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Hybrid Filterbank ADCs With
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Abstract—The hybrid filterbank architecture permits im-
plementing accurate, high speed analog-to-digital converters.
However, its design requires an accurate knowledge of the analog
filterbank parameters, which is difficult to have due to the nonsta-
tionary nature of these parameters. This paper proposes a blind
estimation method for the analog filterbank parameters, which
is able to cope with nonstationary input signals. This is achieved
by using the notion of averaged input spectrum. The estimated
parameters are used to reconstruct the samples in a least mean
squares (LMS) sense. The proposed LMS design generalizes
existing approaches by dropping the bandlimited assumption on
the input signal. Instead, it assumes that the input has an arbi-
trary power spectrum which is adaptively estimated. Numerical
experiments are presented showing the good performance of the
blind estimation stage and the clear advantage of the proposed
LMS design.

Index Terms—Analogdigital conversion,, error compensation,
gradient methods, mean square error methods, sampled-data
circuits, signal reconstruction.

I. INTRODUCTION

A high speed analog-to-digital converter (ADC) can be re-
alized by using the so-called time-interleaved ADC (TI-

ADC) architecture [1]. It consists of using a number of par-
allel ADCs having the same sampling rate but different sam-
pling phases, as if they were a single ADC operating at a higher
sampling rate. In spite of its conceptual simplicity, the design
of a TI-ADC needs to account for mismatches between dif-
ferent channel ADCs [2], [3]. A drawback of this technique is
its extreme sensitivity to timing mismatches [4], [5]. To over-
come this limitation, the hybrid filterbank ADC (HFB-ADC)
architecture was proposed in [4]. This technique uses a contin-
uous-time analysis filterbank to split the input signal into dif-
ferent frequency bands, each of which is assigned to a different
ADC. In contrast to the TI-ADC architecture, all the ADCs in
a HFB-ADC are synchronously sampled. A discrete-time syn-
thesis filterbank is then used to reconstruct the required samples.
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A variant of this technique carries out the frequency band split-
ting using lowpass filtering and frequency translation, to relax
the design constraints on sample-and-hold devices at high-fre-
quencies [6]. This simplification in design has motivated HFB-
ADCs in challenging applications with wideband and bandpass
signals [7], as well as efficient architectures for the digital syn-
thesis bank [8].

The design of the discrete-time synthesis filterbank requires
the knowledge of the frequency response of the analysis filters.
It is often unrealistic to assume that this is known in advance ac-
curately enough, since analog circuits are subject to imperfec-
tions, e.g., deviations from nominal values, aging, temperature
drifts, etc. An approach to deal with this uncertainty is to use a
reference input signal to estimate the analog filterbank parame-
ters [9]. A similar approach is used in [10]–[12], where instead
of estimating the analog filterbank, the digital synthesis bank
is directly tuned, via an adaptive filtering technique, to mini-
mize the reconstruction error. However, as pointed out in [13], a
blind estimation technique (i.e., one carrying out the estimation
without the knowledge of the input signal) is preferred, since it
does not interfere with the ADC operation, and is able to track
analog parameter drifts during the ADC operation. Towards this
goal, in this paper we propose a blind method for estimating
the analog filterbank parameters. The proposed method is adap-
tive (i.e., on-line), so it can run continuously in parallel with the
ADC operation.

Once the analysis filterbank parameters are known, the dis-
crete-time synthesis filterbank can be designed to reconstruct
the desired samples. An approach for doing so relies on the as-
sumption that the input signal is bandlimited [5], [13]. Under
this assumption, these methods are able to achieve perfect re-
construction if the impulse response of the synthesis filterbank
can be arbitrarily long. An arguable point of this approach is
that the bandlimited assumption might not be realistic in many
applications. One way to address this issue is to assume that
the input signal has finite energy, and design the compensation
in a minmax sense [14], [15]. In this paper we use a different
criterion. We assume that the input signal is a random process
and we carry out a compensation in a statistically optimal (least
mean squares (LMS)) sense. A similar approach was proposed
by the authors in [16], [17], to design a compensation for timing
mismatch in TI-ADCs. The proposed method permits designing
the synthesis filterbank so that the reconstructed samples match
those that would be obtained if the input signal was passed
through a prescribed anti-alias filter before sampling. This is
particularly important in view of our nonbandlimited assump-
tion on the input signal. We show that the methods in [5], [13],
derived under a bandlimited assumption, are particular cases of
the proposed method.
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The proposed synthesis filterbank design method requires the
knowledge of the power spectrum of the input signal. Since it is
impractical to assume that this is known in advance, we propose
a real-time method for estimating it. Nevertheless, numerical
experiments suggest that an accurate knowledge of the input
power spectrum is not necessary, since the reconstruction error
is to some extent insensitive to input spectrum estimation errors.

Apart from being conceptually intuitive, an advantage of the
TI-ADC over the HFB-ADC architecture is that, when there
are neither timing nor gain mismatches, the desired samples are
readily available, without the need for digital processing. How-
ever, when these mismatches are unavoidable, compensating for
them is a nontrivial problem, which has been addressed in a
number of works [17]–[20]. Additionally, as in the case of HBF-
ADCs, these mismatches are subject to drifts, and they need to
be estimated, either off-line [21], [22] or on-line [23]–[25]. No-
tice that a TI-ADC is a particular case of a HFB-ADC, where the
analysis filters are chosen as time delays. Hence, while the adap-
tive methods proposed in this work are intended for estimating
the analog parameters and input spectrum in a HFB-ADC, these
methods can also be used for estimating timing and gain mis-
matches, as well as the input spectrum, in a TI-ADC. Finally,
we point out that, in both architectures, the complexity of the
estimation task is dominant over that of the sample reconstruc-
tion task.

The rest of the paper is organized as follows. We give an
overview of hybrid filterbank ADCs in Section II. In Section III
we describe the proposed adaptive blind method for estimating
the analysis filterbank parameters. In Section IV we describe
the proposed synthesis filterbank design method, as well as
the adaptive method for estimating the input power spectrum.
Also in Section IV-C, we show that the design method de-
rived under a bandlimited assumption is a particular case of
the proposed method. Finally, some simulation results are
presented in Section VI, and concluding remarks are given in
Section VII. This paper is partly based on the work reported in
the conference paper [26].

Discrete-time functions (i.e., signals and impulse responses)
are denoted using bold letters and their continuous-time coun-
terparts using nonbold letters. Also, time-domain functions are
denoted in lowercase and their frequency-domain counterparts
in uppercase. The convolution between the continuous-time sig-
nals and is denoted by . The adjoint
of is defined by , and denotes the
two-sided Laplace transform of (with being the Laplace
variable). The same notation holds for convolution and adjoint
of discrete-time functions.

II. HYBRID FILTERBANK ANALOG-TO-DIGITAL CONVERTERS

The HFB-ADC scheme is depicted in Fig. 1. The continuous-
time signal is split into signals using an array of analog
filters with transfer functions ,
whose outputs are then sampled at the rate of . In this
way, the discrete-time signals
are generated. The idea is to process to generate an es-
timate of the samples , collected
after the anti-alias filter . This is typically done by up-

Fig. 1. Slightly generalized HFB-ADC scheme considered in this work.

sampling the signals by a factor of (i.e., zero
valued samples are added between every two samples), then fil-
tering each component using the array of discrete-time filters

, and finally adding together all
the resulting signals.

As mentioned in Section I, the design of a HBF-ADC com-
prises of two stages. The first is to estimate the continuous-time
filters using the samples , and the second is to use this
estimate to design the discrete-time filters for reconstruc-
tion. We will address these two problems in Sections III and IV
below.

The scheme considered in Fig. 1 is somewhat more general
than the one considered in [5], [13], in that it permits placing
an anti-alias filter before generating the samples to
be reconstructed (in the results below, the anti-alias filter can
be removed by choosing ), as well as using oversam-
pling (i.e., ). Notice that, when using oversampling,
while the average rate of the samples , is

, the samples are still reconstructed at the
desired rate . Therefore, this form of oversampling differs
from the usual form in which the samples are reconstructed at
a rate higher than the desired one. When , the choice
of filters which produce some given samples is not
unique. Hence, oversampling adds flexibility in the design of

, at the expense of a higher average sampling rate.

III. ADAPTIVE BLIND ESTIMATION OF THE

ANALYSIS FILTERBANK

In this section we propose an adaptive blind algorithm for
estimating . We assume that the input signal is a random
process with possibly nonstationary statistics. Our algorithm is
derived to deal with the case when is unknown and slowly
time-varying.

A. Estimation Criterion

Since is not necessarily stationary, we define its (time-
varying) autocorrelation by

(1)

We also define its averaged autocorrelation up to time by

(2)
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where the forgetting factor is used to assign less weights to
older measurements (to count for the slow time-varying nature
of ), and the scaling constant is used so
that in the stationary case. Finally, the averaged
autocorrelation of the samples is defined by

(3)

We then have the following result:
Lemma 1: If has uniformly bounded second moments

(i.e., there exists such that , for all ),
, for all , and there exist

functions (i.e., ) and
( denotes the set of positive real numbers) such that, for

all

(4)

then

(5)

where the averaged input power spectrum
is the two-sided Laplace transform of the averaged input auto-
correlation . Also, for all

(6)

where, denotes the vector/matrix formed by the absolute
values of each of the entries of and denotes pointwise mul-
tiplication (i.e., ).

Proof: See the Appendix.
Remark 2: The function in (4) states a bound on the rate

of change of the autocorrelation of . Hence, for small values
of where these statistics remain approximately constant, we
have that . If this condition holds within a time interval
longer than the settling-time of the impulse response , then

. Hence, under this mild assumption, , and
therefore, (5) becomes

(7)

Now, define the sample-average time-varying correlation by

(8)

For a given , we can approximate by a linear expansion
as follows:

(9)

where denotes the -th entry of the vector of ex-
pansion coefficients of on the basis , .

This approximation is realistic since any function can be ap-
proximated with an arbitrary accuracy by a linear expansion
with sufficiently large number of basis elements. Since the or-
ders of the analysis filterbank filters ,
are known, we can write a parametric version of ,
where denotes the vector of numerator and de-
nominator coefficients of the filters , . For
a given , we can compute an estimate of up to time

as follows:

(10)

where the the entries , and ,
of the matrix and the vector

, respectively, are defined by

(11)

(12)

with , for any matrix
transfer function , and ( de-
notes the trace operation), for any matrix discrete-time impulse
responses and . We can hence define, using (7), a para-
metric time-varying correlation by

(13)

Then, the parameters up to time can be estimated by
solving the following minimization problem:

(14)

(15)

where, for a matrix , the norm is defined
by .

B. Adaptive Optimization Algorithm

For a fixed , the minimization problem (14)-(15) can be
solved using a quasi-Newton method. These are iterative algo-
rithms which use the parameters estimated at the -th iter-
ation in the following updating formula:

(16)

where the scalar denotes the step-size at iteration , the
vector denotes the gradient of at , and the ma-
trix denotes an approximation of the inverse of the Hessian
of at . Following ideas from discrete-time system
identification [27, Section 11.4], we can obtain an adaptive al-
gorithm by carrying out one iteration of (16) for each new avail-
able sample. Hence, using the notation , , and for
the sequence of values so obtained, we have that

(17)
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The -th component of the gradient is given by

where for matrices and , the
inner product is defined by .
The derivatives of with respect to the components
of are given by

(18)
where

(19)

(20)

Also,
is computed by

(21)
with

(22)

(23)

To compute we use the Broyden-Fletcher-Gold-
farb-Shanno (BFGS) formula [28], which is initialized by

and proceeds as follows:

(24)

Notice that the BFGS formula is typically used for minimizing
a cost function which does not change from one iteration to the
next one. This property is not satisfied by the time-varying cost
function in (15). However, as we explain in Appendix B,
this formula still applies when the cost function is time-varying.

Finally, the step-size parameter is obtained from a linear
search algorithm. In this work we implement it using a back-
tracking procedure formed by sub-iterations of the main itera-
tions (17), in which, starting from the initial value ,
the value of is halved at each sub-iteration until

(25)

or a maximum number of sub-iterations is reached.
The recursive estimation method (17) requires an initializa-

tion, i.e., the choice of initial value . This can be easily ob-

tained by choosing the nominal design values. Alternatively, a
reference input can be used to obtain an initial estimate, as de-
scribed in [9].

IV. DESIGN OF THE RECONSTRUCTION FILTERS

In this section we propose an alternative to the method in
[5], [13], for designing the reconstruction filters . More
precisely, we drop the bandlimited constraint on the input signal

, and we assume instead that it has a (quasi-)stationary
power spectrum . In Section IV-A we assume that
is known, and we design the synthesis filterbank using a
linear LMS criterion [29], i.e., aiming at minimizing the power
of the reconstruction error

(26)

In Section IV-B we explain how to estimate the input spectrum
, using a variant of the estimation algorithm described in

Section III. Finally, in Section IV-C we show that the design
proposed in [5], [13] is a particular case of our proposed design.

A. Design Assuming That the Input Spectrum is Known

Using the polyphase representation [30], the scheme in Fig. 1
can be transformed into that of Fig. 2, where

are the polyphase representations of and , respec-
tively. Notice that we use underlined letters to denote the
polyphase representation of a quantity. Also, the
matrix is the polyphase representation of the synthesis
filterbank, defined such that the impulse response of
its -entry is given by

where denotes the impulse response of .
In view of Fig. 2, we can restate the problem as that of de-

signing for estimating using . If the support
of the impulse response of is constrained so that

if or , the LMS solution can be found by
solving

(27)

where denotes expected value. Now, the solution of (27)
requires that the estimation error is orthogonal to the the data
used in the estimation, i.e.,

for all , or equivalently

(28)



2450 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 58, NO. 10, OCTOBER 2011

Fig. 2. Transformed scheme using polyphase representation.

where and denote the correlation matrix of
and the cross-correlation matrix between and , respec-
tively, i.e.,

(29)

(30)

Hence, the impulse response of the polyphase matrix
can be obtained by solving the linear problem (28). More pre-
cisely

...
...

. . .
...

...

(31)
where the superscript denotes the (Moore-Penrose) pseu-
doinverse [31]. Finally, we need the expressions of and

. It is straightforward to verify that

(32)

(33)

where .

B. Input Spectrum Estimation

At sample-time , the design of the reconstruction filters,
presented in Section IV-A, requires knowledge of the input
spectrum ( denotes the two-sided
Laplace transform with respect to ) at time .
Now, the criterion (14)-(15), introduced in Section III-A for
estimating the input filters , produces as a by-product an
estimate of the averaged input spectrum ,
up to time . This estimate is obtained as follows:

(S1) Use the estimate of , available at sample time ,
in (10), to obtain an estimate of .
(S2) Use in (9) to obtain .

The average is obtained over a time span which is de-
termined by the magnitude of the forgetting factor and hence
differs from the instantaneous input spectrum , at

. As we show in Section VI-E, via simulation results, the
accurate knowledge of the input spectrum is not critical for de-
signing the reconstruction filters. Hence, one possibility is to
simply use the estimate in place of
for designing these filters. However, a problem in doing so is
that, since the filters change slowly with time, its estima-
tion uses a long time span for averaging. Depending on the ap-
plication, it may happen that using such a long averaging time
prevents the tracking of changes on the input spectrum, if they
are sufficiently fast. As a consequence of this, it may happens
that is not good enough, and a better approximaiton of

is needed.
If this is the case, we can do so using a second algorithm

for estimating , which runs in parallel to the one
used for estimating . This second algorithm uses the es-
timate of the analysis filter parameters, available at time

, to obtain an estimate of the input
spectrum , using (9)–(10). To track fast changes in
the input spectrum, the sample-average autocorrelation ,
used for this second algorithm, is built using a forgetting factor

smaller than the one ( ) used for estimating . More pre-
cisely, choosing a suitable forgetting factor , we compute

where . Then we compute using

Subsequently, we compute the estimate of using

where is given by (11). Finally, is given
by

Notice, that the speed of change of the input spectrum that
can be tracked is limited by the property stated in Remark 2.
More precisely, changes on the input spectrum need to be slow
enough so that it can be considered quasi-stationary over a time
span equal to the impulse response length of the analisys filters,
which is a mild requirement.

C. Comparison With the Approach in [13] and [5]

An approach for designing the reconstruction filters was
proposed in [5], and improved in [13]. This method assumes that

, and the signal is bandlimited to .
Under this assumption, is designed as follows:

(34)
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TABLE I
COMPLEXITY OF BASIC TERMS NEEDED FOR THE BLIND ESTIMATION ALGORITHM

where for and 0 otherwise, and is a
discrete-time equivalent of the analysis filterbank , whose
frequency response is given by

(35)

Moreover, perfect reconstruction can be achieved (i.e.,
) if the impulse response can be arbitrary large (i.e., if

can hold for all ).
In this section we show that the synthesis filterbank design

(34) is equivalent to our proposed design (28)–(33) when
, and the input power spectrum is given by

otherwise.
(36)

Under these assumptions, it holds that
, and therefore

(37)

where is the impulse response the dis-
crete-time equivalent analysis filterbank (35). Let ,
and denote truncated realizations of , and ,
respectively.1 Then, using the alias representation [30], we can
write

where and denote the alias representations of
and , respectively, which are given by

(38)

(39)

Now, letting , we can write
and . Now, (36)
implies that is a white vector random process, then the
LMS criterion for designing becomes

which, in view of (38), is equivalent to (34).

1So that their �-transforms� ���, �� ��� and� ��� are well defined on the
unit circle.

V. COMPLEXITY AND IMPLEMENTATION

In this section we analyze the numerical complexity of
the proposed algorithms. To this end we use the number
of multiplications as the complexity measure. In particular,
solving a positive definite linear system of equations re-
quires [32, Sec. 4.2]. Also,
computing the impulse response of a continuous system, at
given sample times, requires the computation of a residue-pole
decomposition, plus times that of the exponential function. To
estimate the associated complexity, we assume that the system’s
poles and zeros are readily available. This assumption is valid
since system orders are relatively low, and the complexity
associated with computing their poles and zeros is negligible
compared to the overall complexity. Then, the computation
of a residue of a system of zeros and poles requires

. Also, computing the
exponential function requires , be-
cause we consider 20 terms in the expansion ,
which guarantees that the residual error is smaller than ,
for .

Using the above, we state the complexity of each proposed al-
gorithm. Since these algorithms are recursively computed once
per sample time, we express their complexity in multiplications
per seconds. We assume that the order of the numerator and
the denominator of are the same, for all , and
that the same condition holds for , for all .
We then denote by , , , , and , the number of
roots of the numerator of , the denominator of , the
numerator of , the denominator of , the numerator
of and the denominator of , respectively. We also de-
fine , , ,

, and .
In Table I we state the complexity of a number of terms used

in different parts of the blind estimation algorithm presented in
Section III. They need to be computed only once per sample
time.

Using the terms shown in Table I, we can compute those
whose complexity is given in Table II.

In addition to the terms shown in Tables I and II, the linear
search algorithm (25) requires the evaluation of at dif-
ferent values of . Each evaluation requires

multiplications. Then, denoting by the number of linear
search steps in (25), Table III shows the complexity of each task
involved in the blind estimation algorithm, as well as the sample
reconstruction algorithm.

In a practical implementation, the digital processing algo-
rithm needs first to compute the terms listed in Table I. These
terms are then used to compute the tasks listed in Table III,
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TABLE II
COMPLEXITY OF INTERMEDIATE TERMS NEEDED FOR THE

BLIND ESTIMATION ALGORITHM

whose components are detailed in Table II. Now, it can be com-
putationally unaffordable to repeat these steps at the arrival of
each new sample. However, notice that from all these compu-
tations, only the sample reconstruction task needs to be strictly
carried out once per sample. The remaining computations are
related to the estimation task. Hence, their computation can be
carried out asynchronously to sample arrivals, to accommodate
computational power limitations.

To explain this point in more detail, we provide below a
sketch of the digital processing algorithm. The algorithm is
divided in two routines. The synchronous routine is executed
each time a new sample arrives, and carries out the sample re-
construction task. On the other hand, the asynchronous routine
is continuously executed in the background and carries out the
estimation task. In the sketch below we assume that the input
spectrum is jointly estimated with the analysis filterbank pa-
rameters, as described in (S1)-(S2) in Section IV-B. If instead, a
second algorithm is used for estimating the input spectrum with
a smaller forgetting factor, this algorithm needs to be added to
the asynchronous routine.

Digital processing algorithm:

• Synchronous routine: Whenever a new (vector) sample
arrives (i.e., once every seconds):

1) add to a temporary buffer;
2) reconstruct the samples

using the available
reconstruction filters , .

• Asynchronous routine: Continuously iterate over the
following steps:
1) update the available cost function to ,

where is the number of samples accumulated in the
temporary buffer during the last iteration, and empty
the buffer;

2) execute a quasi-Newton iteration (17), to obtain a new
estimate of the parameters and hence a new
estimate of the analysis filterbank ;

3) use to build a new estimate of the input spectrum
(using (S1)-(S2) in Section IV-B);

4) use the new estimates of and to compute
the reconstruction filters , , using
(31)–(33).

VI. NUMERICAL EXPERIMENTS

In this section we present numerical experiments to illustrate
the performance of the blind estimation method presented in

TABLE III
COMPLEXITY OF EACH TASK

Section III, as well as the sample reconstruction method pre-
sented in Section IV. To this end, following [13], we consider
an eight-channel HFB-ADC, where for simplicity, we use the
sampling period . The analysis filterbank is composed
of Butterworth second-order bandpass filters of bandwidth 1/16
Hz, except for the first one which is a first-order lowpass filter
of the same bandwidth. The bandwidths are contiguously allo-
cated so that they cover the whole frequency range from 0 Hz to
0.5 Hz. The output of each filter is sampled at 1/8 Hz (i.e., the
upsampling factor in Fig. 1 equals the number of chan-
nels).

A. Performance of the Proposed Sample Reconstruction
Method

In order to evaluate the proposed sample reconstruction
method, we compare its performance with that of the method
(34) (derived under a bandlimited assumption on the input
signal), which we denote by (BL). The comparison is done
in terms of the signal-to-distortion ratio (SDR) of the recon-
structed samples, which is defined by

For both methods we use and in (27), which
results in the discrete-time filters , having
64 taps with 31 noncausal taps. From Table III, the resulting
reconstruction scheme requires 512 multiplications each
seconds.

In the first simulation we use . We generate the
input signal as filtered white noise using a Butterworth lowpass
filter of 20-th order and varying cutoff frequency . We
call the input filter, and its relation to the spectrum
of the input signal is given by . The fre-
quency responses of several such filters with different values of

are shown in Fig. 3. We compare the performances of the
BL method and the proposed LMS method for several values of

. The result is shown in Fig. 4. We see how the LMS method
clearly outperforms the BL method, especially for low cutoff
frequency values. The difference in performance is caused by
the assumption (36) on the input spectrum, under which the BL
method is designed. As pointed out in [17], this assumption re-
sults in reconstruction filters , having
very long impulse responses. Then, when theses filters are trun-
cated to 64 taps, as described above, the reconstruction perfor-
mance is significantly impaired.

Fig. 4 also shows that the SDR in both methods decreases as
the cutoff frequency increases. This is a consequence of the
generalized sampling theorem, which states that a signal which
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Fig. 3. Frequency response of a family of input filters���� with different cutoff
frequency values.

Fig. 4. Performance comparison of the BL and LMS methods for different
values of the input filter cutoff frequency.

is bandlimited to , can be reconstructed from the sam-
ples obtained after filtering it using filters and at -th of
the Nyquist rate [33]. This implies that it is possible to per-
fectly reconstruct the input signal , at any time (including

, as is our goal), only if it is bandlimited to 0.5 Hz.
Hence, the reduced performance for high values of is due to
the leakage energy above 0.5 Hz.

B. Sample Reconstruction Using an Anti-Alias Filter

In the second simulation we evaluate the performance of the
proposed method when reconstructing the samples that would
be obtained after filtering the input signal using a prescribed
anti-alias filter . For the input filter we use a Butter-
worth lowpass filter of 5-th order and varying cutoff frequency.
Also, for the anti-alias filter we use a Butterworth lowpass
filter of 20-th order and fixed cutoff frequency at 0.4 Hz. The
obtained SDR values for different cutoff frequencies are shown
in Fig. 5. As expected, the performance of the LMS method im-
proves with the use of the anti-alias filter.

C. Effect of Quantization

The effect of quantization in HFB-ADCs, under the bandlim-
ited assumption described in Section IV-C, has been analyzed
in [34]. In this section we study the effect of quantization on
the proposed sample reconstruction method, via numerical sim-
ulations. We use and for we use a Butterworth
lowpass filter of 5-th order and cutoff frequency . In

Fig. 5. Performance of the LMS method, with and without anti-alias filter using
a 5-th order Butterworth lowpass input filter.

Fig. 6. SRD obtained after quantization of ideal and HFB-ADC samples.

Fig. 6 we compare the SDR obtained after quantizing the ideal
samples , with that obtained after quantizing the HFB-ADC
samples , . For comparison purposes, we
use the same number of bits per sample in both schemes.2 Since
the HFB-ADC has , each of which is sampled

slower than the ideal samples, the ADC on each
channel uses the same number of bits than that used for quan-
tizing the ideal samples. In Fig. 6 we show the SDR obtained
using different quantization bits. We see that the consequence
of quantization is similar in both schemes.

D. Performance of the Proposed Blind Estimation Method

In this section we evaluate the performance of the blind es-
timation method proposed in Section III. We use an analysis
filterbank which is obtained by perturbing the nominal analysis
filterbank used in the previous simulation. The perturbation is
done by multiplying the real and imaginary components of each
pole by , with being a Gaussian random variable with
standard deviation . For the adaptive blind estimation
algorithm we use a forgetting factor of , so that
measurements that are older than samples are included in
the criterion with a weight that is at most the
weight of the most recent measurement. We then run the algo-
rithm over samples.

2Keeping constant the number of bits per sample is natural, as this is the
fundamental constraint in commercial ADCs. If the proposed scheme is imple-
mented on a standard embedded platform like a DSP, then it is typical that the
number of available bits per channel depends on the number of channels used,
keeping constant the total number of bits. See for example [35].
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Fig. 7. Basis elements � ���, � � �� � � � � �� used for approximating the input
power spectrum.

For the linear expansion (9), we use 12 basis elements ,
, chosen as

with and ,
, and the overbar denoting complex conjuga-

tion. Their frequency response is shown in Fig. 7.
In view of Table III, the joint estimation of the input spectrum

and the filterbank requires 1.322 multiplications, each
seconds, plus 137 multiplications for each linear

search iteration. Then, the computation of the reconstruction
filters requires 87.38 multiplications.

We evaluate the performance of the blind estimation method
using two scenarios:

(a) In the first simulation we generate an input signal with a
time-varying power spectrum , . We do so
using a 3-th order time-varying input filter , so that

, . The input filter is de-
signed so that it has no zeros, and poles at and

. Hence, the
imaginary component of the complex poles oscillate so
that 1600 cycles are included within samples. Also,
each cycle is 100 times longer than the impulse response
length of the analysis filters , so that the quasi-sta-
tionary requirement in Remark 2 is satisfied. In Figs. 8
and 9 we show the estimated input spectrum and analysis
filters, respectively. We see that both, the input spectrum
and the analysis filters are accurately estimated up to a
threshold frequency of about 0.4 Hz. This is due to the
low power level available at high frequencies.

(b) In the second simulation we repeat the same experiment,
but we modify the input filter so that a more signif-
icant power level is available in the high frequency range.
To this end, we choose having no zeros, and poles
at and .
The results are shown in Figs. 10 and 11. In this case, both
the input spectrum and the analysis filters are properly es-
timated.

Fig. 8. Actual and estimated input power spectra, when low power is available
at high frequencies.

Fig. 9. Frequency responses of the actual, nominal and estimated analysis fil-
terbanks, when low power is available at high frequencies.

Fig. 10. Actual and estimated input power spectra, with significant power level
at all frequencies.

In Table IV we show the SDR values obtained using the ac-
tual, the nominal and the estimated filterbanks. We do so con-
sidering the filterbanks estimated in both scenarios, namely: (a)
when low power is available at high frequencies, and (b) with
a significant power level at all frequencies. For this comparison
we generate the input signal as described in scenario (a).

We conclude that an accurate estimate of the analysis filter-
bank is relevant in the HFB-ADC design. Also, while analysis
filters having a low power level in their passbands are not ac-
curatley estimated, this does not seriously undermine the recon-
struction performance.

E. Irrelevance of an Accurate Input Spectrum Estimate

In this last simulation we illustrate that an accurate estima-
tion of the input spectrum is not critical to the reconstruction
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TABLE IV
COMPARISON OF ��� OBTAINED USING THE ACTUAL, THE NOMINAL AND THE ESTIMATED ANALYSIS FILTERBANKS

Fig. 11. Frequency responses of the actual, nominal, and estimated analysis
filterbanks, with significant power level at all frequencies.

Fig. 12. Frequency responses of available and actual input filters for different
cutoff frequency values.

error. To this end, we evaluate the performance degradation of
the proposed LMS design method when there is perfect knowl-
edge of the analysis filters but imperfect knowledge of
the input power spectrum. The actual input signal power spec-
trum is determined by the actual input filter, while the available
input power spectrum used to design the LMS compensator is
determined by an available input filter. We design the available
input filter as a Butterworth lowpass filter of 20-th order and
varying cutoff frequency . For the actual input filter we use
a Butterworth lowpass filter of 10-th order and varying cutoff
frequency in cascade with a second order filter with poles in

. The frequency responses of the avail-
able and the actual input filters are shown in Fig. 12, and the
simulation result is shown in Fig. 13. We see that, while not
being optimal, the performance of the LMS method does not
deteriorate significantly.

VII. CONCLUSION

We have proposed an adaptive blind method for estimating
the analysis filterbank parameters in a hybrid filterbank
analog-to-digital converter. This estimation method is able to
cope with nonstationary input signals. We have also presented
a design method for the sample reconstruction stage, by using

Fig. 13. Performance degradation of the LMS method in the presence of input
power spectrum mismatch.

the estimated analog parameters. The reconstruction is done by
minimizing the power of the reconstruction error in the sam-
ples. To this end, the spectrum of the input signal is adaptively
estimated. We have shown that existing approaches based on
a bandlimited assumption on the input signal are particular
cases of our proposed design. We have presented numerical
experiments showing the improved performance of the blind
estimation method, and the clear advantage of the proposed
LMS design.

APPENDIX A
PROOFS

Proof of Lemma 1: We have that
. Then, from (3), we obtain

Now, since and
for all , in view of Fubini’s theorem, we

can exchange the expectation with the integrations. By doing
so, we obtain

Now, using (1) and defining
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we have that

Finally, to show 6, from 4, we have that

Proof of (18)–(23): From (13) and (9), we have that

Now, (21) follows from (10) and the following property:

Also, (22) follows from (12) and (20), and (23) follows from
(12), (19) and (20).

APPENDIX B
BFGS FORMULA FOR ADAPTIVE OPTIMIZATION

For a given , let and denote the gradient
and the Hessian matrix of , respectively. Using a Taylor
expansion, we have that

where is obtained from (17), and
. Also, let be defined so that

Then

(40)

Now, suppose that , for all (i.e., the
cost function is stationary). We then have that , for all

. Also, if is a quadratic function, we have that
and (i.e., the Hessian matrix is independent of
and ), for all . Hence, (40) becomes

(41)

where . In this case, for a given
, we can find by solving (41) for ,

provided the matrix has full row rank.
In practice, neither nor is

quadratic. Then, assuming that we know an approximation
of , in view of (41), we can build by adding
an update to so that

(42)

This is the starting point of the derivation of the BFGS method
for a stationary cost function. The details on how to obtain (24)
from (42) can be found in [28, Sec. 3.2]. The only difference
between the stationary and nonstationary cases is that in the
former, the updates on are done to account for the fact that

is nonquadratic, while in the latter, these updates also
account for the fact that is nonstationary. The validity of
this approach is justified as follows. When is stationary
(i.e., ), it follows from [28, Th. 3.4.1] that if there
exists such that the sequence , , belongs to a
set where is quadratic, then the BFGS formula converges
to the minimum of in at most steps, provided the line
searches in (25) are exact. In the nonstationary case, the same
condition holds if additionally, becomes stationary for

.
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