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ABSTRACT

This paper studies system identification of ARMA models whose
outputs are subject to finite-level quantization and random packet
dropouts. A simple adaptive quantizer and the corresponding recur-
sive identification algorithm are proposed and shown to be optimal
in the sense of asymptotically achieving the minimum mean square
estimation error. The joint effects of finite-level quantization and
random packet dropouts on identification accuracy are exactly quan-
tified. The theoretic results are verified by simulations.

Index Terms— System identification, ARMA models, quanti-
zation, packet dropouts.

1. INTRODUCTION

System identification of plants with quantized observations is sig-
nificant in understanding modeling capacity for systems with lim-
ited sensor information, and the tradeoff between communication re-
sources and identification performance [1]. This work is concerned
with identification of ARMA models whose outputs is communi-
cated through a digital noisy channel. A motivating example is given
by a sensor and an estimator communicating over wireless chan-
nels with limited resources in terms of bandwidth and transmission
power. By modeling the packet dropout process as an independent
and identically distributed (i.i.d.) Bernoulli process, this paper aims
to exactly quantify the joint effects of finite-level quantization and
packet dropout on the identification accuracy of ARMA models.

Recently, research on quantized identification/estimation bears a
vast body of literature, see, e.g., [1, 2] and references therein. In [2],
various quantized estimation schemes are reviewed in the context
of wireless sensor networks . In [1], a comprehensive treatment on
quantized identification is presented for single-input-single-output
linear discrete time-invariant stable systems. Based on full rank peri-
odic inputs and empirical measure, they examine the optimal identi-
fication errors, time complexity and impacts of disturbances and un-
modeled dynamics on identification accuracy. Although their iden-
tification algorithms are shown to be optimal in the sense of asymp-
totically achieving the well-known Cramér-Rao lower bound [1], the
assumption on periodic inputs makes the identification algorithm
inappropriate for tracking control design. To ensure the identifia-
bility property, this work requires input signals to be informative
enough [3].

The fundamental problem of system identification with quan-
tized observations consists of the joint design of quantizer and the
corresponding estimation algorithm to minimize the estimation er-
ror. The main challenge lies in the fact that the unknown parameters
are inaccessible to the design of an optimal quantizer. For example,

to estimate an unknown parameter θ, under binary quantization of
y = θ + v, where v is a Gaussian random variable with zero mean,
an optimal quantizer to minimize the mean square error (MSE) is
to simply place the quantizer threshold at θ [4]. It is known that
the choice of the quantizer threshold is very sensitive to estimation
performance. An interesting threshold selection scheme, by period-
ically applying a set of thresholds with equal frequencies, is pro-
posed in [5], hoping that some thresholds are close to the unknown
parameter. To asymptotically approach the minimum MSE, the au-
thors in [6] construct an adaptive quantizer involving delta modula-
tion with variable stepsize. However, the on-line optimal stepsize is
obtained through a maximum likelihood estimation process lacking
a recursive form. This paper proposes a simple adaptive quantizer
and the corresponding recursive identification algorithm to asymp-
totically approach the minimum MSE.

Another detrimental factor impairing the identification perfor-
mance is the dropouts of the quantized observations. To the best of
our knowledge, there is no work to date to quantify the joint effects
of finite-level quantization and packet dropouts on identification per-
formance. As in [7], the packet dropout process is modeled by an
i.i.d. process. The basic problem is how to do compensation to de-
rive an optimal identification algorithm if a packet dropout occurs.
In the case of a Kalman filter, it is well understood that its optimality
still holds under random packet dropouts of the observations, and a
large packet dropout rate may lead to unstable mean estimation er-
ror covariance matrices [8, 9, 10]. An optimal technique for system
identification is developed in this paper, which shows that the effect
of packet dropouts on the identification performance can be explic-
itly expressed in terms of the packet dropout rate. As expected, the
result reveals that the smaller the dropout rate, the better the result-
ing performance. The proofs are omitted and will appear in a journal
version.

2. PROBLEM DESCRIPTION

Consider the following ARMA model

x(t) =
B(q)

A(q)
u(t)

y(t) = x(t) + w(t)

z(t) = γtQt(y(t)),

where the input u(t) is modeled by either a deterministic signal
or a random process and w(t) is a sequence of independent and
identically distributed (i.i.d.) samples with distribution N (0, σ2).
The noisy output y(t) is quantized by a time-varying K-level scalar
quantizer Qt : R → {vt,1, · · · , vt,K}, t ∈ Z, (which accounts for
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non-stationary quantization schemes), defined by the quantization
intervals [bt,k−1, bt,k] = Q−1[vt,k], k = 1, · · · , K, with bt,0 =
−∞ and bt,K = ∞, for all t ∈ Z. The quantized values are then
transmitted through an unreliable communication network whose
packet dropouts are modeled by a sequence γt of i.i.d. Bernoulli
random variables with parameter λ (i.e., P(γt = 1) = λ).

For a fixed N ∈ N, we denote I = {1 ≤ t ≤ N : γt = 1}
the set of sample-times at which measurements are available. To
simplify the notation we make the dependence of I on N implicit.
Define UN = {u(t) : t = 1, · · · , N}, ZI = {z(t) : t ∈ I},
A(q) = 1+ a1q

−1 + · · ·+ amq−m, B(q) = b0 + · · ·+ bnq−n and
θ� = [b0, · · · , bn, a1, · · · , am]T (the superscript T denotes matrix
transpose). Let r = m + n + 1. Then, for each θ ∈ R

r , we denote
the parametric versions of A(q) and B(q) by A(q, θ) and B(q, θ),
respectively.

The problem consists in estimating θ�, given the knowledge of
UN and ZI . We do so using the maximum likelihood (ML) criterion.

3. MAXIMUM LIKELIHOOD ESTIMATION

By using the ML criterion, an estimate θ̂N up to sample time N is
obtained by1

θ̂N ∈ arg max
θ

p (ZI |UN , θ) = arg max
θ

l(θ|UN , ZI), (1)

where
l(θ|UN , ZI) = log p (ZI |UN , θ) (2)

is the log-likelihood function of θ, given the knowledge of UN and
ZI .

In Section 3.1 we propose an on-line method for solving (1),
based on the expectation maximization (EM) algorithm. The advan-
tage of this method is that it does not require an initialization. How-
ever, the EM algorithm is known to suffer from a slow convergence
rate [11, pp. 358-359]. To cope with this, the estimate obtained af-
ter a few EM iterations is then used to initialize a gradient search
algorithm [12]. To this end, we describe in Section 3.2 an on-line
algorithm based on the quasi-Newton method.

Notation 1 We assume that the input signal UN is known. Hence,
to simplify the notation, we remove it from the list of conditioning
variables in expressions like (1) and (2).

3.1. EM-based On-line Estimation Method

The EM algorithm solves the ML problem (1) using the following
iterative procedure:

θ̂
(i)
N ∈ arg max

θ
Q(θ, θ̂

(i−1)
N ) (3)

where the choice for θ̂
(i)
N is arbitrary if the arg max

θ
set is not a sin-

gleton, and Q(θ, θ̂) is defined by

Q(θ, θ̂) =

∫
log p (ZI , YN |θ) p

(
YN |ZI , θ̂

)
dYN . (4)

The iterations (3)-(4) permit computing θ̂N , for a fixed N [11,
Sec. 10.1]. To obtain an adaptive algorithm, we compute one itera-
tion for each new available sample. Doing so we obtain the following

1Notice that, for any function f(θ), the symbol arg max
θ

f (θ) denotes a

set of θ values that maximize f(θ).

iterations:
θ̂N ∈ arg max

θ
Q(θ, θ̂N−1). (5)

While details are omitted, it can be shown that (5) becomes

θ̂N ∈ arg min
θ

N∑
t=1

(
ȳ(t, θ̂N−1) − x(t, θ)

)2

, (6)

where

ȳ(t, θ̂) =

{
E

{
y(t)|z(t), θ̂

}
, t ∈ I

x(t, θ̂), t /∈ I
(7)

and E
{

y(t)|z(t), θ̂
}

=
∫

y(t)p(y(t)|z(t), θ̂)dy(t).

The procedure in (6) requires tuning, at each iteration, the

ARMA model parameters θ to fit ȳ(t, θ̂N−1). For a fixed N , a
number of recursive formulas are available for doing so [13]. We
use the iterative weighted linear least squares algorithm [13]. Again,
to obtain an adaptive algorithm, we compute one iteration for each
new available sample. This results in the following iterations:

θ̂N ∈ arg min
θ

N∑
t=1

(
A(q, θ)ȳ(t, θ̂N−1)

A(q, θ̂N−1)
− B(q, θ)u(t)

A(q, θ̂N−1)

)2

= arg min
θ

N∑
t=1

(
ỹ(t, θ̂N−1) − φ̃T (t, θ̂N−1)θ

)2

, (8)

where

ỹ(t, θ) =
ȳ(t, θ)

A(q, θ)

φ̃(t, θ) =
[Ωn(q)u(t),−q−1Ωn(q)ȳ(t, θ)]T

A(q, θ)

and Ωn(q) = [1, q−1, · · · , q−n]T . Finally, an on-line version of (8),
can be obtained using the recursive least-squares algorithm [3, Sec.
11].

3.2. Newton search algorithm

For a fixed N , the ML problem (1) can be solved using a gradi-
ent search algorithm. In this work we use a quasi-Newton method,
whose adaptive version is given by the following iterations:

θ̂N = θ̂N−1 − μNTNgN . (9)

The scalar μN denotes the step-size at iteration i, the matrix TN

denotes an approximation to the inverse of the Hessian of l(θ|ZI) at

θ̂N−1 and the vector gN denotes the gradient of l(θ|ZI) at θ̂N−1. To
compute TN we use the Broyden-Fletcher-Goldfarb-Shanno (BFGS)
formula [12]. Also, the step-size parameter μN is obtained from a
linear search algorithm where starting from the initial value μN,1 =
1, the value of μN,i is halved at each i ∈ N until

l(θ̂N−1 − μN,iTNgN |ZI) < l(θ̂N−1|ZI),

or a maximum number of sub-iterations is reached.
In order to implement the iterations (9), we need to provide an

expression for l(θ|ZI) and its gradient. Since w(t) is a sequence of
independent random variables, we have that

l(θ|ZI) =
∑
t∈I

log

∫
Q−1

t [z(t)]

p(y(t)|θ)dy(t). (10)
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Also, it can be shown that,

∂

∂θ̃
l(θ̃|ZI)

∣∣∣∣
θ

=
1

σ2

∑
t∈I

(ȳ(t, θ) − x(t, θ)) ψ(t, θ),

where

ψ(t, θ) =
∂

∂θ̃
x(t, θ̃)

∣∣∣∣
θ

= φ(q, θ)u(t), (11)

φ(q, θ) =

[
ΩT

n (q)

A(q, θ)
,
B(q, θ)q−1ΩT

m−1(q)

A2(q, θ)

]T

. (12)

4. ASYMPTOTIC ANALYSIS

In this section we study the statistical properties of the estimate θ̂N ,
when the number N of sample times tends to infinity. The next theo-

rem provides conditions to guarantee that the estimate θ̂N converges
to the true parameter vector θ�, as the number of samples tends to
infinity.

Theorem 1 Let D ⊂ R be a compact set containing the true param-
eter vector θ�, and such that, for all θ ∈ D, the roots of A(q, θ) have
magnitudes smaller than or equal to 1− ε, for some 0 < ε < 1 . Let
Qt be such that there exists MQ > 0 satisfying that |bt,k| < MQ,
for all t ∈ Z and k = 1, · · · , K − 1. Let u(t) be bounded and such
that limN→∞ 1

N

∑N
t=1 (x(t, θ) − x(t, θ�))

2 = 0 holds if and only
if θ = θ�. If for each N , θ̂N is constrained to belong to D, i.e.,
θ̂N ∈ arg max

θ∈D
l(θ|ZI), then limN→∞ θ̂N = θ� w.p.1.

Remark 1 A strong consistency result for system identification
without output quantization can be found in [3, Section 8]. When
applied to the setting described in Section 2, this result states that
consistency holds under the same assumptions as those in Theorem 1
(except for the condition on Qt). More precisely, our assumption on
D is equivalent to a condition called uniform stability in [3], and
our assumption on the input signal is equivalent to the assumption
called informative enough in [3]. Hence, Theorem 1 essentially
states that placing a quantizer and having packet dropouts at the
output does not alter strong consistency.

The next theorem states conditions under which the random vector
θ̂N − θ� converges in distribution to a multivariate normal vector.

Theorem 2 Let

Φμ = lim
N→∞

1

N

N∑
t=1

μ(t)ψ(t, θ�)ψ
T (t, θ�), (13)

where μ(t) = σ̄2(t)

σ2 and σ̄2(t) = E {
(ȳ(t, θ�) − x(t, θ�))

2} . If the
conditions in Theorem 1 hold, and θ� lies in the interior of D, then
Φ is invertible and

√
N

(
θ̂N − θ�

)
→ N (0, C) in distribution, (14)

with

C =
σ2

λ
Φ−1

μ . (15)

The asymptotic covariance C stated in Theorem 2 depends, via Φμ,
on the particular input signal u(t) used for identification. If the in-
put is assumed to be a wide-sense stationary, ergodic and bounded
random process, then the result is still valid with

Φμ = Eu

{
μ(t)ψ(t, θ�)ψ

T (t, θ�)
}

, (16)

where Eu{·} denotes the expectation taken with respect to u(t).

5. QUANTIZER DESIGN

5.1. Optimum Time-Varying Quantization Scheme

The result in Theorem 2 can be used to choose the boundaries bt,k,
k = 0, · · · , K of the quantizer Qt to minimize the asymptotic error
covariance C. Notice that this is equivalent to choosing the bound-
aries so that σ̄2(t) is maximized. We have that

σ̄2(t) = E
{(Q̄t [y(t, θ�)] − x(t, θ�)

)2
}

(17)

= E
{(

Q̃t,x(t,θ�) [w(t)]
)2

}
,

with Q̃t,x being the quantizer defined by

Q̃t,x [w] = Q̄t [x + w] − x (18)

Q̄t [y] = E {y|y ∈ [bk−1, bk]} , if y ∈ [bk−1, bk].

Hence, σ̄2(t) can be interpreted as the power of the quantized ver-
sion of the noise w(t) obtained from the time-varying quantizer

Q̃t,x(t,θ�). Then, the boundaries bt,k, k = 0, · · · , K need to be

chosen so that the quantizer Q̃t,x(t,θ�) maximizes σ̄2(t). It can
be shown that this is asymptotically achieved when, for each k =
0, · · · , K,

bt,k = b̃k + x(t, θ�), (19)

where b̃k, k = 0, · · · , K are the boundaries of a Lloyd’s quantizer
designed using the PDF of w(t). By using this design, the expression
for C in Theorem 2 becomes

C =
σ2

λμ
Φ−1, (20)

where

Φ = lim
N→∞

1

N

N∑
t=1

ψ(t, θ�)ψ
T (t, θ�), (21)

μ = σ̄2

σ2 and σ̄2 = E
{
Q̃2 [w(t)]

}
.

Remark 2 Notice that equation (20) differs from the classical result
of system identification [3, eq. (9.17)] in the factor 1/μλ, where μ
accounts for the effect of the quantizer and λ accounts for that of
the packet dropouts. Thus, the effects of finite-level quantization and
packet drops on identification accuracy are exactly quantified.

If λ = 1, θ is a scalar, x(t, θ) = θ and Qt is a one-bit quantizer,
it follows from (19) that the optimal quantization threshold equals θ.
Then, it can be verified that C = π

2
σ2, which is in agreement with

the result derived in [4], by setting the quantizer threshold as the
true parameter. Notice that they fail to give a practical quantizer to
asymptotically approach this minimum MSE.

5.2. Adaptive Quantization Scheme for System Identification

In Section 5.1 we pointed out that the asymptotic covariance ma-
trix C is minimized when the boundaries bt,k, k = 0, · · · , K of the
quantizer Qt are chosen according to (19). The problem with (19) is
that it requires the knowledge of the true parameter vector θ�, which
is unavailable to the quantizer design. A practical workaround is to

replace θ� by the estimate θ̂t−1 obtained at the previous sample-time
t − 1. Assuming that the arrival of each packet is acknowledged by

the receiver, θ̂t−1 is known at both ends. A question that naturally
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arises then is whether the minimum value of the asymptotic covari-
ance matrix C can still be achieved in this case. Or in other words,
whether the result in (20) still holds if (19) is replaced by

bt,k = b̃k + x(t, θ̂t−1). (22)

The answer turns out to be positive, but its proof is omitted.

6. SIMULATIONS

In this section we evaluate the evolution of the trace Tr{CN} of the

covariance CN of
√

N
(
θ̂N − θ�

)
. To this end we assume that the

input signal u(t) is an i.i.d. random process. The distribution of
each sample is obtained from a N (0, ν2) distribution, by truncating
it to the interval [−4ν2, 4ν2], and ν2 is computed so that the power
of x(t) equals unity. We consider three different two-bit quantizers
(i.e., K = 4). The first quantizer Qs is stationary and designed using
Lloyd’s algorithm applied to the distribution N (0, 1). The second
quantizer Qo is the optimal quantizer given by (19), and the third
Qa is the adaptive (asymptotically optimal) quantizer given by (22).
The true system is given by

B(q)

A(q)
=

1

1 − 1.764q−1 + 0.81q−2
.

Also, the noise power is σ2 = 0.1 and the packet drop rate is
λ = 0.9. For each quantization scheme, we compute Tr{CN} us-
ing 1000 Monte Carlo runs. The result is shown in Figure 1, which
also shows the theoretical asymptotic values Tr{Cs} and Tr{Co}
(obtained using (15) and (16)), corresponding to Qs and Qo, respec-
tively. We see how the use of Qo leads to an asymptotic value of
Tr{CN} which is about 8 dB smaller than the one resulting from
Qs. Also, the adaptive quantizer Qa achieves the optimal value
Tr{Co} in the limit.

Fig. 1. Comparison of convergence rates for different output quan-
tizers.

7. CONCLUSION

Motivated by identification problem over noisy digital communica-
tion channels, this paper has proposed a simple adaptive quantizer
and the corresponding recursive identification algorithm to address
the joint effects of finite-level quantization and packet dropouts on
identification accuracy. The proposed algorithm is shown to be op-
timal in the sense of asymptotically achieving the minimum MSE.
Simulation results are included to validate the identification algo-
rithm.
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