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Abstract—A randomly deployed sensor network is typically not
completely localizable using distance-based measurements only.
Though a necessary and sufficient condition for testing whether
a network is localizable has been given in the literature, how
to find localizable nodes from a not fully localizable network is
still open. In this paper, we try to address a connection between
two well-known localization methods, the trilateration method
and the WHEEL extension method, by using a graphical tool
named Henneberg operations. We also study whether Henneberg
operations always guarantee the localizability of a network. The
localizability by a Henneberg operation-based algorithm is given.
Simulation shows that the performance of this algorithm for
finding localizable nodes is very close to a well-known necessary
condition called 3-path condition.

I. INTRODUCTION

Location based service (LBS) is a fundamental research
topic in applying sensor networks. The process of computing
the location of a sensor node is called a localization problem.
This process usually contains two steps: distance estimation
and localization algorithm. The distance between two nodes
can be either measured directly through radio signals [4] or
estimated through hop-counting [3]. The localization algorithm
then utilizes the distance estimates to compute the localization.
Most commonly used localization algorithm is the so-called
trilateration scheme. In the 2-D case, one node’s location can
be uniquely located through three direct connections with three
position-known nodes called anchor nodes. Trilateration can
run in a sequential way through adding localizable nodes into
the set of anchor nodes one by one.

But for a randomly deployed sensor network, there may
be only a small part of the whole sensor network that can be
localized using the trilateration scheme because not all nodes in
the sensor network have three direct connections with position-
known nodes [1] [9]. A newly reported scheme named WHEEL
extension can find more nodes than trilateration. They explore
the whole network to find a specialized structure formed by 6
nodes, 3 of which are position-known nodes, and the other 3
nodes in this structure are jointly localizable.

In this paper, we will introduce a bridging technique that
can connect trilateration scheme and WHEEL extension. We
will show that the WHEEL extension can be obtained through

applying a series of Henneberg operations onto a localized
graph. Inspired by a comment about WHEEL extension in [11],
we will also discuss whether Henneberg operations always
guarantee localizability of a network. Finally, we will give a
Henneberg operation-based algorithm and evaluate the gap to
a known necessary condition called 3-path condition.

II. PROBLEM STATEMENT

A sensor network is usually abstracted to be a graph
𝒢 = (𝒱, ℰ), where 𝒱 is a non-empty node set and, for ∀𝑗 ∈ 𝒱 ,
(𝑖, 𝑗) ∕= 0 and (𝑖, 𝑗) ∈ ℰ . In graph theory, a graph is called rigid
if it can not be continuously deformed without changing the
distances. A graph is called redundantly rigid if it is still rigid
after removing any one edge. A graph is called 3-connected
if it is still connected after removal of any two nodes. A
graph is called globally rigid if there is a unique realization
with the given distance constraints. A globally rigid graph is
called minimally globally rigid if it is no longer globally rigid
after removing any edge. More detailed definition of these
conceptions can be referenced in [1] and [10].

We introduce a necessary and sufficient condition for global
rigidity of a graph, which first appeared in [14].

Lemma 1: A graph is globally rigid if and only if it is 3-
connected and redundantly rigid.

We also introduce a necessary and sufficient condition for
localizability of a network, which was originally pointed out
in [6].

Lemma 2: A network is localizable if and only if the graph
is globally rigid and there are at least three anchor nodes.

For a network, we can determine whether it is wholly
localizable through above necessary and sufficient condition.
But a randomly deployed network is hardly fully localizable.
In this case we want to know which nodes are still localizable.

There are two competitive schemes to this aim. The first one
is the commonly used trilateration scheme, which tests one
node at a time for three possible connections with position-
known nodes until no more localizable nodes can be found.
The advantage of this scheme is that it is easy to realize.
But the requirement of three direct connections with position-
known nodes is so strong that many localizable nodes will
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be missed. The other scheme is named WHEEL extension. It
also can detect localizable nodes in a sequential way. But its
topology requirement is a little more complex than trilatertaion.
It aims to detect a specialized 6-node subgraph from the whole
network. If this subgraph also contains at least three location
known nodes, the graph is localizable. In [8], Yang et al.
proved that WHEEL extension shows improvement over the
trilateration method.

The trilateration scheme and WHEEL extension are both
sequential methods and contain sufficient conditions for lo-
calizability. A natural question is: What is the connection
between these two schemes? In this paper, we will try to build
a connection between these two schemes by using a graphical
tool called Henneberg operations.

One emphasized character of Henneberg sequence is its
ability to maintain global rigidity. However, Huang et al. [11]
mentioned that WHEEL extension cannot always guarantee
the global rigidity of a network and gave a counter example
to prove this statement. We will discuss this counter example
and study whether a Henneberg sequence can always maintain
the global rigidity of a network.

Since there is still no computationally tractable necessary
and sufficient condition to test whether a node is localizable,
we want to explore the gap between a necessary condition
known as the 3-path condition [7] and the localization scheme
based on Henneberg operations.

III. FROM TRILATERATION TO WHEEL EXTENSION

A graph 𝒢 to be localized consists of 𝑚 anchor nodes, 𝑚 ≥
3, and 𝑛 other nodes. When we use the trilateration scheme
to detect localizable nodes in 𝒢, we start with the neighbors
of 𝑚 anchor nodes. If a node has three direct connections
with anchor nodes, it will be treated as a localizable node and
added into the set of position known nodes. Then check the
next node. This process will keep on until no more localizable
nodes can be found. One example is shown in Fig. 1(a)the sets
𝒮𝑎 and 𝒮𝑙 indicate a set of anchor nodes and a set of nodes to
be localized, respectively. Anchor nodes and other nodes are
indicated by solid circles and squares, respectively. We notice
that all nodes in 𝒮𝑙 are localizable since each has three direct
connections with anchor nodes.

The WHEEL extension aims to find a 6-node structure, as
shown in Fig. 1(d). This 6-node structure can be easily checked
to be localizable according to Lemma 2. Note that, though this
graph is localizable, we cannot find a trilateration sequence
in this graph. This is caused by the fact that the trilateration
scheme is only a sufficient but not necessary condition for
localizability.

Now, we introduce the conception of Henneberg operations.
As defined in [13], for a graph 𝒢 = (𝒱, ℰ), a Henneberg
operation is to firstly add a new vertex 𝑢 /∈ 𝒱 and edges
𝑢𝑣, 𝑢𝑤, 𝑢𝑡 with 𝑣, 𝑤, 𝑡 ∈ 𝒱 and then delete one edge among
𝑣, 𝑤 and 𝑡.

The operations from Fig. 1(a)-(c) is an example of Hen-
neberg operations. The graph shown in Fig. 1(a) is localizable.
Then we add a new node onto this graph with three new edges

𝒮𝑎

𝒮𝑙

(a) ∣𝒮𝑙∣ = 1

𝒮𝑎

𝒮𝑙

(b) ∣𝒮𝑙∣ = 2

𝒮𝑎

𝒮𝑙

(c) ∣𝒮𝑙∣ = 3 (d) WHEEL case

Fig. 1. Henneberg sequence from ∣𝒮1∣ = 1 to ∣𝒮1∣ = 3

as in Fig. 1(b) and then delete an existing edge, which is
indicated by the dashed line. After that, we can obtain a new
graph as shown in Fig. 1(b) without the dashed line. Operate
similarly on this graph, we can obtain a new one as shown in
Fig. 1(c) without the dashed line.

The graph shown in both Fig. 1(b) and Fig. 1(c) can be
checked to be localizable according to Lemma 2. This is due
to a property of Henneberg sequence that every globally rigid
graph can be obtained from a fully connected graph through
Henneberg operations [14].

The graph shown in Fig. 1(c) is identical with the WHEEL
6-node structure shown in Fig. 1(d). Consider the fact that
Fig. 1(a) a single trilateration scheme, we have our first
conclusion as follows:

Conclusion 1: A 6-node WHEEL graph as shown in
Fig. 1(d) can be formed using a series of Henneberg operations
starting from a localizable subgraph in Fig. 1(a) by the
trilateration scheme.

IV. CAN HENNEBERG OPERATIONS ALWAYS GUARANTEE

THE LOCALIZABILITY?

In [11], Huang et al. provided an encounter example to
show that the graph formed by WHEEL extension may not
always be globally rigid. Since WHEEL extension can be
obtained by adding a series of Henneberg sequences to a
globally rigid graph, a natural question is whether Henneberg
operations can guarantee globally rigidity of the resulting
graph 𝒢′.

The answer is Henneberg operations almost surely preserve
the global rigidity of the graph, as shown below:

Theorem 1: If graph 𝒢′ is obtained from graph 𝒢 by
Henneberg operations and 𝒢 is 3-connected and redundantly
rigid, then 𝒢′ is almost surely globally rigid.
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Fig. 2. A counter example. Subfigure (a), (b) and (d) illustrate graph 𝒢, 𝒢′

and 𝒢′′
, respectively.

Proof: Firstly, we describe the extreme case that 𝒢′ are not
globally rigid. We choose an arbitrary 4-node fully connected
graph 𝒢, as shown in Fig. 2(a). It is easily to check that a
4-node fully connected graph is 3-connected and redundantly
rigid.

Then we construct a new graph 𝒢′ through Henneberg
operation on 𝒢. The graph after a Henneberg operation is
shown in Fig. 2(b). As described before, Henneberg operation
adds a new vertex and new edges with three different vertices
(vertices 1, 3 and 4) on 𝒢. Also, an edge between these three
vertices in 𝒢 (edge 34) will be deleted. So far, we have finished
a standard process of Henneberg operation on a 4-node fully

connected graph.
Next, we will examine if this newly obtained graph 𝒢′

is globally rigid. At first, we find an axisymmetric point for
vertices 4 and 5 with respect to edges 12 and 13 respectively.
As shown in Fig.2(c), the axisymmetric point are 4′ and 5′.
From the definition of axisymmetry, we can obtain that edges
15 and 14 are identical with 15′ and 14′, respectively. Also,
the angle ∠𝛼 and ∠𝛽 are equal to angle ∠315′ and ∠214′,
respectively.

Now we divide the graph 𝒢′ into two cases: 1) ∠𝛼 = ∠𝛽;
2)∠𝛼 ∕= ∠𝛽.

Suppose ∠𝛼 = ∠𝛽. We can obtain ∠515′=∠414′. Because
∠415 = ∠415′ +∠515′ and ∠4′15′ = ∠4′14+∠415′, we get
∠415=∠4′15′.

So far, for △415 and △4′15′, we have two pairs of edges
and one angle between them that are equal, i.e., edge 15 =
15′, edge 14 = 14′ and angle ∠415=∠4′15′. Hence △415 =
△4′15′ and edge 45 = 4′5′. Because vertices 4′ and 5′ are
axisymmetric with 4 and 5, we also get edges 24 = 24′ and
35 = 35′.

Define a graph 𝒢′′ formed by vertices 1, 2, 3, 4′, 5′ and the
connecting edges between them. We redraw 𝒢′′ in Fig. 2(d).
We notice that each edge in 𝒢′′ has the same length with
one corresponding edge in 𝒢′. So, graph 𝒢′ has more than
one realization. It is also clear to compare the Fig. 2(d) with
Fig. 2(b). Since a globally rigid graph should have unique
realization, we can conclude that 𝒢′ is not globally rigid if
and only if ∠𝛼 = ∠𝛽.

For a randomly deployed network, once the position of
vertices 1, 2, 3, 4 are fixed, it has a zero measure for vertex
5 to be deployed at a position such that ∠𝛼 = ∠𝛽. Thus, we
can conclude that the graph 𝒢′ is almost surely globally rigid.

Remark 1: Note that there is also a concave form of 4-node
fully connected graph 𝒢, such as shown in Fig. 3(a). For this
case, we can still have a graph 𝒢′ not globally rigid obtained
from 𝒢 if ∠𝛼 = ∠𝛽 in Fig. 3(b).

This kind of extreme cases in both [11] and the proof
here will be excluded if we introduce a concept of generic
globally rigid. The generic property leads a graph to avoid
some specialized positions such as a co-linear three nodes
position or ∠𝛼 = ∠𝛽 as in above cases.

V. HENNEBERG OPERATION-BASED LOCALIZATION

SCHEME

In this section, we will use Henneberg operations to explore
the localizability of a sensor network. Since the global rigidity
of a graph is guaranteed by Henneberg operations, we can
detect the localizable nodes by using Henneberg operations in
a sequential way.

The idea of our Henneberg operation-based localization
scheme is as follows:

Starting with a set of localizable nodes, such as 𝒮𝑎 shown in
Fig.1(a), we can determine the localizability of one position-
unknown node, say node 𝑖, in the set 𝒮𝑙 to be localized by
analyzing whether the connections between 𝒮𝑎 and node 𝑖 can
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Fig. 3. Another form of 4-node fully connected graph.

be formed by a Henneberg operation starting from any three
nodes in the joint graph of 𝒮𝑎 and 𝒮𝑙 shown in Fig. 1(a). If
so, we add node 𝑖 into the set of 𝒮𝑎. Otherwise, we choose
any one neighbor of 𝑖 in 𝒮𝑙, say node 𝑗, and test whether the
connections between 𝒮𝑎 and nodes 𝑖 and 𝑗 can be formed by a
Henneberg operation starting from any three nodes in the joint
graph. If so, we add both nodes 𝑖 and 𝑗 into 𝒮𝑎. Otherwise, we
consider one more neighbor of 𝑖 in 𝒮𝑙, say node 𝑘, which is
also the neighbor of node 𝑗, and test the joint graph of 𝑖, 𝑗, 𝑘
and 𝒮𝑎. Although this process can continue, we only consider
the three situations above due to complexity considerations.

After that, we repeat the same test on another node in 𝒮𝑙.
This process will be terminated until no more localizable node
is detected.

Note that, when the number of position-unknown nodes
equals to one, our scheme is identical with trilateration scheme.
When considering three nodes at a time, our scheme here will
cover all possible cases that can be detected by the WHEEL
extension. When we consider more nodes in the set to be
localized, it can find more nodes than the WHEEL extension
scheme.

We give an intuitive comparison in Fig 4 among the three
schemes, i.e., trilatration, WHEEL extension and Henneberg
operation-based scheme. The nodes are marked in the same
way as in Fig.1(a)-(d). The first and third subfigures in
the upper row of Fig. 4 correspond to graphs that can be
localized by the scheme of trilateration or WHEEL extension.
The bottom row of the figure are two examples that cannot
be detected by WHEEL extension, but can be handled by
Henneberg operations.

VI. PERFORMANCE EVALUATION

As we mentioned earlier, so far, there is still not a simple
necessary and sufficient condition on the localizability of

Fig. 4. An illustration of Henneberg operation based scheme.

Algorithm 1 Henneberg Operation-Based Localization Algo-
rithm
A network 𝒢 = (𝒱, ℰ) consists of a set of 𝑚 anchor nodes in
𝒮𝑎, 𝑚 ≥ 3, and 𝑛 sensor nodes in 𝒮𝑙.

for any 𝑖 ∈ 𝒮𝑙 do
if the neighbor set of 𝑖 𝒩𝑖 < 3 then

Drop node 𝑖 and continue
else

if ∣𝒩𝑖 ∩ 𝒮𝑎∣ ≥ 3 then
𝑖 is localizable. Add 𝑖 to 𝒮𝑎.

else if ∣𝒩𝑖 ∩𝒮𝑎∣ ≥ 2 and ∣𝒩𝑗 ∩{𝒮𝑎 ∪ 𝑖}∣ ≥ 3 and
𝑗 ∈ 𝒩𝑖 then

𝑖 and 𝑗 are localizable. Add 𝑖, 𝑗 to 𝒮𝑎.
else if ∣𝒩𝑖 ∩ 𝒮𝑎∣ ≥ 2 and ∣𝒩𝑗 ∩ 𝒮𝑎∣ ≥ 2 and
∣𝒩𝑘 ∩ {𝒮𝑎 ∪ 𝑖 ∪ 𝑗}∣ ≥ 3 and 𝑖 ∈ 𝒩𝑘 and 𝑗 ∈ 𝒩𝑘

then
𝑖, 𝑗 and 𝑘 are localizable. Add 𝑖, 𝑗, 𝑘 to 𝒮𝑎.

end if
end if

end for

one single node. To evaluate how many localizable nodes
are missed during the exploration process of our Henneberg
operations, we use the 3-path condition, which is necessary
for a node to be localizable, to search through the whole
network. The difference between these two numbers represents
the gap between our proposed and the 3-path condition, not
with the true localizable set of nodes. This is caused by the
fact that the 3-path is necessary but not sufficient condition for
localizability.

To do this comparison, we run a 100-round Monte Carlo
simulation. In each round, we deploy a random network and
then use the two schemes to detect localizable nodes. The
number of detected localizable nodes is recorded. We also
detect the nodes fitting the 3-path condition and record the
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number of these nodes. Then compare the gap between this
3-path condition and our proposed algorithm.

The result is shown in Fig. 5. The horizontal axis indicates
the number of simulation rounds and the vertical axis indicates
the proportion of the number of localizable nodes detected
by our proposed algorithm together with that found by 3-
path condition. The empty area between the solid area and
the horizontal level at the level of 1 indicates the gap. From
Fig. 5, we see that the gap between our proposed algorithm
and the 3-path necessary condition is very small. The average
gap of the 100 rounds simulation is 5.88%.

0

0.2

0.4

0.6

0.8

1

1.2

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 10
1

Fig. 5. Gap between the proposed algorithm and the 3-Path necessary
condition

VII. CONCLUSION

In this paper, we have established a connection between
the trilateration scheme and WHEEL extension. These two
schemes are connected by a series of Henneberg operations.
Towards a comment on WHEEL extension, we analyze the
existence condition of the counter example in [11] and give a
more precise conclusion on how to preserve global rigidity.
We give a Henneberg operation-based algorithm to detect
localizable nodes. The gap between our proposed algorithm
and the 3-path necessary condition is shown to be small.
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