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Abstract— This paper proposes a stochastic framework for
modelling and analysis of turbo decoding. By modelling the
input and output signals of a turbo decoder as random
processes, we prove that these signals become ergodic when the
code block size becomes very large. This basic result allows
us to easily model and compute the statistics of the signals
in a turbo decoder. Using the ergodicity result and the fact
that a sum of lognormal distributions is well approximated
using a lognormal distribution, we show that the input-output
signals in a turbo decoder, when expressed using the so-
called scaled log-likelihood ratios, are well approximated using
Gaussian distributions. Combining the two results above, we
can model a turbo decoder using two inputs and two outputs
(corresponding to the means and variances). Using this model,
we have discovered that a typical decoding process is much
more intricate than previously known, involving two regions
of attractions, several fixed points, and a stable equilibrium
manifold at which all decoding trajectories converge.

Keywords: Turbo decoding, turbo code, iterative decod-
ing, MAP decoding.

I. INTRODUCTION

Many papers can be found which attempt to uncover
the mystery of the turbo decoding method invented in [1],
see, e.g., [2]-[7]. There are two approaches: deterministic
and stochastic. The former can address issues such as the
existence, uniqueness and stability of equilibrium (or fixed)
points; see, e.g., [2]. However, the existence of a fixed point
does not imply anything about the convergence of turbo
decoding, as the system may exhibit multiple fixed points
or even limit cycles.

The stochastic approach, on the other hand, views the
input and output of a decoder as random processes and
tries to characterize their statistics. Notable examples of
the stochastic approach include the methods given in [4]-
[7]. These methods all use a single statistical parameter to
characterize the input or output signal in each decoding
phase or iteration. Using the SISO models, [4]-[7] are able
to explain a number of important features of turbo decoding.
In particular, the so-called Extrinsic Information Tranfer
(EXIT) chart of [4] and similar charts in [5], [6] are found
particularly useful in understanding and quantifying the
dynamic behavior of turbo decoding. Most SISO models
require the density function of the extrinsic information
to satisfy the so-called symmetry condition [3]. However,
as we will point out that when approximate models are
used, following the symmetry condition strictly may lead
to inadequate modeling.

This paper also embarks on the stochastic approach. Our
study, however, aims to answer a number of important

questions which are not addressed by the existing work
on the stochastic approach. Namely, we want to know the
following:

1) When is the stochastic approach meaningful?
2) What statistics are needed to model a turbo decoder?
3) How do we compute these statistics?
4) How does the dynamics of a turbo decoder (or turbo

dynamics for short) behave?
We first prove that, when the received signal is subject to
additive white Gaussian noise (AWGN) and the interleaver
is chosen randomly, the turbo decoding output for each
iteration approaches an ergodic random process when the
block size approaches infinity. We then show that decoding
output for each iteration, when expressed using a scaled
logarithmic likelihood ratio (SLLR), is well approximated
using a Gaussian distribution. Combining the two results
above, we can model a turbo decoder using two input
parameters and two output parameters (corresponding to the
means and variances of the input and output). Using this
model, we have discovered that a typical decoding process
is much more intricate than previously known.

II. ERGODIC PROPERTIES

A. Scaled Log-likelihood Ratios

We first introduce the notion of scaled log-likelihood
ratio (SLLR). Given any signal s which is a noisy version
of a binary signal x with elements xi ∈ {−1, 1}, recall
that its LLR, denoted by Ls, is defined as

Ls,i = log
P (si|xi = 1)

P (si|xi = −1)

Its SLLR, denoted by S, is defined as Si = xiLs,i/2.
When a (received) signal r is subject to AWGN, it can be

shown that its SLLR has a Gaussian distribution with mean
and variance satisfying a unique relationship: µr = σ2

r .
However, as we will see later, the relationship above no

longer holds for extrinsic signals (and the a prior signals
in later iterations). Because of this, we introduce the notion
of mean-to-variance ratio (MVR): d = µ/σ2.

B. Log-MAP Decoding

The well-known Log-MAP decoding algorithm [1] takes
an a priori signal a and a received signal r, and produces
an extrinsic signal e and an a posteriori signal d. Their LLR
expressions are denoted by La, Lr, Le and Ld respectively.
Their SLLR expressions are denoted by A, R, E and D
respectively, with means and variances µa and σ2

a, etc.
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Log-MAP decoding can be interpreted as follows: Let

u = {ui : i = 1, 2, . . . , n, ui ∈ {−1, 1}},
x = {xij : i = 1, 2, . . . , n; j = 1, 2, . . . ,m, xij ∈ {−1, 1}}
represent the information and code signals respectively. The
coding rate is 1/m in this case. Let r = x+w be a received
signal, where w is a zero-mean AWGN with variance σ2

a.
The Log-MAP decoder computes the following LLR:

Le,k = L+
d,k − L−

d,k − La,k −
∑
j∈Jk

Lr,k,j ,

where

L±
d,k = ln

∑
v:vk=±1

exp(
∑

i:vi �=ui

viLa,i +
∑
i,j:

yi,j �=xi,j

yi,jLr,i,j),

La and Lr are the a priori LLR for u and the LLR for r
respectively, and Jk corresponds to the systematic bit.

Without loss of generality, we assume that u is an all-one
sequence. Using the SLLR expressions, it can be shown that

E = ln

(
1 +

T1∑
t=1

exp(−C
(1)
t A − C

(2)
t R)

)

− ln

(
T2∑
t=1

exp(−C
(3)
t A − C

(4)
t R)

)
, (1)

where C
(i)
t are row vectors with 0’s and 1’s and T1, T2 ≥ 0.

C. Asymptotic Behavior of Log-MAP Decoding

From the analysis above, it is clear that the output signal
of MAP decoding can be modelled as a random process.
The key question we now ask is how to model this random
process when the code block size is very large. Our first
main result is given below.

Theorem 1: Given a convolutional code with an infinite
block size, suppose the SLLR of the received signal R and
the SLLR of the a priori signal A are ergodic, and R and
A are both independent by themselves and independent of
each other. Then, the outputs of the Log-MAP decoder (i.e.,
D and E) are both ergodic random processes.

The implications of the property above are important:
When the received signal is subject to AWGN (which is
ergodic) and A is ergodic, the result above says that the
statistics of Ek are independent of k and can be computed
using a single realization of E, i.e., solving only a single
(but long) Log-MAP decoding.

D. Stochastic Modelling of Turbo Decoding

We now want to generalize the ergodicity result in
Theorem 1 to turbo decoding. Again, we assume n → ∞.

From the above analysis of Log-MAP decoding, we
understand that if the received signal is subject to AWGN
and the SLLR of the a priori signal, A, is an independent
ergodic random process, then the SLLR of the extrinsic
signal, E, is also ergodic. In turbo decoding, we start with
A = 0, which is Gaussian with µa = σa = 0. Therefore, it

is natural to conjecture that the SLLR of the extrinsic signal
in every iteration is an ergodic random process. It turns out
that this is generally incorrect because the extrinsic signal
is “locally” correlated. It is easy to imagine that a non-
stationary A is possible if a “bad” interleaver is used.

Fortunately, the correlation in E decays. Therefore, if the
interleaver has a “good” spreading property, the interleaved
extrinsic signal, which becomes the a priori signal, should
be no longer correlated “locally.” Since Ek depends only
on those Ai which are “local” to k, the interleaved extrinsic
signal is effectively an uncorrelated signal.

To understand how well an interleaver works, we intro-
duce the notion of a spreading factor. Given an interleaver
T of size n, its spreading factor ST is given by:

ST = min
S

{S : 1 ≤ i, j ≤ n; |i − j| ≤ S ⇒ |Ti − Tj | > S}
Lemma 1: Given any S > 0, if an interleaver T of size

n is chosen randomly, then

P (ST ≥ S) → 1, as n → ∞. (2)
The lemma above leads us to our second main result.
Theorem 2: Given a turbo code with block size n, sup-

pose a random interleaver T is used and the received signal
is subject to AWGN. Denote by E(�, n) the SLLR of
the extrinsic signal from the �-th iteration of Log-MAP
decoding. Then, for any � ≥ 1, E(�, n) approaches an
ergodic random process as n → ∞.

In the above and the rest of the paper, the number
of iterations refers to the number of Log-MAP decoding
processes, rather than the number of turbo cycles.

To demonstrate the ergodicity of µe(�, n), we simulate
a 1/3-rate turbo code with G(D) = (1, 5/7), Eb/N0 =
0.5dB and pseudo-random interleaver. For each n and �,
many runs of µe(�, n) are simulated. These values are used
to compute a lower bound and upper bound for µe(�, n).
The lower bound is the average of these µe(�, n) values
minus their standard deviation, whereas the upper bound is
the the average of these µe(�, n) values plus their standard
deviation. The size of the gap between the lower and upper
bound shows how well µe(�, n) converges as n → ∞. The
simulation results are shown in Fig. 1.

III. GAUSSIAN APPROXIMATIONS

In this section, we study Gaussian approximations for
Log-MAP decoding and turbo decoding.

A. Log-Sum of Lognormal Distributions

Given a set of Gaussian-distributed random variables Xi

with means µi and variances σ2
i , i = 1, 2, . . . , n, we define

Z = ln
n∑

i=1

exp(Xi)

Then, each exp(Xi) is a lognormal distribution and exp(Z)
is a sum of lognormal distributions (SLND). We will call
Z a log-sum of lognormal distributions (LSLND).

The statistical properties of SLND have been well stud-
ied. It is well known that the distribution of a SLND can be
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Fig. 1. Convergence of the means of E(�, n)

closely approximated using a lognormal distribution when
Xi are independent with the same mean and variance.
Correspondingly, Z is well approximated by a Gaussian
distribution. Although no closed-form description is given
on the distribution of a SLND or LSLND, a number of
methods are available for computing the mean and variance
(or equivalently the first and second moments) of Z; see,
e.g., [8] for a summary. The Gaussian approximation works
well when Xi are weakly correlated and their statistical
parameters are not significantly different.

B. Gaussian Approximations for Log-MAP Decoding

We now analyze the distribution of E (the SLLR of
the extrinsic signal) for Log-Map decoding. Consider the
expression Ek from (1). Recall that R is a vector of
(independent) Gaussian distributions when the received
signal r is subject to AWGN. Suppose A is also Gaussian
distributed. Then, E is the difference between the two
LSLNDs. This observation is summarized below:

For a convolutional binary code with an infinite block
size, if the received signal is subject to AWGN and the SLLR
of the a priori signal is a Gaussian distribution, then the
SLLR of the extrinsic signal can be well approximated using
a Gaussian distribution.

Although the result above says that the SLLR of the
extrinsic signal can be approximated using a Gaussian
distribution, its MVR is no longer equal to 1 in general.
Therefore, it is insufficient to characterize the output signal
by its SNR. Instead, two parameters, the mean and variance
of the SLLR need to be used. We conclude the following:

A Log-MAP decoder can be approximated as a mapping
M from (µr, µa, σa) to (µe, σe). If µr is suppressed, the
decoder is simply a mapping from (µa, σa) to (µe, σe).

C. Simplified Model for Log-MAP Decoding at High SNRs

To help understand the behavior of Log-Map decoders,
we derive a simplified model at high SNRs.

Lemma 2: Suppose A is approximately Gaussian dis-
tributed with da ≥ 1, the received signal r is subject to

AWGN and µa � µr. Also suppose that the convolutional
code is recursive, n → ∞, and u is an all-one sequence.
For each k, denote by Vk,2 the set of weight-2 information
sequences v with vk = −1 which are terminating. Then,

Ek ≈ − ln
∑

v: v∈Vk,2

exp(−At −
∑

i,j:j �∈Jkifi=k,
yi,j=−1

Ri,j) (3)

where t is the index for the other information bit with vt =
−1 and Jk is as defined earlier.

D. Gaussian Approximations for Turbo Decoding

From the analysis of Log-MAP decoding, we understand
that if A and R are independent Gaussian white noises,
then E is well approximated using a stationary process
with a Gaussian distribution. In turbo decoding, we start
with A = 0. Therefore, E from the first iteration is well
approximated using a Gaussian distribution. If a random
interleaver is used, A for the next iteration will become
effectively independent when the block size is large. Hence,
Gaussian approximations can continue, i.e., E in every
iteration is well approximated using a Gaussian distribution.

To formalize our analysis, we define the Gaussian ap-
proximation model for a turbo decoder as follows:

For each decoding iteration, the SLLR of the a priori
signal is well approximated using an uncorrelated Gaus-
sian distribution and the SLLR of the extrinsic signal is
well approximated using a (locally correlated) Gaussian
distribution.

To check the validity of the Gaussian approximation
model, we compare it to turbo decoding using a 1/3-rate
turbo code with G(D) = (1, 15/13), n = 500, 000, and
a pseudo-random interleaver. We take Eb/N0 = 0.3dB.
Twelve iterations are used. For the method using the Gaus-
sian approximation model, A in each iteration is chosen to
be a Gaussian distribution with the same mean and variance
as those for the A fed into the corresponding iteration of the
turbo decoding. Fig. 2 compares the means and variances
of E in the two cases.

IV. DYNAMICS OF TURBO DECODING

Recall that when n → ∞, the decoding output for
each iteration becomes an ergodic random process. Each
decoding instance is a realization of the random process and
the decoded signal has the same statistics (with probability
1). As n → ∞, the state of the decoded signal either
converges at a finite stable fixed point or diverges. The
former scenario occurs only at a low SNR value, leading to
a large BER. In contrast, the latter scenario leads to an ever
increasing SNR and thus arbitrarily low BER. However,
when the block size is finite, this trend can not be sustained
indefinitely, causing the decoding process to converge at a
high SNR point.

Turbo dynamics are in fact much more complex than
indicated by the two stable fixed points. The complete
picture is illustrated in Fig. 3. The turbo code used here is
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a 1/3-rate code with G(D) = (1, 5/7), Eb/N0 = −0.1dB,
n = 106, and a pseudo-random interleaver. We see from the
figure that there is a stable equilibrium manifold at which
every turbo decoding trajectory converges, regardless of the
initial point. On this manifold, there is a stable fixed point
with a low SNR which is paired with an unstable fixed point
above it. The whole state space (i.e., the space of (µa, σ2

a))
is divided into two regions by a stability boundary which
intersects the unstable fixed point. When the initial state is
to the left of the stability boundary, the decoding trajectory
quickly moves to the stable equilibrium manifold and then
converges at the stable fixed point with a low SNR. When
the initial state is to the right of the stability boundary, the
decoding trajectory again approaches the stable equilibrium
manifold very quickly, then moves to the right right along
the manifold for a while but eventually converges at a stable
fixed point or region with a high SNR.

The scenario in Fig. 3 happens when Eb/N0 is below a
certain threshold. If Eb/N0 exceeds this threshold, the sta-
ble and unstable equilibrium points coalesce and disappear

G(D) in octal Eb/N0 Threshold
(1, 5/7) (4-state) 0.04 dB

(1, 15/13) (8-state) -0.04 dB
(1, 33/23) (16-state) -0.01 dB
(1, 35/23) (16-state) -0.01 dB
(1, 37/25) (16-state) -0.15 dB
(1, 41/77) (32-state) -0.21 dB

(1, 113/111) (64-state) -0.22 dB

TABLE I

Eb/N0 THRESHOLDS FOR AVOIDING LOW SNR EQUILIBRIUM POINTS

and the decoding trajectory moves to a high SNR region.

A. Low SNR Analysis

The low SNR stable fixed point is invariant when n
becomes very large due to the ergodicity of E. Thus, they
can be easily found by simulating a single long block code.
By adjusting the value of Eb/N0, we can easily search
for the threshold at which the low SNR equilibrium point
vanishes; see Table I for turbo codes with coding rate 1/3.

B. High SNR Analysis

In order to understand the behavior of turbo decoding at
a high SNR, it is necessary to study the simplified model
(3). We have the following result.

Lemma 3: Given a 1/2-rate systematic, recursive, binary
convolutional code G(D) = (1, P (D)/Q(D)) with an
infinitely long block size, suppose P (D) and Q(D) are
coprime and monic polynomials with the same degree. De-
note by w0 the weight of the parity sequence corresponding
to the shortest weight-2 information sequence. Suppose the
SLLR of the received signal R and SLLR of the a priori
signal A are independent Gaussian white noises with means
µr and µa and variances σ2

r and σ2
a, respectively. Then, the

simplified model (3) of the SLLR of the extrinsic signal E,
when only the first N weight-2 sequences on each side of
the trellis are included, can be rewritten as

Ek = − ln(exp(−L+) + exp(−L−)) (4)
where

L± = ρ± + L
(1)
±

L
(i)
± = δ

(i)
± − ln(exp(−η

(i)
± ) + exp(−L

(i+1)
± ))

i = 1, 2, . . . , N − 1

L
(N)
± = δ

(N)
± + η

(N)
± (5)

where ρ±, δ
(i)
± , η

(i)
± are independent Gaussian variables with

the following distributions:

ρ± ∼ N (µr, σ2
r)

δ
(i)
± ∼ N ((w0 − 2)µr, (w0 − 2)σ2

r)

η
(i)
± ∼ N (2µr + µa, 2σ2

r + σ2
a) (6)

Fig. 4 demonstrates a typical decoding behavior at a high
SNR. This example uses G(D) = (1, 5/7). We consider
the case of Eb/N0 = 0.5 first. We see that when σa is small,
σe > σa. As σa becomes large, σe < σa. This implies that
there is a crossover point which is a stable fixed point for
σa where σe = σa ≈ 2. At this point, µe − µa ≈ 1.1.
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Fig. 4. E vs. A at a High SNR

Similar observations apply to the case of Eb/N0 = −1.5.
In this case, the stable fixed point occurs at σa ≈ 1.6 and
at this point, µe − µa ≈ 0. This is summarized below:

As the iteration number increases, σe and µe−µa always
approach constant values for any initial values of σe and
µa. Moreover, if µe − µa approaches a positive constant,
the SNR of the extrinsic signal (and thus the a posteriori
signal) will increase indefinitely.

C. The Inadequacy of SISO Models

In this section, we show the inadequency of SISO models
based on SNR or mutual information of E. More precisely,
we point out the “strange” phenomenon that a Log-MAP
decoder can take an input with a very high SNR or very
good mutual information and produce an output with a
much lower SNR or poorer mutual information.

Consider Au = La/2 which is the true input signal.
Using Gaussian approximation on A, the probability density
function for Au is given by

pa(ξ|ui = ±1) =
1√

2πσa

exp(−(ξ ∓ µa)2/2σ2
a)

The mutual information between u and La is given by [4]:

Ia =
1
2

∑
ui∈{1,−1}

∫ ∞

−∞
pa(ξ|ui)

log2

2pa(ξ|ui)
pa(ξ|ui = 1) + pa(ξ|ui = −1)

dξ

= 1 − 1√
2π

∫ ∞

−∞
exp(−(t − µa

σa
)2/2)

log2(1 + exp(−µa

σa
2t))dt

Since Ia is a function of µa/σa (the SNR of A), we will
denote Ia as Ia(µa/σa). It can be shown that Ia(·) is
monotonically increasing with Ia(0) = 0 and Ia(∞) = 1.

To demonstrate the “strange” phenomenon mentioned
above, we consider (µa, σ2

a) = (1, 0) which has the input
SNR= ∞ and Ia = 1. However, the output of Log-MAP

decoding has µe < 2 and σ2
e > 1, meaning that the output

SNR or mutual information is much worse than the input.
If we continue with more iterations, the decoding trajectory
will eventually lead to the low SNR fixed point; see Fig. 3.

In [3], it is proved that the LLRs in a belief propagation
algorithm obeys the so-called symmetry condition. This
condition states that the density function f of an LLR obeys

f(x) = exf(−x), ∀x ∈ (−∞, ∞)

When applied to an SLLR with a Gaussian distribution, the
symmetry condition requires σ2 = m. It seems that the
use of two parameters (σ and m) contradicts the symmetry
condition. However, the answer lies in the fact that Gaussian
distributions are only approximations. That is, the Gaussian
approximation aims to give a good approximate model by
scarifying the symmetry condition. We argue that the viola-
tion of the symmetry condition does not create a serious
problem. To see this, we note that the distribution of a
(scaled) LLR is mostly one-sided and decays exponentially
fast as |x| → ∞. Thus, it is not important to enforce f(x) =
exf(−x) when either f(x) or f(−x) is very small. What is
much more important is how to capture the portion of the
density with a significant mass distribution using a simple
model, which is achieved by Gaussian approximation.

V. CONCLUSIONS

In this paper, we have proposed a stochastic approach
to the modelling and analysis of turbo decoding. Two key
results, ergodicity and Gaussian approximations, have been
established which lead to some new understanding of turbo
decoding. In particular, we are able to build a simple
dynamic model for turbo decoding and reveal the intricate
behavior of turbo decoding unknown previously.
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