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Abstract. This paper considers the problem of robust
stabilization for a class of nonlinear up-augmented sys-
tems with uncertain parameters in a very general form.
This system involves a base system with a control input
and a forwarding structure. Several robust control design
methods are discussed for the cases in which these parts
of the system are in SISO and MIMO forms, respectively.
The main assumptions required for these methods are
quadratic stabilizability for the local linearized model of
the system, global asymptotic stabilizability for the base
system and some mild conditions on the up-augmentation
and the nonlinearity of the system.
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1 Introduction

In this paper, we address the robust stabilization prob-
lem for a class of cascaded nonlinear systems with the
so-called forwarding or feedforwarding structure. More
precisely, these systems have the following model:

ẋ1 = f1(x1, x2, q) + g1(x1, x2, u, q)
ẋ2 = f2(x2, q) + g2(x2, u, q)

(1)

where x1 ∈ Rn1 and x2 ∈ Rn2 are state variables,
u ∈ Rm is a control input, q is an uncertain parame-
ter vector belonging to a compact set Q ⊂ Rp, nonlinear
vector functions f1(x1, x2, q), f2(x2, q), g1(x1, x2, q) and
g2(x2, q) are smooth in x1, x2 and u and continuous in
q, f1(0, 0, q) ≡ 0, f2(0, q) ≡ 0, g1(x1, x2, 0, q) ≡ 0 and
g2(x2, 0, q) ≡ 0 for x1 ∈ Rn1 , x2 ∈ Rn2 and ∀q ∈ Q.

Many similar cases of (1) have been studied; see, e.g.,
[3, 4, 5, 6, 8]. The work in these papers have led to sev-
eral design control methods. In [8], a saturation function
and input-output method are used to design a global as-
ymptotic stabilizer for an upper-triangular system. In
this case, the state variable x1 in (1) is a scalar vari-
able. In [3, 4], cascaded systems similar to that in (1) are
studied and Lyapunov function based design methods are
proposed. However, the aforementioned design methods
rely on very accurate knowledge of the system. The only
exception is [8] where uncertainties are allowed in high
order (nonlinear) terms.

In [5] and [6], a robust control design approach is de-
veloped for an upper-triangular nonlinear system with
large size uncertainties in both local linearizied model
and global nonlinear model of the system. Apart from
providing a robust control design method, the results in
[5] and [6] also bridge a gap between linear robust control
theory and nonlinear robust control theory in the sense
that the design method coincides with the seminal work
of Wei [9] on quadratic stabilization of linear systems.

In this paper, we will review the existing results for the ro-
bust stabilization problem of (1). Then the robust design
method in [5] and [6] is generalized to the system (1). The
main advantage of this method is that the key condition
for robust stabilization of (1) boils down to quadratic sta-
bilizibility of the locally linearized model. Since there are
many well-established methods, such as linear quadratic
stabilization theory [2], H∞ control [1], Wei’s method [9],
etc. to solve quadratic stabilization problem for a wide
class of linear uncertain systems, the system satisified this
assumption is much more general than the systems stud-
ied in existing literature. The other advantage of this
method is that a simpler design method for robust con-
trollers and a simpler proof of the stabilizability of the
system are provided. Our design method considers two
notions of stability: global asymptotic stability and local
quadratic stability. The latter requires the existence of
a locally quadratic Lyapunov function for the system (1)
for all admissible uncertain parameters q ∈ Q. The sta-
bilizing controller to be proposed involves two steps: The
first controller brings the state of the base system, x2,
to a small neighbourhood of the origin, and the second
controller is used to bring both x1 and x2 to the origin.
A non-quadratic Lyapunov function is used to design this
robust controller.

2 Forwarding Control Design via

Lyapunov Functions

In this section, we review design methods given in [3, 4].
Consider the following system (which is a special case of
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the system (1)) rewritten as

ẋ1 = f1(x1, x2) + g1(x1, x2)u
ẋ2 = f2(x2) + g2(x2)u

(2)

Since f1(0, 0) = 0 and f1(x1, x2) are smooth in x1, x2, we
can decompose f1(x1, x2) as follows:

f1(x1, x2) = f̄1(x1) + f12(x1, x2)x2.

where f̄1(x1) = f1(x1, 0) and f12(x1, x2) is a smooth func-
tion. Denote h(x1, x2) = f12(x1, x2)x2.

Suppose the system (2) satisfies assumptions below:

Assumption 2.1 Suppose W1(x1) is a Lyapunov func-
tion of the system

ẋ1 = f̄1(x1) (3)

and Lf̄W1(x1) ≤ 0. Moveover, there holds
∥

∥

∥

∥

∂W1

∂x1

∥

∥

∥

∥

‖x1‖ ≤ kW1(x1); ∀‖x‖ ≥ c (4)

for some constants k > 0 and c > 0.

Assumption 2.2 The system

ẋ2 = f̄2(x2) (5)

is asymptotically stable and W2(x2) is a Lyapunov func-
tion of the system (5).

Assumption 2.3 There exist K functions γ1(·) and γ2(·)
such that

‖h(x1, x2)‖ ≤ γ1(x2) + ‖x1‖γ2(x2) (6)

where γ1 and γ2 are differentable at the origin.

In [3], under Assumptions 2.1-2.3 and some slightly
stronger assumption in the local structure of the system
(3) (see the assumption A3 in [3]), a Lyapunov function

V (x1, x2) = W1(x1) + W2(x2) + Ψ(x1, x2). (7)

is constructed by a design method, called cross term tech-

nique, for the system (2). The cross term Ψ(x1, x2) is in
the form as below

Ψ(x1, x2) =

∫

∞

0

LhW1(x̄1(τ, x1, x2), x̄2(τ, x2))dτ (8)

where x̄1(τ, x1, x2), x̄2(τ, x2) are solution of (2) with ini-
tial state (x1, x2) and u ≡ 0.

Applying the Lyapunov function (7), it has been proven
in [3] that, under Assumptions 2.1-2.3 and some local
stabilizibility of the system (see the assumption A4 in [3]),
the system (2) is globally asymptotically stabilizable.

In [4], Mazenc and Praly obtained a Lyapunov function
in form

V (x1, x2) = l(W1(x1)) + k(W2(x2)) (9)

where the functions l(·) and k(·) are nonlinear weight
functions to be choosen.

Under assumptions similar to Assumptions 2.1-2.3 and
some local stabilizibility of the system, a global stabi-
lizier is designed in [4] by applying the Lyapunov function
(9) and selecting approperiate functions l(·) and k(·). A
drawback in the methods in [3, 4] is that the Lyapunov
functions (7) and (9) are dependent on the precise knowl-
edge of the model of the system (2).

3 Forwarding Design via Satura-

tion Functions

In this section, we will discuss another forwarding design
method in [8] which uses saturation functions. Compared
with the results in the last section, the forwarding control
via saturation function needs more structure information
of the system (1). Suppose the system (1) without un-
certain parameters q satisfies the following assumptions:

Assumption 3.1 The state x1 is a scalar state variable
and f1(x1, x2) = x21+f̄11(x2). The functions f̄11(x2) and
g1(x2, u) involve only quadratic and higher order terms
of x21, · · · , x2n2

and u, where x2 = (x21, · · · , x2n2
)T .

Assumption 3.2 Denote f2(x2) = (f21, · · · , f2n2
)T and

g2(x2, u) = (g21, · · · , g2n2
)T . Then, for i = 1, · · · , n2 − 1,

f2i= x2i + f̄2i(x2(i+1), · · · , x2n2
),

g2i= x2i + ḡ2i(x2(i+1), · · · , x2n2
, u)

where f̄2i and ḡ2i only have quadratic and higher order
terms of x2(i+1), · · · , x2n2

and u only. Further,

f2n2
= 0; g2n2

= u + ḡ2n2
(u).

where ḡ2n2
(u) have quadratic and higher order terms of

u only.

Under Assumptions 3.1-3.2, there exists a linear non-
singular coordinate transformation (x,x21, · · · , x2n2

) →
(ζ1, · · · , ζn2+1) such that, in the ζ-coordinate the system
(1) can be written as

ζ̇ = Aζ + Bu + Φ (10)

where

A =











0 1 · · · 1
...

. . .
. . .

...
0 · · · 0 1
0 · · · 0 0











B =











1
...
1
1











(11)

and

ΦT =
[

φ1(ζ2, · · · , ζn2+1, u) · · · φn2+1(u)
]

(12)

2



where φi, i = 1, · · · , n2 + 1 contains only quadratic and
higher order terms of ζi+1, · · · , ζn2+1 and u (see [8] for
details).

Denote σi(τ), i = 1, · · · , n2 + 1 are continuous, nonde-
creasing saturation functions such that

1. σi(τ) = τ ; |τ | < δi;

2. σi(τ)| < εi for all τ ∈ R

where εi > δi.

Select 1 >> εn2+1 >> εn2
>> · · · >> ε1 and let con-

troller u such that

u = −σn2+1(ζn2+1 + σn2
(ζn2

+ · · · + σ1(ζ1) · · · )) (13)

Applying the controller (13) into (10), the state variable
ζn2+1 is driven into the region [−δn2+1, δn2+1] after a fi-
nite time tn2+1 and the states ζn2

and ζn2+1 satisfy fol-
lowing equations

ζ̇n2
= −σn2

(ζn2
+ · · · + σ1(ζ1) · · · )

ζ̇n2+1 = −ζn2+1 − σn2
(ζn2

+ · · · + σ1(ζ1) · · · )
(14)

In general, the controller (13) is a multi-step controller.
In every step, a new state of the system is driven into
a given samll region by the controller while the previous
states are kept in a given small region by the controller.
Since these states are very small so that this part of the
system can be modelled as a linear system. Further it is
stabilizied by the linear part of the controller (13). In the
n2 + 1 step, there is a finite time t1 such that, after the
finite time t, it holds

ζ̇1 = −ζ1

...

ζ̇n2
= −ζ1 − · · · − ζn2

ζ̇n2+1 = −ζ1 − · · · − ζn2+1

(15)

Obviously, the system (15) is asymptotically stable.
Thus, under Assumption 3.1-3.2, the system (1) is glob-
ally asymptotically stabilizable if the system is without
uncertain parameters.

It should also be noted that the forwarding design via
saturation function allows some uncertainties in the sys-
tem but the precise locally linearized model of the system
is necessary.

4 Robust Forwarding Deisgn

As we have seen in Section 3, using a very special struc-
ture assumption and the precise local linearizied model of
the system (1), this system can be stabilizied by a multi-
step controller. On the other hand, applying a quadratic

Lyapunov function, a robust controller can be designed
for a much more general uncertain linear system (see, [9]).
So there is a big gap between linear and nonlinear systems
in terms of robust stabilization techniques. In this sec-
tion we will merge this gap by using a local nonquadratic
Lyapunov function and a multi-step controller [5, 6].

Suppose the system (1) satisfies following assumptions:

Assumption 4.1 The state x1 is a scalar state vari-
able. The function f1(x1, x2, q) can be decomposed as
f1(x1, x2, q) = θ(q)x21 + f̄11(x2, u, q) where θ(q) > 0,
∀q ∈ Q and f̄11(x2, u, q) has quadratic or higher order
terms of x21 only.

Denote x2,n2+1 = u is a new state variable and v is a new
control input. And also denote x̄2 = (x2 x2,n2+1)

T . Then
the system (1) can be written as

ẋ1 = θ(q)x21 + f̃11(x̄2, q)
˙̄x2 = f̄2(x̄2, q) + bv

(16)

where f̃11(x̄2, q) = f̄11(x̄2, q) + g1(x̄2, q) and

f̄2(x̄2, q) =

[

f2(x̄2, q) g2(x̄2, q)
1 0

]

; b =

[

0
1

]

Assumption 4.2 The system

˙̄x2 = f̄2(x̄2, q) + bv (17)

is globally asymptotically stable and locally quadratically
stable. And

V2(x̄2) = x̄T
2 P2x̄2 (18)

is a local quadratic Lyapunov function of the system (17)
in the region

Ω = { x̄2 | V2(x̄2) < µ } (19)

where µ is a given positive constant.

Assumption 4.3 Denote A2(q)x̄2 is the local lineariza-
tion of f̄2(x̄2, q). Then matrix A2(q) has a structure as
below:

A2(q) =

[

0 A−

2 (q)
? ?

]

where A−

2 (q) is some uncertain matrix and ? can be some
uncertain scalar or vector elements.

In fact, the structure in Assumption 4.3 includes the
upper-triangular structure in Assumption 3.2. Thus,
compared with Assumption 3.2, Assumption 4.3 is
weeker. Further, Assumption 4.1-4.3 allow uncertain pa-
rameter q to enter the system, so the controller to be
designed in this section will have more robustness.

Assumptions 4.2 leads to that the x̄2 converges into Ω in
finite time while keeping x1 bounded. Hence, we assume
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in the sequel that x̄2(0) ∈ Ω, where x̄2(0) is the initial
value of x̄2(t). Choose

V (x1, x̄2) = (x1 − (γ 0)P x̄2)
2 +

∫ V2(x̄2)

0

s(w)dw (20)

as a local Lyapunov function for the system (1), where γ is
a negative constant to be choosen and s(w) is a positive,
smooth, and monotonically non-decreasing function for
w ∈ [0, µ), with

∫ V2

0

s(w)dw → ∞; as V2 → µ. (21)

Remark 4.1 A particular choice of s(·) is given by

s(w) =
µ

µ − w
.

In general, the Lyapunov function (20) is non-quadratic.
However, as x → 0, V (x) becomes quadratic in x because

s(0) > 0. We also note that the function
∫ V2(x2)

0 s(w)dw
resembles a “potential barrier” and the Lyapunov func-
tion (20) is valid only for x2 ∈ Ω, i.e.,

V (x1, x2) → ∞ as V2(x2) → µ. (22)

This implies that future x2 ∈ Ω as long as that V (x1, x2)
remains bounded. 2

Applying the Lyapunov function (20), a robust controller
is designed for the system (1) such that the system is ro-
bustly globally asymptotically stable and locally quadrat-
ically stable (see [5, 6]).

5 Extension of Robust Forwaring

We new extend the robust forwarding method discussed
in last section to a more general form.

Denote the local linearized model of the system (1) as

ẋ = A(q)x + B(q)u (23)

where

x =

[

x1

x2

]

; A(q) =

[

A1(q) A12(q)
0 A2(q)

]

; B(q) =

[

B1(q)
B2(q)

]

.

Without loss of generlity, we assume B1(q) ≡ 0, ∀q ∈ Q.
Otherwise, we can extend x2 to a new state x̄2 by in-
troducing the control input u as a part of the new state.
As we showed in the last section, the control input ma-
trix corresponding to x1 will be equal to zero in the new
system.

Suppose the system (1) satisfies assumptions below:

Assumption 5.1 (Local Quadratic Stabilizibility):
There exist a linear state feedback matrix

K = [K1 K2]

and a symmetric and positive-definite matrix P0 such that

P0[A(q) + B(q)K] + [A(q) + B(q)K]T P0 < 0, ∀q ∈ Q
(24)

Without loss of generality, we let

P0 =

[

P1 −P1W
−W T P1 P2 + W T P1W

]

. (25)

for some P1 = P T
1 > 0 and P2 = P T

2 > 0 and W . Equiv-
alently, the quadratic Lyapunov function is given by

V0(x1, x2) = (x1 − Wx2)
T P1(x1 − Wx2) + xT

2 P2x2

(26)

Assumption 5.2 (Global Asymptotic Stabilizability of
the Base System): There exists a locally smooth con-
troller u0(x2) such that the system below

ẋ2 = f2(x2, q) + B2(q)u0(x2) (27)

is globally asymptotically stable.

Assumption 5.3 (Local Boundedness of the Forwarding
State): The matrix P1 in Assumption 2.1 is such that

P1A1(q) + AT
1 (q)P1 ≤ 0; ∀q ∈ Q. (28)

Assumption 5.4 (Smoothness Conditions): We require

f1(x1, x2, q) = A1(q)x1 + A12(q)x2 + F12(x, q)x2 (29)

f2(x2, q) = A2(q)x2 + F2(x2, q)x2 (30)

for some F2(x2, q) which is continuous in q and smooth
in x2 with F2(0, q) = 0, ∀q ∈ Q, and F12(x, q) which is
continuous in q and smooth in x and satisfies

max
q∈Q

‖F12(x, q)‖ ≤ γ1(x2)‖x1‖ + γ2(x2) (31)

with some smooth functions γi(x2), i = 1, 2.

Remark 5.1: It is obvious that Assumption 5.1 is neces-
sary for local quadratic stabilization. Since the quadratic
stabilization theory for linear uncertain system is well
established, we will not discuss methods of solving the
linear quadratic control u = Kx and quadratic Lyapunov
function V0(x1, x2).

However, the condition in (28) is required for technical
reasons (in the proof of Theorem 5.1). To justify this
condition, we note several points: 1) When the forward-
ing state x1 is a scalar, this condition merely requires
A1(q) to be non-positive. In fact, A1(q) = 0 in the upper-
triangular structure. 2) When x1 is not a scalar, a con-
dition similar to (28) is often used; see [4, 3]. 3) To show
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that stabilizability may be impossible without (28), we
consider the following example:

ẋ1 = εx1 + 2x2 + x2
2, ε > 0

ẋ2 = u
(32)

It is easy to verify that its local linearized model is stabi-
lizable. However, 2x2 +x2

2 ≥ −1, implying that x1(t) will
diverge if x1(0) > 1/ε regardless what control is used.

Finally, we point out that Assumption 2.3, (29) and (31)
guarantee that x1 is bounded for bounded x2 (see [3]). 2

Now, we will pay attention to design a robust controller
for the system (1) under Assumptions 5.1-5.4. The closed-
loop system is required to have both global asymptotic
stability and local quadratic stability.

From Assumption 5.1, we choose

V2(x2) = xT
2 P2x2 (33)

as a local quadratic Lyapunov function for the base sys-
tem and define a local region Ω as:

Ω = {x2 |V2(x2) < µ} (34)

where µ > 0 is to be specified. Denote

A(x, q) =

[

A1(q) A12(q) + F12(x, q)
0 A2(q) + F2(x2, q)

]

. (35)

From Assumptions 5.1 and 5.4, we know that the follow-
ing holds for sufficiently small µ > 0 and ε > 0:

P0[A(x, q) + B(q)K] + [A(x, q) + B(q)K]T P0 < −εI ;
(36)

for all x2 ∈ Ω.

Assumptions 5.2 and 5.4 guarantees that the state x2

can be driven into the region Ω in finite time by the con-
troller u0(x) while keeping x1 bounded. Hence, we as-
sume that x2(0) ∈ Ω, where x2(0) is the initial value of
x2(t). Choose

V (x1, x2) = (x1 − Wx2)
T P1(x1 − Wx2) +

∫ V2(x2)

0

s(w)dw

(37)

as a local Lyapunov function for the system (1), where
s(w) is same as the function s(w) in (20).

For x2 ∈ Ω, the derivative of V (x1, x2) along the trajec-
tory of the system (1) is given by

V̇ (x1, x2) = xT [PA(x, q) + AT (x, q)P ]x + 2xT PBu
(38)

where

P =

[

P1 −P1W
−W T P1 s(V2)P2 + W T P1W

]

(39)

with its inverse given by

S =

[

P−1
1 + s−1(V2)WP−1

2 W T s−1(V2)WP−1
2

s−1(V2)P
−1
2 W T s−1(V2)P

−1
2

]

. (40)

Consider the following local controller:

ul(x1, x2) = s−1(V2(x2))K1x1

+[K2 + (1 − s−1(V2(x2)))K1W ]x2
(41)

Then we have the following main result:

Theorem 5.1: Suppose the system (1) satisfies Assump-
tions 5.1-5.4. Then the closed-loop system controlled by
the following controller

u =

{

u0(x2), x2 /∈ Ω
ul(x1, x2), x2 ∈ Ω

(42)

is robustly globally asymptotically stable and locally
quadratically stable.

Proof: As discussed before, we only need to consider the
case when x2(0) ∈ Ω and ul(x1, x2) is applied. Using the
nonlinear coordinate transformation

z = [zT
1 zT

2 ]T = Px, (43)

the equation (38) becomes

V̇ (x1, x2) = zT [A(x, q)S + SAT (x, q)]z + 2zT B(q)u. (44)

Denote s−1(V2(x2)) by s−1 and let

u = s−1K1x + K2x2 + v. (45)

Then,

V̇ (x1, x2) = 2zT (A(x, q) + B(q)K)Sz

−2(1 − s−1)zT B(q)[K1 0]Sz + 2zT B(q)v(46)

Rewrite (36) as

[A(x, q) + B(q)K]S0 + S0[A(x, q) + B(q)K]T < −εS2
0 ,

∀x ∈ Rn1 × Ω; ∀q ∈ Q (47)

where S0 = P−1
0 . Rewriting S as

S = s−1S0 + (1 − s−1)

[

P−1
1 0
0 0

]

we simplify (46) to

V̇ (x1, x2)

= 2s−1zT (A(x, q) + B(q)K)S0z

+2(1− s−1)zT
1 [A1(q)P

−1
1 ]z1

−2(1− s−1)s−1zT
1 B(q)K1Wx2 + 2zT B(q)v

Applying Assumption 2.3 and choosing

v = (1 − s−1)K1Wx2, (48)
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we have

V̇ (x1, x2)= 2s−1zT (A(x, q) + B(q)K)S0z

= 2s−1xT P0(A(x, q) + B(q)K)x (49)

From Assumption 2.1, we can see that

V̇ (x1, x2) < 0; ∀x ∈ Rn1 × Ω − {0, 0} . (50)

This implies that

V (x1(t), x2(t)) ≤ V (x1(0), x2(0)), ∀t ≥ 0.

Using (37) and monotonicity of s(·), we have

V2(x2(t)) ≤ V (x1(0), x2(0))/s(0) =: ρ

Hence, (49) leads to

V̇ (x1, x2) ≤ −εs−1(ρ)xT x. (51)

Therefore, the system (1) is robustly globally asymptot-
ically stabilizible. Finally, the robust local quadratic
stability property follows from (51) and the fact that
V (x1, x2) becomes quadratic as x2 → 0. ∇∇∇

6 Conclusions

In this paper, we have studied the robust stabilization
problem for a class of uncertain nonlinear systems in a for-
warding structure. Several results on this problem have
been reviewed. Then a new design method generalized
from [5, 6] is introduced. This method guarantees robust
global asymptotic stability and local quadratic stability.
Compared with existing results, this method enables us
to simplify the design process and the required assump-
tions and provides better robustness. It should be noted
that this method can be combined with the backstep-
ping design method to give a recursive design for robust
controllers for a much larger class of uncertain nonlin-
ear systems involving both forwarding and backstepping
structures; see [7] for details.
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