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Abstract—The hybrid filterbank architecture permits imple-
menting accurate, high speed analog-to-digital converters. How-
ever, its design is technically involved since perfect reconstruction
of the desired samples cannot be achieved in general. In this
paper we propose a design method which generalizes existing
approaches by dropping the bandlimited assumption on the input
signal. The design minimizes the power of the reconstruction
error in the samples, for a given input signal power spectrum.
We discuss the use of blind techniques to estimate the analysis
filterbank parameters as well as the input power spectrum, and
we present simulation results to demonstrate the clear advantage
of the proposed design, even under input spectrum uncertainties.

Index Terms—Analog digital conversion, hybrid filter banks,
least mean square methods, multirate systems, multichannel
sampling.

I. INTRODUCTION
A high speed analog-to-digital converter (ADC) can be re-

alized by using the so-called time-interleaved architecture [1],
which consists of using a number of parallel ADCs having
the same sampling rate but different sampling phases, as if
they were a single ADC operating at a higher sampling rate.
A drawback of this approach is its extreme sensitivity to
converter mismatches and timing errors [2]. To overcome this
limitation, the hybrid filterbank ADC (HFB-ADC) architecture
was proposed in [3]. This technique uses a continuous-time
analysis filterbank to split the input signal into different
frequency bands, each of which is assigned to a different ADC.
Then, a discrete-time synthesis filterbank is used to reconstruct
the required samples.
A method for designing the discrete-time synthesis filter-

bank was proposed in [3], and improved in [4], and relies on
the assumption that the input signal is bandlimited. Under this
assumption, both methods are able to achieve perfect recon-
struction if the impulse response of the synthesis filterbank
can be arbitrarily large. An arguable point of this approach
is that the bandlimited assumption might not be realistic in
many applications. To address this issue, we propose in this
paper a synthesis filterbank design method which uses the
knowledge of the power spectrum of the input signal, to
carry out a compensation in a statistically optimal (least-mean-
squares (LMS)) sense. Also, in view of our non-bandlimited
scenario, the proposed method permits designing the synthesis
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filterbank so that the reconstructed samples match those that
would be obtained if the input signal was passed through
a prescribed anti-alias filter before sampling. In addition,
we show that the existing design method derived under a
bandlimited assumption is a particular case of the proposed
method.
The proposed method, as well as the methods in [3], [4],

require the knowledge of the analysis filterbank parameters.
Assuming this knowledge is unrealistic since the parameters
of analog circuits are subject to imperfections, e.g., deviations
from nominal values, aging, temperature drifts, etc. In view of
this, a reference input was used in [5] to estimate the analog
parameters. However, as pointed out in [4], a blind estimation
technique (i.e., without the knowledge of the input signal)
is preferred. In Section V we show how to use the blind
estimation method in [6], to estimate not only the analysis
filterbank parameters, but also the input power spectrum.
The rest of the paper is organized as follows. We give

an overview of hybrid filterbank ADCs in Section II. In
Section III we introduce the proposed synthesis filterbank
method. In Section IV we show that the existing design method
derived under a bandlimited assumption is a particular case
of the proposed method. Finally, some simulation results are
presented in Section VI and concluding remarks are given in
Section VII.

II. HYBRID FILTERBANK ANALOG-TO-DIGITAL
CONVERTERS

The HFB-ADC scheme is depicted in Figure 1. The
continuous-time signal x(t) is split into M signals using an
array of continuous-time filters h(s) = [h1(s), · · · , hM (s)]T ,
whose outputs are then sampled at rate 1/MT . In this way,
the discrete-time signals x(k) = [x1(k), · · · ,xM (k)]T are
generated. The idea is to combine the signals x(k) to generate
an estimate ŷ(k) of the samples y(k) = x(kT ). This is
typically done by upsampling the signals x(k) by a factor
of M (i.e., M − 1 zero valued samples are added between
every two samples). Then filtering each component using the
array of discrete-time filters f(z) = [f1(z), · · · , fM (z)]T , and
finally adding together all the resulting signals.
An approach for designing the synthesis filterbank f(z)

was proposed in [3], and improved in [4]. This method
assumes that the signal x(t) is bandlimited to 1/2T . Under
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Figure 1. Hybrid filterbank analog-to-digital converter scheme.

this assumption, f(z) is designed as follows:

f=argmin
f̃

∫ π

−π

∣∣∣∣∣ 1

M

M∑
m=0

(
Jm− fT (ejω)h

(
ej(ω− 2πm

M
)
))∣∣∣∣∣

2

(1)

where Jm = 1 for m = 1 and 0 otherwise, and h(z) is a
discrete-time equivalent of the analysis filterbank h(s), whose
frequency response is given by

h(ejω) = h(j
ω

T
), ω ∈ [−π, π]. (2)

Moreover, perfect reconstruction can be achieved (i.e., ŷ(k) =
y(k)) if the impulse response f(k) can be arbitrary large.

III. PROPOSED METHOD
In this section we propose an alternative to (1), for designing

the synthesis filterbank. More precisely, we drop the bandlim-
ited constraint on the input signal, and we assume instead that
it has a known power spectrum φx(s). Then, we design the
synthesis filterbank f(z) using a linear LMS criterion [7], i.e.,
aiming at minimizing the power of the reconstruction error

e(k) = y(k) − ŷ(k). (3)

We consider a slight generalization of the scheme in Figure. 1,
which is depicted in Figure 2. This generalization permits
the use of oversampling (i.e., D ≤ M ) as well as placing a
prescribed anti-alias filter g(s) before generating the samples
y(k) to be reconstructed.
Using the polyphase representation [8], the scheme in

Figure 2 can be transformed into that of Figure 3, where

yP (k) = [y(kD),y(kD − 1), · · · ,y(kD −D + 1)]T

ŷP (k) = [ŷ(kD), ŷ(kD − 1), · · · , ŷ(kD −D + 1)]T

are the polyphase representations of y(k) and ŷ(k), respec-
tively, and the D×M matrix F(z) is the polyphase represen-
tation of the synthesis filterbank, defined such that the impulse
response [F(k)]d,m of its (d, m)-entry is given by:

[F(k)]m,d = fm(kD + d− 1).

In view of Figure 3, we can restate the problem as that of
designing F(z) for estimating yP (k) using x(k). If x(t) is
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Figure 2. Slightly generalized scheme considered in this work.
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Figure 3. Transformed scheme using polyphase representation.

assumed to be a stationary random process, and the support
of the impulse response F(k) of F(z) is constrained to the
interval [a, b], the LMS solution can be found by solving

F = arg min
F̃

E

⎧⎨
⎩

∥∥∥∥∥yP (0)−

b∑
l=a

F̃(l)x(−l)

∥∥∥∥∥
2

2

⎫⎬
⎭ (4)

where E{·} denotes expected value. Now, following the geo-
metric argument in [7, Section 3.3], the solution of (4) satisfies

RyP x(k) =

b∑
l=a

F(l)Rx(k − l), for all k ∈ {a, · · · , b}, (5)

where Rx(k) and RyP x(k) denote the correlation matrix
of x(k) and the cross-correlation matrix between yP (k)
and x(k), respectively, i.e., Rx(k) = E{x(k)xT (0)} and
RyP x(k) = E{yP (k)xT (0)}. Hence, the impulse response
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F(k) of the polyphase matrix F(z) can be obtained by solving
the linear problem (5). To this end, we need the expressions
of Rx(k) and RyP x(k). It is straightforward to verify that

Rx(k) = L−1
{
h(s)φx(s)hT (−s)

}
(kDT ) (6)

RyP x(k) = L−1
{
δ(s)g(s)φx(s)hT (−s)

}
(kDT ) (7)

where δ(s) = [1, e−s, · · · ,−(M−1)s ] and L−1{·} denotes the
inverse Laplace transform.

IV. BANDLIMITED CASE
In this section we show that the synthesis filterbank de-

sign (1) is equivalent to our proposed design (5)-(7) when
M = D, g(z) = 1 and the input power spectrum is given by

φx(jω) =

{
1, |ω| < π

T

0, otherwise
. (8)

Under these assumptions, it holds that x(t) =∑
∞

k=−∞ y(k) sinc
(

t
T
− k

)
, and therefore

x(k) =

∞∑
l=−∞

h(l)y(k − l), (9)

where h(k) is the impulse response the discrete-time equiv-
alent analysis filterbank (2). Let y(k), ŷ(k) and e(k) denote
truncated realizations of y(k), ŷ(k) and e(k), respectively, so
that their z-transform y(z), ŷ(z) and e(z) are well defined
on the unit circle. Then, using the alias representation [8], we
can write

ŷ(z) =
1

M
fT (z)HA(z)yA(z)

where HA(z) and yA(z) denote the alias representations of
h(z) and y(z), respectively, which are given by

HA(z) = [h(z),h(ej 2π

D z), · · · ,h(ej
2π(D−1)

D z)] (10)

yA(z) = [y(z),y(ej 2π

D z), · · · ,y(ej
2π(D−1)

D z)]T (11)

Now, letting J = [1, 0, · · · , 0], we can write y(z) = JyA(z)
and e(z) =

(
1
M

fT (z)HA(z)− J
)
yA(z). Now, (8) implies

that yA(k) is a white vector random process, then the LMS
criterion for designing f(z) becomes

f = arg min
ef

∫ π

−π

∥∥∥∥ 1

M
f̃T (ejω)HA(ejω)− J

∥∥∥∥
2

2

dω

which, in view of (10), is equivalent to (1).

V. BLIND ESTIMATION OF THE INPUT SPECTRUM AND THE
ANALYSIS FILTERBANK

A blind estimation method for rational models was proposed
in [6]. This method can be used for estimating the analysis
filterbank parameters as well as the input power spectrum,
following the idea sketched below. For more details see [6].
We assume that the input power spectrum can be factorized

as follows φx(s) = |lx(s)|2, with lx(s) being a rational model
whose numerator and denominator have a known order. If the
orders of the analysis filterbank filters hm(s), m = 1, · · · , M
are also known, we can write parametric versions hm(s, α)

and lx(s, β), where α and β denote the vectors of numerator
and denominator coefficients of hm(s) and lx(s), respectively.
Let Rx(k) be an estimate of the input correlation matrix (6)
obtained from the available samples. Then, using (6), α and
β can be estimated by solving the following minimization
problem:

(α, β) = argmin
α,β

K∑
k=0

∥∥Rx(k)−Rx(k, α, β)
∥∥2

2

Rx(k, α, β) = L−1
{
h(s, α)|lx(s, β)|2hT (s, α)

}
(kDT )

VI. SIMULATION
In order to evaluate the proposed LMS design method, we

compare its performance with that of the design (1), derived
under a bandlimited assumption on the input signal, which
we denote by (BL). The comparison is made in terms of the
signal-to-distortion ratio (SDR) of the reconstructed samples,
defined by

SDR = 10 log10

( ∑N
k=1 |y(k)|2∑N

k=1 |y(k) − ŷ(k)|2

)

Following [4], we consider an eight-channel HFB-ADC, where
for simplicity, we use the sampling period T = 1. The analysis
filterbank is composed of Butterworth second-order bandpass
filters of bandwidth 1/16 Hz, except for the first one which
is a first-order lowpass filter of the same bandwidth. The
bandwidths are contiguously allocated so that they cover the
whole frequency range from 0 Hz to 0.5 Hz. The output of
each filter is sampled at 1/8 Hz (i.e., the upsampling factor
D in Figure 2 equals the number M of channels). Finally, we
take a = −3 and b = 4 in (4), which results in the discrete-
time filters fm(z), m = 1, · · · , M having 64 taps with 31
non-causal taps.
In the first simulation we use g(s) = 1, and we generate the

input signal as filtered white noise using a Butterworth lowpass
filter (input filter) of 20-th order and varying cutoff frequency
fc. The frequency response of a family of such filters with
different values of fc is shown in Figure 4. We compare the
performances of the BL and the proposed LMS method for
several values of fc. The result is shown in Fig. 5. We see
how the LMS method clearly outperforms the BL method,
especially for low cutoff frequency values.
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Figure 4. Frequency response of a family of input filters with different cutoff
frequency values.

As already mentioned, the proposed LMS method requires
the knowledge of the input power spectrum to optimally design
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Figure 5. Performance comparison of the BL and LMS methods for different
values of the input filter cutoff frequency.

the synthesis filterbank. In the second simulation we evaluate
its performance degradation when there is a mismatch between
the actual input signal power spectrum, determined by the
actual input filter, and the nominal input power spectrum used
to design the LMS compensator, determined by a nominal
filter. We design the nominal input filter as a Butterworth
lowpass filter of 20-th order and varying cutoff frequency fc.
For the actual input filter we use a Butterworth lowpass filter
of 10-th order and varying cutoff frequency fc in cascade with
a second order filter with poles in −0.0782 fc ± j0.4938fc.
The frequency responses of the nominal and the actual input
filters are shown in Fig. 6, and the simulation result is shown in
Fig. 7. We see that, while not being optimal, the performance
of the LMS method does not deteriorate significantly, and it
is still clearly superior to that of the BL method.
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Figure 6. Frequency responses of nominal and actual input filters for different
cutoff frequency values.
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Figure 7. Performance degradation of the LMS method in the presence of
input power spectrum mismatch.

In the final simulation we evaluate the performance of the
proposed method when reconstructing the samples that would
be obtained after filtering the input signal using a prescribed
anti-alias filter g(s). We use a Butterworth lowpass filter of
5-th order and varying cutoff frequency as input filter, and

a Butterworth lowpass filter of 20-th order and fixed cutoff
frequency 0.4Hz as anti-alias filter. The obtained SDR values
for different cutoff frequencies are shown in Figure 8. As
expected, the performance of the LMS method improves with
the use of the anti-alias filter.
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Figure 8. Performance of the LMS method, with and without anti-alias filter
using a 5-th order Butterworth lowpass input filter.

VII. CONCLUSION
We proposed a synthesis filterbank design method for hybrid

filterbank analog-to-digital converters, which generalizes exist-
ing approaches by dropping the bandlimited assumption on the
input signal. The design is done in a statistically optimal sense,
by minimizing the power of the sample reconstruction error,
for a given input power spectrum. We discussed the use of
blind techniques to estimate the analysis filterbank parameters
and the input power spectrum, which are required by the
proposed method, and we presented simulation results which
demonstrate its clear advantage, even under uncertainties on
the input power spectrum.
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