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Abstract—A distributed steady-state estimator is presented
for linear interconnected systems. Stability of the distributed
estimator is investigated. Sufficient conditions of stability are
deduced based on the state and observation models. Some
examples are provided to illustrate the relationship between the
stability of the estimator and that of the original dynamics.

I. INTRODUCTION

Complex large-scale systems, such as power systems [1]
and military command systems [2], usually involve high-order
dynamics and deploy over a large geographical region. If all the
measurements of the whole system can be collected together,
optimal state estimation can be obtained by the conventional
Kalman filtering method. But for most large-scale systems, it
is difficult or impossible to centralize all the measurements.
Therefore, distributed algorithms are often adopted.

Distributed Kalman filtering has many results [3–19]. Most
work in the literature discusses the situation in which observa-
tion systems enjoy a common state dynamic [3–11]. Optimal
[5, 7] and sub-optimal [6, 9, 10] algorithms are proposed in this
case. However, a complex large-scale system usually comprises
many subsystems which are interconnected [12, 13, 15–17, 19]
and the states among subsystems are coupled. Each subsystem
has its own dynamics and measurements. States of subsystems
are estimated based on local measurements and information
of neighboring subsystems. [12] and [13] presented unbiased
filters when measurements include some information of states
of other subsystems. [15–18] discussed the design of state
estimator for the systems with sparsely connected states. A
steady-state filter is presented in [17, 18] based on a consensus
strategy.

In this paper, we consider a distributed estimation problem
for a class of weakly interconnected linear systems. Each
subsystem depends on its own state and a part of the states
of other subsystems. The dimension of the partial state which
influences the neighboring subsystems is much smaller than
the number of measurements for each subsystems. Therefore,
it is not a good idea to transmit all the measurements from one
subsystem to another. We will design a distributed algorithm by
transmitting just necessary information about local estimation.
In this case, a steady-state distributed estimator is presented.
Stability conditions for the estimator are provided based on
the state and observation models. It is worth pointing out that

the stability of the estimator is unrelated to the stability of the
system. For simplicity we only consider two interconnected
subsystems in the paper.

The rest of this paper is organized as follows. Problem
statement is given in Section II. A distributed steady-state
filters is designed in Section III and stability conditions of the
distributed state estimator are derived in Section IV. Several
examples are provided to illustrate the relationship between
the stability of the estimator and that of the original dynamics.
in Section V. Some conclusions are drawn in Section VI.

II. PROBLEM STATEMENT

Consider the following dynamics composed of two inter-
connected subsystems:

S1 : 𝑥1(𝑘 + 1) = 𝐴11𝑥1(𝑘) +𝐵12𝑧1(𝑘) +𝐵1𝑤1(𝑘),(1)

𝑧1(𝑘) = 𝐶12𝑥2(𝑘), (2)

S2 : 𝑥2(𝑘 + 1) = 𝐵21𝑧2(𝑘) +𝐴22𝑥2(𝑘) +𝐵2𝑤2(𝑘),(3)

𝑧2(𝑘) = 𝐶21𝑥1(𝑘), (4)

where 𝑥𝑖(𝑘) ∈ ℜ𝑛𝑖 is the state vector of 𝑖-th subsystems,
𝑧𝑖(𝑘) ∈ ℜ𝑟𝑖 is the input from the other subsystem and
𝑤𝑖(𝑘) ∈ ℜ𝑚𝑖 is the process noise or exogenous disturbance
signal. 𝐴𝑖𝑖, 𝐵𝑖, 𝐵𝑖𝑗 , 𝐶𝑖𝑗 are constant matrices of appropriate
dimensions. In our problem setting, we assume that 𝑧𝑖 has
much smaller dimension than 𝑥𝑗 (𝑖 ∕= 𝑗), thus the two subsys-
tems are weakly coupled. This is motivated by applications
where a large system (such as power network) is divided
into several subsystems geographically and with coupling
between subsystems happening only through the boundaries.
Each subsystem has its own measurement system as follows:

𝑦1(𝑘) = 𝐶1𝑥1(𝑘) + 𝑣1(𝑘), (5)

𝑦2(𝑘) = 𝐶2𝑥2(𝑘) + 𝑣2(𝑘), (6)

where 𝑦𝑖(𝑘) ∈ ℜ𝑝𝑖 are measured outputs about corresponding
subsystems, 𝑣𝑖(𝑘) ∈ ℜ𝑝𝑖 are measurement noises, and 𝐶𝑖

are constant measurement matrices. We adopt a standard
assumption on the statistical characteristics of the noises:

Assumption 1. The process noise 𝑤𝑖(𝑘) and the measurement
noise 𝑣𝑖(𝑘) are uncorrelated Gaussian white noises with zero
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mean and covariance

𝐸

{[
𝑤𝑖(𝑘)
𝑣𝑖(𝑘)

] [
𝑤𝑇

𝑗 (𝑙) 𝑣𝑇𝑗 (𝑙)
]}

=

[
𝑄𝑤𝑖

0
0 𝑄𝑣𝑖

]
𝛿𝑘𝑙𝛿𝑖𝑗 , (7)

where 𝛿𝑘𝑙 and 𝛿𝑖𝑗 are the Kronecker delta and 𝑄𝑤𝑖
> 0 and

𝑄𝑣𝑖
> 0.

The structure of the dynamics and measurements are de-
scribed in Fig. 1.

S1

S2

𝑦1

𝑦2

𝑧1
𝑧2

𝑤1

𝑤2

𝑣1

𝑣2

Fig. 1: Coupled System

III. DISTRIBUTED STATE ESTIMATOR

If 𝑧1(𝑘) is known to the estimator of system S1, it is easy
to obtain the following optimal estimation of 𝑥1(𝑘 + 1) by
standard Kalman filtering:

𝑥̂1(𝑘 + 1∣𝑘 + 1) = 𝐴11𝑥̂1(𝑘∣𝑘) +𝐴12𝑥2(𝑘)

+𝐾1(𝑘 + 1)𝜀1(𝑘 + 1), (8)

where

𝐴12 ≜ 𝐵12𝐶12, (9)

𝜀1(𝑘 + 1) = 𝑦1(𝑘 + 1)− 𝐶1(𝐴11𝑥̂1(𝑘∣𝑘)
+𝐴12𝑥2(𝑘)). (10)

Similarly, there is an optimal estimator of system S2 if 𝑧2(𝑘)
is known:

𝑥̂2(𝑘 + 1∣𝑘 + 1) = 𝐴21𝑥1(𝑘) +𝐴22𝑥̂2(𝑘∣𝑘)
+𝐾2(𝑘 + 1)𝜀2(𝑘 + 1), (11)

where

𝐴21 ≜ 𝐵21𝐶21, (12)

𝜀2(𝑘 + 1) = 𝑦2(𝑘 + 1)− 𝐶2(𝐴21𝑥1(𝑘)

+𝐴22𝑥̂2(𝑘∣𝑘)). (13)

𝐾1(𝑘) and 𝐾2(𝑘) in (8) and (11) are computed as follows:

𝐾𝑖(𝑘 + 1) = 𝑃𝑖(𝑘 + 1∣𝑘)𝐶𝑇
𝑖 𝑄

−1
𝑃𝑖

(𝑘 + 1), (14)

𝑄𝑃𝑖
(𝑘 + 1) = 𝐶𝑖𝑃𝑖(𝑘 + 1∣𝑘)𝐶𝑇

𝑖 +𝑄𝑣𝑖
, (15)

where 𝑃𝑖(𝑘 + 1∣𝑘) satisfies the following Ricaati equations:

𝑃𝑖(𝑘 + 1∣𝑘)
= 𝐴𝑖𝑖(𝑘)𝑃𝑖(𝑘∣𝑘)𝐴′

𝑖𝑖(𝑘) +𝐵𝑖(𝑘)𝑄𝑤𝑖
𝐵′

𝑖(𝑘), (16)

𝑃𝑖(𝑘 + 1∣𝑘 + 1)

= 𝑃𝑖(𝑘 + 1∣𝑘)−𝐾𝑖(𝑘 + 1)𝑄𝑃𝑖
(𝑘 + 1)𝐾 ′

𝑖(𝑘 + 1).(17)

However, it is almost impossible to know the exact value
of 𝑧1(𝑘) for the estimator of system S1. Therefore we have
to consider to use an estimated value of 𝑧1(𝑘) to estimate
𝑥1(𝑘 + 1). A natural idea is to utilize systems (3) and (6)
to obtain the estimated value of 𝑥2(𝑘) which will replace the
exact value of 𝑥2(𝑘). In this case, a distributed estimator for
system S1 and S2 can be described as Fig. 2.

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟1

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟2

𝑦1

𝑦2

𝑥̂1

𝑥̂2

𝐶12 𝐶21

𝑧1

𝑧2

Fig. 2: Distributed Estimator

Define

𝑒𝑖(𝑘 + 1) = 𝑦𝑖(𝑘 + 1)− 𝐶𝑖(𝐴𝑖1𝑥̂1(𝑘∣𝑘) +𝐴𝑖2𝑥̂2(𝑘∣𝑘)). (18)

Then the estimated values of 𝑥1(𝑘) and 𝑥2(𝑘) can be iteratively
computed as follows:

𝑥̂1(𝑘 + 1∣𝑘 + 1)

= 𝐴11𝑥̂1(𝑘∣𝑘) +𝐴12𝑥̂2(𝑘∣𝑘) +𝐾1(𝑘 + 1)𝑒1(𝑘 + 1)

= 𝐹1(𝑘 + 1)𝐴11𝑥̂1(𝑘∣𝑘) + 𝐹1(𝑘 + 1)𝐴12𝑥̂2(𝑘∣𝑘)
+𝐾1(𝑘 + 1)𝑦1(𝑘 + 1), (19)

𝑥̂2(𝑘 + 1∣𝑘 + 1)

= 𝐴21𝑥̂1(𝑘∣𝑘) +𝐴22𝑥̂2(𝑘∣𝑘) +𝐾2(𝑘 + 1)𝑒2(𝑘 + 1)

= 𝐹2(𝑘 + 1)𝐴21𝑥̂1(𝑘∣𝑘) + 𝐹2(𝑘 + 1)𝐴22𝑥̂2(𝑘∣𝑘)
+𝐾2(𝑘 + 1)𝑦2(𝑘 + 1), (20)

where 𝐾𝑖(𝑘 + 1) are computed by (14) – (17) and

𝐹𝑖(𝑘 + 1) ≜ 𝐼 −𝐾𝑖(𝑘 + 1)𝐶𝑖.

Obviously, the estimations in (19) and (20) are sub-optimal.
From the point of view of practical applications and simplifi-
cation, what attracts us is to design steady-state filters. Firstly,
the following assumption is presented for 𝑖 = 1 or 2 in order
to describe clearly.
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Assumption 2. (𝐴𝑖𝑖, 𝐵𝑖𝑄
1
2
𝑤𝑖) is completely stabilizable.

(𝐴𝑖𝑖, 𝐶𝑖) is completely detectable.

According to the design of the steady-state filter in [20] and
refering to (8) and (11), we have the following lemma.

Lemma 3. If Assumption 2 is satisfied, we have the following
steady-state filters of systems (1) – (6)

𝑥̂1(𝑘 + 1∣𝑘 + 1)

= (𝐼 −𝐾1𝐶1)𝐴11𝑥̂1(𝑘∣𝑘) +𝐾1𝑦1(𝑘 + 1)

+(𝐼 −𝐾1𝐶1)𝐴12𝑥2(𝑘), (21)

𝑥̂2(𝑘 + 1∣𝑘 + 1)

= (𝐼 −𝐾2𝐶2)𝐴22𝑥̂2(𝑘∣𝑘) +𝐾2𝑦2(𝑘 + 1)

+(𝐼 −𝐾2𝐶2)𝐴21𝑥1(𝑘), (22)

where

𝐾𝑖 = 𝑅𝑖𝐶
𝑇
𝑖 (𝐶𝑖𝑅𝑖𝐶

𝑇
𝑖 +𝑄𝑣𝑖

)−1, (23)

and 𝑅𝑖 is the unique positive definite solution to the following
algebraic Riccati equation

𝑅𝑖 = 𝐴𝑖𝑖𝑅𝑖𝐴
𝑇
𝑖𝑖 −𝐴𝑖𝑖𝑅𝑖𝐶

𝑇
𝑖 (𝐶𝑖𝑅𝑖𝐶

𝑇
𝑖 +𝑄𝑣𝑖

)−1𝐶𝑖𝑅𝑖𝐴
𝑇
𝑖𝑖

+𝐵𝑖𝑄𝑤𝑖
𝐵𝑇

𝑖 . (24)

Note that 𝑥2(𝑘) in (21) and 𝑥1(𝑘) in (22) are the inputs
of the filters. If they are known, then the optimal steady-state
filter can be obtained as in Lemma (3). However, it is difficult
to know 𝑥1(𝑘) and 𝑥2(𝑘). Therefore, we will consider a sub-
optimal steady-state filter. In addition, 𝑅𝑖 means the covariance
of the predicted error in the steady-state filter. If 𝑃𝑖 is denoted
as the covariance of the estimation error, then the following
relation can be obtained by information filters ([20])

𝑃−1
𝑖 = 𝑅−1

𝑖 + 𝐶𝑇
𝑖 𝑄

−1
𝑣𝑖

𝐶𝑖. (25)

In view of Lemma 3, we present:

Algorithm 4. A distributed steady-state filters for systems (1)
– (6) is as follows:

𝑥̂1(𝑘 + 1∣𝑘 + 1) = 𝐹1𝐴11𝑥̂1(𝑘∣𝑘) + 𝐹1𝐴12𝑥̂2(𝑘∣𝑘)
+𝐾1𝑦1(𝑘 + 1), (26)

𝑥̂2(𝑘 + 1∣𝑘 + 1) = 𝐹2𝐴21𝑥̂1(𝑘∣𝑘) + 𝐹2𝐴22𝑥̂2(𝑘∣𝑘)
+𝐾2𝑦2(𝑘 + 1), (27)

where 𝐹𝑖 = 𝐼 −𝐾𝑖𝐶𝑖 and 𝐾𝑖 are presented as (23).

Algorithm 4 is easy to obtain. The main work includes the
analysis about stability of the algorithm and it will be discussed
in the next section.

IV. STABILITY ANALYSIS

The algorithm presented by (26) and (27) is simple though
it is sub-optimal. Now we will discuss the stability of error
systems from the filters (26) and (27). Define 𝑥𝑖(𝑘∣𝑘) =

𝑥𝑖(𝑘)− 𝑥̂𝑖(𝑘∣𝑘). Then the error equations of dynamic systems
S1− S2 and filters (26)-(27) are as follows.(

𝑥1(𝑘 + 1∣𝑘 + 1)
𝑥2(𝑘 + 1∣𝑘 + 1)

)

= 𝐹𝐴

(
𝑥1(𝑘∣𝑘)
𝑥2(𝑘∣𝑘)

)
+

(
𝐹1𝐵1𝑤1(𝑘)
𝐹2𝐵2𝑤2(𝑘)

)

−
(

𝐾1𝑣1(𝑘 + 1)
𝐾2𝑣2(𝑘 + 1)

)
, (28)

where 𝐹 ≜
(

𝐹1 0
0 𝐹2

)
and 𝐴 ≜

(
𝐴11 𝐴12

𝐴21 𝐴22

)
. What

we will consider is the internal stability of the error system
(28), i.e., the stability of 𝐹𝐴.

Remark 5. Assumption (2) can not guarantee the internal
stability of error systems (28). An example (Example (13)) is
provided to illustrate that in the next section.

With the help of the bounds of the solution to the algebraic
Riccati equation (24), we can obtain sufficient conditions of
the internal stability of the systems (28). Denote 𝜆𝑀 (𝐴) and
𝜆𝑚(𝐴) as the maximal and minimal eigenvalue of matrix 𝐴,
respectively. Then we have the following result.

Theorem 6. If

𝜆𝑀 (𝐴𝐴𝑇 )(min
𝑖
{𝜆𝑚(𝐿𝑅𝑖

)})−2(max
𝑖

{𝜆𝑀 (𝑈𝑃𝑖
})2 < 1, (29)

then error equation (28) is internally stable, where 𝐿𝑅𝑖
and

𝑈𝑃𝑖
are any lower and upper bounds of 𝑅𝑖 and 𝑃𝑖, respec-

tively.

Proof. It is easy to know 𝐹𝑖 = 𝑃𝑖𝑅
−1
𝑖 by the standard

Kalman filtering [21]. Then we have 𝐹 = 𝑃𝑅−1, where 𝑃 ≜(
𝑃1 0
0 𝑃2

)
and 𝑅 ≜

(
𝑅1 0
0 𝑅2

)
. Noting 𝑃 and 𝑅 are

positive-definite matrices, then we have

∥𝐹𝐴∥22 = 𝜆𝑀 (𝐹𝐴𝐴𝑇𝐹𝑇 ) = 𝜆𝑀 (𝑃𝑅−1𝐴𝐴𝑇𝑅−1𝑃 )

≤ 𝜆𝑀 (𝑅−1𝐴𝐴𝑇𝑅−1)𝜆𝑀 (𝑃 2)

≤ 𝜆𝑀 (𝐴𝐴𝑇 )𝜆𝑀 (𝑅−2)𝜆𝑀 (𝑃 2),

where ∥𝐹𝐴∥2 is the spectral norm of 𝐹𝐴. Noting that
𝜆𝑀 (𝑅−1) = (𝜆𝑚(𝑅))−1, then we know ∥𝐹𝐴∥2 ≤ 1 when the
condition is satisfied. It is well known, the spectral radius of a
matrix is not greater any norm of the matrix ([22]). Therefore,
error equation (28) is internally stable when ∥𝐹𝐴∥2 ≤ 1. □
Remark 7. The stability of 𝐴11, 𝐴22 or 𝐴 is not necessary
for the condition (29); see Example 14.

Next we present another sufficient condition for the stability
of (28). First, two well-known lemmas are listed as follows.

Lemma 8. Let 𝑋 =

(
𝑋11 𝑋12

𝑋𝑇
12 𝑋22

)
, Then following state-

ments are equivalent:
i) 𝑋 > 0,
ii) 𝑋11 > 0 and 𝑋𝑇

12𝑋
−1
11 𝑋12 < 𝑋22,

iii) 𝑋22 > 0 and 𝑋12𝑋
−1
22 𝑋𝑇

12 < 𝑋11.
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Lemma 9. [23] Let

(
𝑋11 𝑋12

𝑋𝑇
12 𝑋22

)
(∈ 𝑅2𝑛×2𝑛) > 0, where

𝑋11, 𝑋12, 𝑋22 ∈ 𝑅𝑛×𝑛. If 𝑋11 ≥ 𝑋22, then 𝑋−1
11 𝑋𝑇

12 is Schur
stable.

Now we can present the following sufficient condition of
internal stability of the error equation (28).

Theorem 10. If the following holds:

𝐴

(
𝑈𝑃1

0
0 𝑈𝑃2

)
𝐴𝑇 <

(
𝐿𝑅1

0
0 𝐿𝑅2

)
, (30)

then error system (28) is internally stable, where 𝑈𝑃𝑖
and 𝐿𝑅𝑖

are any upper and lower bounds of 𝑃𝑖 and 𝑅𝑖, respectively.

Proof. It is easy to know 𝑅−1 ≤ 𝑃−1 for 𝑃 ≤ 𝑅 [20].
Then (30) implies 𝐴𝑃𝐴𝑇 < 𝑅 and 𝑅−1𝐴𝑃𝐴𝑇𝑅−1 < 𝑅−1.
From Lemma 8, we have(

𝑃−1 𝐴𝑇𝑅−1

𝑅−1𝐴 𝑅−1

)
> 0.

Therefore, 𝑃𝑅−1𝐴 = 𝐹𝐴 is asymptotically stable according
to Lemma 9. □

Taking 𝐿𝑅𝑖
= 𝑅𝑖 and 𝑈𝑃𝑖

= 𝑃𝑖 is simple and direct.
However, this does not allow us to make a judgement about
stability before 𝑅𝑖 is computed. We hope to obtain some
stabilizable conditions only via system models. There are many
papers in the literature to discuss the bounds of the solution to
the Riccati equation (24). If 𝐴𝑖𝑖 is stable, the upper bounds are
obtained via the unique positive semi-definite solution to cor-
responding Lyapunov equation in [24]. If 𝐴𝑖𝑖 is not stable and
(𝐴𝑖𝑖, 𝐶

𝑇
𝑖 𝑄

−1/2
𝑣𝑖 ) is stabilizable, [25] presents the upper bounds

by using a feedback gain 𝐿𝑖 stabilizing 𝐴𝑖𝑖+𝐶𝑇
𝑖 𝑄

−1/2
𝑣𝑖 𝐿𝑖. The

following lemma synthesizes the results of Theorems 3.1 – 3.4
in [26] and presents a simpler form about the bounds.

Lemma 11. Define

Φ𝑖,𝑗 = 𝐴𝑖𝑖(Φ
−1
𝑖,𝑗−1 + 𝐶𝑇

𝑖 𝑄
−1
𝑣𝑖

𝐶𝑖)
−1𝐴𝑇

𝑖𝑖 +𝐵𝑖𝑄𝑤𝑖
𝐵𝑇

𝑖 ,

𝑖 = 1, 2, 𝑗 = 1, 2, . . . ,

Φ𝑖,0 = 𝐵𝑖𝑄𝑤𝑖
𝐵𝑇

𝑖 ,

Ψ𝑖,𝑗 = 𝐴𝑖𝑖(Ψ
−1
𝑖,𝑗−1 + 𝐶𝑇

𝑖 𝑄
−1
𝑣𝑖

𝐶𝑖)
−1𝐴𝑇

𝑖𝑖 +𝐵𝑖𝑄𝑤𝑖
𝐵𝑇

𝑖 ,

𝑖 = 1, 2, 𝑗 = 1, 2, . . . ,

Ψ𝑖,0 = 𝐴𝑖𝑖(𝐶
𝑇
𝑖 𝑄

−1
𝑣𝑖

𝐶𝑖)
−1𝐴𝑇

𝑖𝑖 +𝐵𝑖𝑄𝑤𝑖
𝐵𝑇

𝑖 .

If the DARE (24) has a unique positive definite solution, then
the following statements hold:

1) Φ𝑖,𝑗 is the lower bound of 𝑅𝑖. Moreover, it satisfies
Φ𝑖,𝑗 ≥ Φ𝑖,𝑗−1 and 𝑅𝑖 = lim

𝑗→∞
Φ𝑖,𝑗 .

2) Ψ𝑖,𝑗 is the upper bound of 𝑅𝑖. Moreover, it satisfies
Ψ𝑖,𝑗 ≤ Ψ𝑖,𝑗−1 and 𝑅𝑖 = lim

𝑗→∞
Ψ𝑖,𝑗 .

Proof. Riccati equation (24) can be rewritten as

𝑅𝑖 = 𝐴𝑖𝑖𝑅𝑖𝐴
𝑇
𝑖𝑖 −𝐴𝑖𝑖𝑅𝑖𝐶

𝑇
𝑖 𝑄

−1/2
𝑣𝑖

(𝑄−1/2
𝑣𝑖

𝐶𝑖𝑅𝑖𝐶
𝑇
𝑖 𝑄

−1/2
𝑣𝑖

+𝐼)−1𝑄−1/2
𝑣𝑖

𝐶𝑖𝑅𝑖𝐴
𝑇
𝑖𝑖 +𝐵𝑖𝑄𝑤𝑖

𝐵𝑇
𝑖 .

Comparing to the Riccati equation in [26], we obtain the result.
□

Noting formula (25), we can obtain the following lower and
upper bounds of 𝑃𝑖:

𝑃𝑖 ≥ ((Φ𝑖,𝑗)
−1 + 𝐶𝑇

𝑖 𝑄
−1
𝑣𝑖

𝐶𝑖)
−1 (31)

and

𝑃𝑖 ≤ ((Ψ𝑖,𝑗)
−1 + 𝐶𝑇

𝑖 𝑄
−1
𝑣𝑖

𝐶𝑖)
−1, (32)

where Φ𝑖,𝑗 and Ψ𝑖,𝑗 are the lower and upper bounds of 𝑅𝑖

in Lemma 11. Now a sufficient condition for the stability
of system (28) is presented based on the models of system
dynamics and measurements in the following corollary.

Corollary 12. If the following inequalities are satisfied

𝜆𝑀 (𝐴𝐴𝑇 )(min
𝑖
{𝜆𝑚(Φ𝑖,𝑗)})−2

×(min
𝑖
{𝜆𝑚(Ψ−1

𝑖,𝑗 + 𝐶𝑇
𝑖 𝑄

−1
𝑣𝑖

𝐶𝑖)})−2 < 1, (33)

or

𝐴

(
Ω−1

1 0
0 Ω−1

2

)
𝐴𝑇 <

(
Φ1,𝑗 0
0 Φ2,𝑗

)
, (34)

where Ω1 = (Ψ1,𝑗)
−1 + 𝐶𝑇

1 𝑄
−1
𝑣1

𝐶1, Ω2 = (Ψ2,𝑗)
−1 +

𝐶𝑇
2 𝑄

−1
𝑣2

𝐶2, Φ𝑖,𝑗 and Ψ𝑖,𝑗 are denoted in Lemma 11, then (28)
is internally stable.

Proof. The result is obvious by the Theorem 6 and Theorem
10 after considering the bounds provided by Lemma 11, (31)
and (32). □

V. EXAMPLES

We provide two examples to explain Remarks 5 and 7 about
the relations of the system models and the filter we proposed
in the section.

Example 13. Consider the following systems:

S1 : 𝑥1(𝑘 + 1) = 0.8𝑥1(𝑘) + 0.5𝑥2(𝑘) + 𝑤1(𝑘),

S2 : 𝑥2(𝑘 + 1) = 0.5𝑥1(𝑘) + 0.9𝑥2(𝑘) + 𝑤2(𝑘),

𝑦1(𝑘) = 0.4𝑥1(𝑘) + 𝑣1(𝑘),

𝑦2(𝑘) = 0.3𝑥2(𝑘) + 𝑣2(𝑘),

with 𝑄𝑤1
= 𝑄𝑤2

= 𝑄𝑣1
= 𝑄𝑣2

= 1.
Obviously, the subsystem S1 is stable for 𝑥2(𝑘) and 𝑤1(𝑘)

are viewed as inputs. So does subsystem S2. However, the
error systems (28) is not stable since the maximum eigenvalue
of 𝐹𝐴 is 1.0571. Therefore, the stability of each subsystem
can not guarantee the stability of the estimation error system.

Example 14. Consider the following systems:

S1 : 𝑥1(𝑘 + 1) = 1.1𝑥1(𝑘) + 𝑧1(𝑘) + 𝑤1(𝑘),

𝑧1(𝑘) = 𝑥2(𝑘),

S2 : 𝑥2(𝑘 + 1) = 𝑧2(𝑘) + 1.1𝑥2(𝑘) + 𝑤2(𝑘),

𝑧2(𝑘) = 𝑥1(𝑘),

𝑦1(𝑘) = 𝑥1(𝑘) + 𝑣1(𝑘),

𝑦2(𝑘) = 𝑥2(𝑘) + 𝑣2(𝑘),
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with 𝑄𝑤1
= 𝑄𝑤2

= 𝑄𝑣1
= 𝑄𝑣2

= 1.
The subsystem S1 and S2 are not stable. Neither is the

system S composed of S1 and S2. However, after taking Φ11,
Φ21, Ψ10 and Ψ20 in (33), the left of (33) is 0.8115, then the
condition in Theorem 6 is satisfied. The maximum eigenvalue
of 𝐹𝐴 is 0.7571 at the same time. Therefore, the error system
(28) derived by Algorithm 4 is internally stable (Figure 3).
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Fig. 3: State trajectories of error system (28) and corresponding
unforced system

Example 15. Consider the following system:

S1 : 𝑥1(𝑘 + 1) = 1.1𝑥1(𝑘) + 0.1𝑧1(𝑘) + 𝑤1(𝑘),

𝑧1(𝑘) = 𝑥2(𝑘),

S2 : 𝑥2(𝑘 + 1) = 𝑧2(𝑘) + 1.1𝑥2(𝑘) + 𝑤2(𝑘),

𝑧2(𝑘) = 0.1𝑥1(𝑘),

𝑦1(𝑘) = 𝑥1(𝑘) + 𝑣1(𝑘),

𝑦2(𝑘) = 𝑥2(𝑘) + 𝑣2(𝑘),

with 𝑄𝑤1
= 𝑄𝑤2

= 𝑄𝑣1
= 𝑄𝑣2

= 1.
The subsystems S1 and S2 are not stable. Neither is the

system composed of S1 and S2. However, after taking Φ10,
Φ20, Ψ10 and Ψ20 in (34), the condition in Theorem 10 is
satisfied. The maximum eigenvalue of 𝐹𝐴 is 0.4326 at this

time. Therefore, the estimation error system (28) derived by
Algorithm 4 is internally stable (Figure 4).
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Fig. 4: State trajectories of error system (28) and corresponding
unforced system

VI. CONCLUSIONS

A distributed steady-state estimation algorithm for a class
of interconnected systems is proposed. Stability conditions for
estimation error dynamics are provided based on the state and
observation models. It is worth pointing out that the stability
of the distributed state estimator is not related to the stability
of the given dynamical systems.
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