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ABSTRACT

We propose a robust interpolation algorithm for model-based
spectral estimation. The interpolation data represent informa-
tion about the half spectrum function associated with a given
signal and are computed from an input-to-state filter. Our al-
gorithm allows a large number of noisy interpolation data to
be used to optimally fit a half spectrum function of a fixed
order. The algorithm involves solving a set of linear matrix
inequalities and is thus numerically efficient.

1. INTRODUCTION

This paper is concerned with the following standard spectral
estimation problem: Given a discrete-time signal u(t), t =
0, 1, 2, . . ., find an n-th order auto-regressive moving aver-
age (ARMA) model g(z) such that the spectrum s(eiω) of
u(t) is best approximated by g(eiω)g(e−iω) in some appro-
priate measure. To make this problem more tractable and
more meaningful technically, the given signal u(t) is often
assumed to be generated by an unknown ARMA model g(z)
but possibly corrupted by noises or a relatively small num-
ber of samples of u(t) is available, and the aim is to find an
algorithm that can best approximate the parameters of g(z).

Since the ARMA model g(z) has only 2n+1 free param-
eters, it is natural that the samples of u(t) are used to compute
a small set of statistical parameters which are then used to es-
timate the parameters of g(z). For example, if g(z) is known
to be an n-th order AR model, it is common to estimate the
first n+1 autocorrelation coefficients of u(t) and use them to
estimate g(z). If G(z) is an ARMA model, spectral estima-
tion becomes more difficult [1].

In this paper, we consider an interpolation approach to
spectral estimation initially proposed in [2]. The basic idea
is as follows. Instead of estimating s(z) or g(z) directly, we
estimate the so-called half spectrum f(z) defined via spectral
factorization:

s(z) = f(z) + f(z−1). (1)

By definition, f(z) is a positive real, n-th order rational func-
tion. The interpolation approach starts with estimating the
values of f(z) and possibly its derivatives at a set of user-
specified locations z = ξi, i = 0, 1, . . . , m. This can be done
using the so-called input-to-state filters [3, 4]. These values
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are then used to estimate the parameters of f(z) by solving
an interpolation problem.

The aim of this paper is to propose a robust interpola-
tion algorithm for spectral estimation. This is motivated by
two facts. Firstly, the standard interpolation approaches [2,5]
require precise interpolation data. Because these data come
from statistical estimation and thus are possibly corrupted by
noises, standard interpolation approaches may fail. Secondly,
standard interpolation approaches are unable to handle the
case where the number of interpolation points exceeds the
number of free parameters in the interpolation function. In
the proposed robust interpolation algorithm, we allow a large
set of noisy interpolation data to estimate a reliable half spec-
trum. This is done by solving some semidefinite program-
ming problems. In addition, we can allow interpolation con-
ditions involving first or higher order derivatives of f(z). This
is an important feature because interpolation conditions in-
volving higher order derivatives of f(z) is useful for estimat-
ing the model order, although this topic is not studied in this
paper. Some features of our algorithm are similar to the co-
variance extension approaches proposed in [6, 7], but we will
highlight some interesting differences.

Due to the page limit, the technical proofs of the results
presented in the paper are not included.

2. INPUT-TO-STATE FILTERING

Motivated by [3, 4], we use an input-to-state to estimate the
values of the half spectrum f(z) and possibly its derivatives
at a set of user-specified points ξi, i = 0, 1, 2, . . . , m, outside
of the unit disc. The filter has the following form:

x(t + 1) = Ax(t) + bu(t), (2)

where x(t) ∈ R
ν is the state, A ∈ R

ν×ν and b ∈ R
ν are such

that (A,b) is a controllable pair and A has an eigenvalue
of multiplicity νi ≥ 1 at ξ−1

i , i = 1, 2, . . . , m, and ν =∑m
i=1 νi. The next two lemmas explain how to compute the

values of f(z) and its derivatives from x(t).

Lemma 1 Let R be the covariance matrix of x(t) and S be
the unique positive definite solution of the Lyapunov equation

S = ASA� + bb�. (3)
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Then,
R = WS + SW�, (4)

where

W = f(∞)I +
1

2πi

∮
|z|=1

f(z−1)(zI − A)−1A
dz

z
. (5)

By definition (5), W admits a unique representation

W = w0I + w1A + . . . + wn−1An−1, (6)

where the coefficients {wk}n=1
k=0 can be shown to be indepen-

dent of the co-ordinates of A. We define

w(z) = w0 + w1z + . . . + wn−1z
n−1. (7)

Lemma 2 Let λ be an eigenvalue of A in (2) with multiplicity
ρ and w(z) be defined as in (6). Then,

drw(z)
dzr

∣∣∣∣
z=1/λ

=
dr

dzr
f

{
1
z

}∣∣∣∣
z=1/λ

, r = 0, 1, . . . , ρ − 1.

From the above, it is clear that the value of f(z) and its deriva-
tives at ξi can be computed by estimating the covariance ma-
trix R of v(t) from (2), solving S and W in (3)-(5), forming
w(z) and evaluating it and its derivatives at ξ−1

i .

3. INTERPOLATION CONDITIONS

The interpolation problem we have is a modified Nevanlinna-
Pick interpolation problem as stated below: Let ξ0, ξ1, . . . , ξm

be a given set of distinct, real or self-conjugate complex num-
bers such that ξ0 = ∞ and |ξi| > 1 for i = 1, 2, . . . , m, and

for every such i, the complex numbers f
(0)
i , f

(1)
i , . . . , f

(νk−1)
i

are also given with ν0 = 1 and other νi ≥ 1. Then find a
rational function f(z) of degree n, if possible, such that

1
r!

dr

dzr
{f(z)}

∣∣∣∣
z=ξi

= f
(r)
i ,

r = 0, 1, . . . , νk − 1
i = 0, 1, . . . , m,

(8)

and that f(z) is strictly positive real (SPR), i.e., f(z) is ana-
lytic in |z| ≤ 1 and that

f(z) + f(z−1) > 0, ∀|z| = 1 (9)

In the above, the choice of ξ0 = ∞ is for convenience.
In the standard Nevanlinna-Pick interpolation problem, n =∑m

i=0 νi. In general, this does not uniquely determine the
interpolation function. In order to have a reliable spectral es-
timate, we require

∑m
i=0 νi > 2n + 1. The technical diffi-

culty with this setting is that on one hand we tend to have
an over-determined problem because f(z) has only 2n + 1
free parameters, and on the other hand we may not necessar-
ily have a solution that satisfies all the constraints. These two
problems are studied next.

We start with a parameterization of f(z) which satisfies
n interpolation conditions in (8), but not necessarily other in-
terpolation conditions and the SPR condition. The n interpo-
lation points used above are chosen such that they are meant
to be most reliable based on some prior knowledge. For sim-
plicity, we assume in the sequel that n =

∑m1
i=1 νi for some

0 < m1 < m.
In the following we assume that the set {ξi}m1

i=1 is self-
conjugate. This allows us to work with real-valued matrices.
Define Xi ∈ C

νi×νi to be the Jordan block with the eigen-
value ξi and

ci = [ f
(νi−1)
i f

(νi−2)
i . . . f

(0)
i

]� ∈ C
νi ,

wi = [ 0 . . . 0 1 ]� ∈ R
νi .

Form X� = diag{X1, . . . , Xm1}, w = [ w�
1 . . . w�

m1
]�

and c̄ = [ c�1 . . . c�m1
]�. Also, define d = f

(0)
0 . Then

we have the following generalization of a result in [8].

Lemma 3 All n-th order rational function f(z) satisfying the
interpolation conditions in (8) for i = 0, . . . , m1 are param-
eterized by

f(z) =
d + b[zIn − X]−1c

1 + b[zIn − X]−1e
, b ∈ R

1×n, (10)

where X, c and e are real-valued matrix and vectors defined
using C = [ w X�w . . . Xn−1

� w ] as follows:

X = C−1X�C, c = C−1c̄

e = C−1w = [ 1 0 . . . 0 ]�.

The SPR constraint for f(z) can be handled by applying the
well-known KYP Lemma [9], as given below.

Lemma 4 Define

Θ =
[

ce� + ec� c + ed
de� + c� 2d

]
. (11)

Then, f(z) in (10) is SPR if and only if

Θ +
[

Q − XQX� −XQb�

−bQX� −bQb�

]
> 0, (12)

holds for some Q = Q� ∈ R
n×n.

The matrix inequality (12) is nonlinear in Q and b, and thus
difficult to use. To get around this problem, we reparameter-
ize b by

β = bQ. (13)

Applying Schur complement, (12) is equivalent to⎡
⎣ ce� + ec� + Q − XQX� c + ed − Xβ� 0

c� + de� − βX� 2d β
0 β� Q

⎤
⎦ > 0

(14)
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which is now linear in Q and β.
In order to ensure the uniqueness of the computed model

at least n additional interpolation points are generally required
for computing b. Let us define

Γ(z) = d+b(zI−X)−1c, ∆(z) = 1+b(zI−X)−1e (15)

and Ω(z) = [zI − X]−1. From the definition of Γ(z) and
∆(z) in (15) we have for r > 0 that

1
r!

drΓ(z)
dzr

= −bΩr+1(z)c,
1
r!

dr∆(z)
dzr

= −bΩr+1(z)e,

Making use of the relationship

1
r!

drΓ(z)
dzr

=
r∑

�=0

1
�!

d�∆(z)
dz�

1
(r − �)!

dr−�f(z)
dzr−�

,

we have

hr(z) :=
[

f(z) − d df(z)
dz . . . 1

(r−1)!
dr−1f(z)

dzr−1

]

= b(C(r)
1 (z) − C

(r)
2 (z)Gr(z)), (16)

where

C
(r)
1 (z) = [ Ω(z)c Ω2(z)c . . . Ωr(z)c ]

C
(r)
2 (z) = [ Ω(z)e Ω2(z)e . . . Ωr(z)e ]

Gr(z) =

⎡
⎢⎢⎢⎢⎣

f(z) df(z)
dz . . . 1

(r−1)!
drf(z)

dzr

0 f(z)
. . .

...
...

...
. . . df(z)

dz
0 0 . . . f(z)

⎤
⎥⎥⎥⎥⎦ .

If we are given the values of f(z) and its derivatives at ξk,
k = m1 + 1, m1 + 2, . . . , m, then b satisfies

h = bM, (17)

where

h = [ hνm1+1(ξm1+1) . . . hνm
(ξm) ]

M = [Mm1+1 Mm1+2 . . . Mm]

Mi = C
(νi)
1 (ξi) − C

(νi)
2 (ξi)Gνi(ξi), m1 + 1 ≤ i ≤ m.

4. ROBUST INTERPOLATION ALGORITHM

Since the given interpolation data can be noisy, we may face
two potential problems: 1) There may not be any n-th or-
der f(z) SPR function to satisfy the first n interpolation con-
ditions; 2) The remaining interpolation data may not give a
unique solution to b, or even if the solution set for b is non-
empty, the resulting f(z) may not be SPR. These problems
are addressed by our proposed robust estimation algorithm.

To address the first problem is the same as asking under
what conditions the set of β satisfying (14) is non-empty. This
is answered by the following result:

Lemma 5 There exists b ∈ R
n such that f(z) in (10) is an

n-th order SPR function if and only if the generalized Pick
matrix

P :=
[

XEX� c + ed
c� + de� 2d

]
> 0, (18)

where E = E� > 0 is the unique solution to the Lypunov
equation

XEX� − E = ce� + ec�. (19)

Moreover, (18)-(19) are equivalent to solving

ce� + ec� > XQX� − Q, (20)[
ce� + ec� + Q c + ed

c� + de� 2d

]
> 0 (21)

for some Q = QT > 0.

Let ĉ and d̂ be the estimates of c and d, respectively. Denote
y = [c� d]� and ŷ = [ĉ� d̂]�. The first step in robust
estimation is to check if (18)-(19) are satisfied or not when
c and d are replaced by their estimates. If so, this step is
done. Otherwise, we need to modify ĉ and d̂. One simple
modification is to use the following:

[č, ď] = arg min
c,d

(y − ŷ)�W−1(y − ŷ)

subject to the linear inequality constraints (20) and (21). The
matrix W = W� > 0 is chosen as the covariance matrix of ŷ.
This is equivalent to the semidefinte programming problem:

[č, ď] = arg min
c,d

�

subject to [
� (y − ŷ)�

(y − ŷ) W

]
> 0,

ce� + ec� > XQX� − Q,[
ce� + ec� + Q c + ed

c� + de� 2d

]
> 0.

The second step in robust estimate is to solve the param-
eter vector b, assuming that the estimates č and ď for c and d
are given. Denote by M̂ and ĥ the estimate of M and h, re-
spectively, computed using the given interpolation data, č and
ď. It is assumed that M̂ has full column rank. We can estimate
β and Q by solving the following optimization problem:

min
β,Q

(β − ĥM̂†Q)Ω−1(β − ĥM̂†Q)

subject to (14) with c and d replaced with their estimates,
where M̂† is the pseudo-inverse of M̂ and Ω = Ω� > 0
is a weighting matrix chosen by the user. This is equivalent to
the following semidefinite programming problem:

[β̂, Q̂] = arg min
β,Q

γ
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Fig. 1. Estimated Spectrum

subject to

[
γ (β − ĥM̂†Q)

(β − ĥM̂†Q)� Ω

]
> 0,

⎡
⎣ če� + eč� + Q − XQX� č + eď − Xβ� 0

č� + ďe� − βX� 2ď β
0 β� Q

⎤
⎦ > 0.

Using (13), we then obtain the estimate of b as

b̂ = β̂Q̂−1.

It follows that the estimate of f(z) is given by

f̂(z) =
ď + b̂(zI − X)−1č

1 + b̂(zI − X)−1e
.

5. ILLUSTRATIVE EXAMPLE

To show how the proposed algorithm works, we test it on the
following ARMA process:

g(z) =
z2 + z + 0.5

z2 − 1.5z + 0.7
(22)

The signal u(t) is generated by filtering a Gaussian white
noise through g(z), and 2000 points of u(t) are used. 32
interpolation points are chosen by taking ξk = ρejθ with
ρ ∈ {2, 3.5} and θ ∈ {πp/8 : p = 0, 1, . . . , 15}. Simu-
lation results based on 100 runs are shown in Figure 1 which
compares the true spectrum (solid) with the mean (dashed) ±
the standard deviation (dotted) of the estimated spectrum.

6. CONCLUSIONS

In this paper we have proposed a robust interpolation algo-
rithm for spectral estimation. The problem considered here
can be seen as a generalization of the classical Nevanlinna-
Pick interpolation problem. Our algorithm has two main fea-
tures. Firstly, we allow noise-corrupted interpolation data.
Secondly, we can incorporate a large number of interpolation
data points. The algorithm employs semidefinite program-
ming and is thus computationally efficient.

The robust spectral estimation approach is generalized eas-
ily for multivariable processes. It is also possible to estimate
the model order. This requires the availability of sufficient
number of derivatives of f(z) at a given interpolation point.
The free parameter b determines the poles of the ARMA rep-
resentation. Note that the stability of the estimated model is
guaranteed automatically, since an SPR model is always sta-
ble. Unlike the covariance extension algorithm in [7], we do
not need any additional regularization step to ensure a sta-
ble solution. In addition, a solution is always guaranteed. A
similar robust algorithm for covariance extension can also be
derived.
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