

uncertainty described by IQC’s. Our approach has sevefal] U. Shaked, H., minimum error state estimation of linear stationary

features. First, the IQC description of uncertainty is very, processes IEEE Trans. Automat. ngg‘fé; f?l?ér?n% ,,5i5rf‘P5ri§i Ilngg-

general and is suitable for many signal processing applications.” symp. Robust Contr. DesigRio de Janeiro, Brazil, Sept. 1994.
The use of IQC’s is demonstrated in Remark 1 in Section [I3] Y. Theodor, U. Shaked, and C. E. de Souza, "A game theory approach

: : to robust discrete-timé/ -, -estimation,”IEEE Trans. Signal Processing
and the examples in Section VII. We also refer to [20] and | 42, pp. 1486-1495. June 1994,

[25] for more examples of IQC’s. Second, the LMI approach ig4] L. Xie, “H.. control and filtering of systems with parametric uncer-

computationally efficient owing to recent advances in convex :a"l!tyv"op?-'ié gllsse”aﬂony University of Newcastle, Newcastle, Aus-
L . . . ralia, Oct. .

OptImIZ{?ltlon [16]' The robust filter a}naIyS|s prObIem 1S [25] L. Xie, M. Fu, and H. Li, “Passivity analysis and passification for

solved in terms of LMI's. The synthesis problem, however,  uncertain signal processing systems,” submitted for publication.



2350

[26]

[27]

[28]

[29]

L. Xie, C. E. de Souza, and M. FuH« estimation for linear discrete-
time uncertain systemsjfht. J. Robust Nonlinear Contrvol. 1, pp.

111-123, 1991.

L. Xie and Y. C. Soh, “Robust Kalman filtering for uncertain systems,
Syst. Contr. Letf.vol. 22, pp. 123-129, 1994.
V. A. Yakubovich, “Frequency conditions of absolute stability of contro
systems with many nonlinearitiesiutomatica i Telemekhanicgol. 28,

pp. 5-30, 1967.

at Laboratoire d’Automatique, Grenoble, France. His research interests incl

, “S-procedure in nonlinear control theory/éstnik Leninggrad-
skogo Universiteta, Ser. Matematjkap. 62—77, 1971.

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 45, NO. 9, SEPTEMBER 1997

Minyue Fu (SM'94) was born in Zhejiang, China,
in 1958. He received the Bachelor's degree in
electrical engineering from the China University of
Science and Technology, Hefei, China, in 1982 and
the M.S. and Ph.D. degrees in electrical engineering
from the University of Wisconsin, Madison, in 1983
and 1987, respectively.

From 1983 to 1987, he held a teaching assistant-
ship and a research assistantship at the University
of Wisconsin, Madison. He worked as a Computer
Engineering Consultant at Nicolet Instruments, Inc.
during 1987. From 1987 to 1989, he served as an Assistant Professor
in the Department of Electrical and Computer Engineering, Wayne State
University, Detroit, MI, where he received an Outstanding Teaching Award.
He received the B.Sc. and the M.Sc. degrees iEor thg summer of 198_9, he was employed by the Universit_e Catholi_qqe de
automatic control from East China Institute of Tech--ouvain, Louvain, Belglum, as a Maitre de Conft_arenc_es Invited. _He Jc_)lned
nology, in 1983 and 1986, respectively, and th he Department of Electrical a_nd_Computer Engineering, the Un|ver5|ty_of
Ph.D. degree in electrical engineering from th ewcastle, l_\lewqastle,_ Australia, in 1989, W_here he now holds an Assom_ate
University of Newcastle, Newcastle, Australia, in rofessorshlp._ _Hls main re;earch interests include rplqust_ control, dynamical
1996. systems, stability theory, signal processing, and optimization.

He worked as an assistant lecturer from April Dr. _Fu was qwarded the Maro Guo Scholarshl_p for h_|s undergraduate
1986 to March 1987 and a lecturer from April study in China in 1981. He is currently an As_somatg Editor of the IEEE
1987 to July 1991, all at East China Institute OfTRANSAc_Tlor_\Js oN AutomaTtic CoNTROL, an Associate Ed_ltor on the Confer—_
Technology. He is currently a post-doctoral fellowence Editorial Board of the IEEE Control Systems Society, and an Associate

Llf(fgtor of Continuous Optimization and Engineering

Huaizhong Li was born in Jiangsu, China, in 1964.

the theory and practice of signal processing and robust control.



