On Gaussian Approximation for Density Evolution of Low-Density
Parity-Check Codes

Minyue Fu
School of EE&CS, University of Newcastle, Australia
Email: minyue. fu@newcastle.edu.au

Abstract— This paper is concerned with density evolution
for iterative decoding of low-density parity-check (LDPC)
codes. We first study the problem of density evolution compu-
tation for regular LDPC codes. For this, we propose a simple
computational algorithm based on the ergodicity theory. This
method is shown to match very well with explicit calculations
of density functions. The second problem we study is about the
approach of Gaussian approximation to density evolution. We
point out that it is inappropriate to use the mean of the density
only to model the iterative decoding process. Instead, both the
mean and variance are needed for Gaussian approximation.
Finally, we consider the problem of density evolution for ir-
regular LDPC codes. For this, we extend the density evolution
algorithm for regular LDPC codes to irregular LDPC codes.
We then illustrate that Gaussian approximation is also valid
provided that the degree distributions are not wide. A dynamic
model is also presented based on Gaussian approximation.

Keywords: Low-density parity-check codes, irregular
LDPC codes, iterative decoding, MAP decoding.

I. INTRODUCTION

This paper is inspired by a series of work by Richardson,
Urbanke and their colleagues [1], [2], [3], [4] where they
have studied the so-called density evolution problem for
the decoding process of LDPC codes. Density evolution
is about keeping track of the density functions for the
messages in the decoding process. This is known to be a
very useful tool for both understanding the decoding process
and code design.

In this paper, we also study the problem of density
evolution for LDPC codes. Firstly, we consider regular
LDPC codes and present an alternative method for density
evolution. This method is based on the ergodicity theory
and simple to apply. We also show how this method
compares with the Fourier transform based method in [1].
Secondly, we study the Gaussian approximation method
as discussed in [2]. We give some justification about the
validity of Gaussian approximation. We then show that the
single-parameter model as developed in [2] is inadequate in
general. Consequently, we develop a two-input, two-output
model which can adequately describe the dynamic behavior
of the LDPC decoding process. This model shows that the
dynamic behavior is far more nonlinear and complex than
a single-parameter model can reveal. Finally, we extend the
work on regular LDPC codes to irregular LDPC codes.
More specifically, the aforementioned density evolution
algorithm is extended to irregular LDPC codes. We also
point out that Gaussian approximation is still valid provided
that the degree distributions of the variable and check nodes

are reasonably narrow. Based on this observation, a similar
two-input, two-output model is presented.

II. REGULAR LDPC CODES

Under the assumption that the bipartite graph of a given
LDPC code has no cycles of length 2/ or less, which is
referred to as the cycle-free case, the density functions in
an iterative decoding process up to ¢-th iterations can be
computed by treating all variables in each iteration inde-
pendent. In this paper, we only consider the sum-product
rule [5] for decoding. Denote by wug the log-likelihood ratio
(LLR) of the received signal at variable nodes, by v the
message from a variable node to a check node and by u
the message from a check node to a variable node. Let d,
and d. denote the numbers of edges for each variable node
and check node, respectively. Then, at each variable node,
update rule is given by

dy—1
v=ug+ Y u)

i=1
where u;,i =1,2,--- ,d, — 1, are the incoming messages

from the neighbors of the variable node except the check
node that will get the message v. The update rule for each
check node is given by

de—1
vs
=2tanh™! [[tanh 2
u an 11;[1 anh- (2
where v;,¢ = 1,2,--- ,d, — 1, are the incoming messages

from the neighbors of the check node except the variable
node that will get the message u. The decoding process
starts by using (1) with u;, i = 1,2,--- ,d,—1, equal to zero
initially. It is then followed by (2) to complete an iteration.
This process is then repeated ¢ times.

Under the cycle-free assumption and the assumption that
the samples of wg at different variable nodes are indepen-
dent with identical distributions (i.i.d.), it is straightforward
to see that u;,i = 1,2,---,d, — 1, are i.i.d. and so are
vi,i = 1,2,--+ d. — 1. This fact allows us to compute
the probability density functions of u,; and v; easily. In the
sequel, we denote by P®*) and Q(k), k=1,2,---, the
densities of u; and v; in iteration k. We will also denote
by P, the density of ug. Also denote the mapping from the
density of v to tanhov by I

Based on the i.i.d. property above, it is proposed in [1] to
use Fourier transform to update P*) and Q). It follows

1107
1-4244-0355-3/06/$20.00 (c) 2006 IEEE

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE ICC 2006 proceedings.

from (1) that, for k > 1,
Q(k+1) =P® (®?;I1P(k)) (3)
where ® denotes convolution. Similarly,(2) leads to
PO =1 (@ 'T(QHH) “
Taking the Fourier transform, the (3) becomes
FQU) = F(R)(F(PE)™= (5

The use of Fourier transform for computing P*+1) s
somewhat more complicated because it requires some trans-
formation of P**1) and Q*); see [1] for details.

The density evolution method we propose is based on
the ergodicity theory. To start with, we point out a hidden
assumption in the update rule (1)-(2). As mentioned above,
the update rule requires the cycle-free assumption. The
required code length grows exponentially fast as ¢ increases.
For a realistic iteration number (e.g., 20), the code length
can be regarded as of infinite size. That is, the hidden
assumption is that the code is of infinite length practically.

We now assume that the code length is infinite. Since
the update rule (1)-(2) is stationary (i.e., invariant with
respect to the iteration number), by the ergodicity theory
(see, e.g., [11]), we know that the update rule preserves
ergodicity, if the input signal is ergodic. Since the initial
samples of ug are ii.d., they form an ergodic random
process. Hence, the messages in every iteration are all
ergodic. It is a well-known property of ergodicity that any
statistical parameter of the random process can be arbitrarily
closely approximated by averaging over a sufficient number
of samples. Examples of statistical parameters include the
bit error probability and the density function itself if it is
quantized into a finite support.

Using the ergodic properties as stated above, our pro-
posed algorithm is simply stated as follows:

o Step 0: Choose a large number N and generate N

samples of ug according to the given density Fp.

o Step 1 (for variable nodes): For iteration 0, copy the
samples of uy to v as in (1). For other iterations,
take the NV samples of u from the previous iteration.
For each i = 1,2,--- ,d, — 1, randomly interleave
the samples of u to generate N samples of u;. Then
compute the N samples of v using (1).

o Step 2 (for check nodes): For each iteration, take the
N samples of v as calculated above. For each ¢ =
1,2,--- ,d. — 1, randomly interleave the samples of
v to generate /N samples of v;. Then compute the N
samples of u using (2).

Note that the interleavers are used to guarantee the
independence of samples with the same density function.

We claim that the complexity of this algorithm is
O((N(d, +d.)) for ¢ iterations. This simply follows from
the fact that the complexity for random interleaving of N
samples is O(N). To see the latter, we can use a random
generator which generates a random real number from 0 to

1. We start with a vector V of 1,2,--- | N and take the
size of the vector as S = N. In each step, we generate a
random number x and multiply it by S and round it up to
generate an index ¢ between 1 to S. We then concatenate
V(i) to a new vector, copy the last element of V' to V(i)
and reduce S by 1. Repeat the above step until V' is empty.
It is clear that only N such steps are required. Therefore,
our claim holds.

Now we compare the complexity of our algorithm with
the Fourier transform based algorithm in [1]. Clearly, this
implementation is done using fast Fourier transform (FFT)
and requires N uniform sampling points. Since it is known
[6] that their distributions are approximately Gaussian and
their mean and variance typically diverges to large values af-
ter several iterations, N should be sufficiently large to cover
the dynamic range of distributions and their accuracies. For
a given N, the computational complexity of each Fourier
transform is N log, N. Therefore, the computational com-
plexity for implementing (5) is O(¢N log, N). Similarly,
it can be shown that the complexity for implementing (2)
is O(¢Nlogy N). Hence, the complexity of the Fourier
transform based algorithm is O(¢N log, N).

Clearly, if N is compatible to N and both are not very
large, the Fourier algorithm is more efficient because it does
not depend on d,, and d.. But if both N and N are very large
and they are compatible, the proposed algorithm becomes
competitive. The proposed algorithm also has two additional
advantages: 1) It uses the update rule directly; 2) It does
not require determining where to place the sampling points
for evaluating the error probability.

To test how the proposed algorithm performs, Table I
lists the noise thresholds for different regular LDPC codes
computed by this algorithm and the FFT-based algorithm.
The code variables are assigned to 1 and additive white
Gaussian noise (AWGN) with zero mean and variance 08
is used. The values o' T, 5™ and o5°"d denote the
thresholds of oy computed using the FFT-based algorithm,
our algorithm and Shannon bound, respectively. The thresh-
old is computed by a simple bisection method which tests
if a given o leads to a finite signal-to-noise ratio (S/N)
for the messages or if the S/N grows indefinitely as the
iteration number increases. It is known [1] that such a
threshold is guaranteed to exist. The data for of ¥ ' are
cited from [1]. It is clear from this table that the proposed
algorithm approximates very well for N = 10° or above.
For N = 10°, it takes only a few seconds using Matlab
on a Pentium 4 PC to test if a given oy value exceeds
the threshold. For N = 10°, it takes a couple of minutes.
When implemented in C language, the test takes only a few
seconds for N = 10°.

III. GAUSSIAN APPROXIMATION

It is well known that the densities of the messages are
approximately Gaussian when the channel noise is AWGN.
This fact was probably first observed by Wiberg [6] using
simulations. This observation has been used in numerous

1108

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE ICC 2006 proceedings.

(dv,dc) | rate UgFT Ugmp ogmp O.(k))ound
N = 10° N = 109
(3,6) 0.5 0.8809 0.8795 0.8801 1.0000
4,8) 0.5 0.8376 0.834 0.8371 1.0000
(5,10) 0.5 0.7936 0.791 0.7924 1.0000
(3,5) 04 1.0093 1.00 1.005 1.1616
(4,6) 1/3 1.0109 1.009 1.01 1.3048
(3.4 0.25 | 1.2667 1.256 1.2605 1.5538
4,10) 0.6 | 0.7481 0.745 7462 0.87794
(3,9) 2/3 | 0.7082 0.705 0.707 0.81115
(3,12) 0.75 | 0.6320 0.628 0.6315 0.73954
TABLE 1

COMPARISON OF DENSITY EVOLUTION METHODS

papers to approximate the density evolutions of both LDPC
codes [3] and turbo codes [7], [8], [9], [10]. However, most
density evolution methods based on Gaussian approxima-
tions use a single parameter model. This parameter can
be the S/N of the density [8], [9], the so-called mutual
information of the density [7], [8], [10], or simply the mean
of the density [3]. For LDPC codes, [3] justifies the use of
a single parameter model by using the so-called symmetry
condition which requires a density function f(z) to satisfy
f@) = f(—x)e®. More specifically, it is argued in [3]
that if a density obeys both a Gaussian distribution and the
symmetry condition, then the mean p and variance o2 has
the relationship o2 = 2p. It follows that a single parameter
(e.g., the mean) is sufficient to characterize the density.

However, it has been pointed out in [12] that the use
of a single parameter to model the decoding process is
inadequate for turbo codes. The main reason is that the
true density is not exactly Gaussian. Although the true
density may obey the symmetry condition, if the symmetry
condition is applied to the approximated density, it may
grossly distort the density. Indeed, it is shown in [12]
that the mean-variance curve of the true density deviates
significantly from o2 = 2y, especially when the number of
iterations is large.

In this section, we intend to do the following. Firstly,
we explain why the message densities in LDPC decoding
are approximately Gaussian. This analysis is very similar to
[12] for decoding of turbo codes. Secondly, we show using
the density evolution method given in the previous section
why a single parameter model is inappropriate to model
the message densities. Finally, we illustrate how a two-
parameter model looks like for a typically LDPC decoding
process.

A. Justification of Gaussian Approximation

To explain why the message densities are approximately
Gaussian, we revisit the update rule (1)-(2). It is clear from
(1) that if u;,¢ = 0,1,---,d, — 1, are all approximately
Gaussian and i.i.d., then v is approximately Gaussian. To
see why (2) preserves the Gaussian property approximately,
we denote the mapping (2) by fq.—1(v1, -+ ,v4,-1). It is

easy to check that

frt1(vi, - Umg1) = fo(fm (Vs Um), Umgr) (6)

for any m > 2. Thus, it is sufficient to show that

U = fQ(UIan)

is approximately Gaussian if v; and ve are approximately
Gaussian and i.i.d. It is simple to check that

f2(v1,v2) = In(exp(v1) +exp(v2)) — In(exp(vy +v2) + 1)

Since vy and vy are approximately Gaussian, v; + vy iS
approximately Gaussian and exp(v1), exp(vs) and exp(v1+
vg) are approximately lognormal (i.e., they become ap-
proximately Gaussian by taking log). Moreover, 1 is a
special lognormal distribution because In 1 = 0 is a special
Gaussian distribution (with zero mean and zero variance).
It is well known (see, e.g., [13]) that the sum of lognormal
distributions is approximately lognormal. By continuity,
the sum of approximately lognormal distributions is still
approximately lognormal. It follows that exp(v1)+exp(v2)
and exp(v; + v2) + 1 are approximately lognormal, and
hence In(exp(vi) + exp(v2)) and In(exp(vy + v2) + 1)
are approximately Gaussian and their sum is approximately
Gaussian as well.

Now let us comment on the accuracy of the Gaussian
approximation. It is known [13] that when two lognormal
distributions are i.i.d., the approximation that their sum is
still lognormal tends to be most accurate. The approxima-
tion tends to become poor when the two distributions are
very different. Using this, we see that In(exp(v1)+exp(vz))
is well approximately by a Gaussian distribution because v
and vy are i.i.d.. On the other hand, In(exp(v; + v2) + 1)
tends to give a poorer approximation because exp(vy + v2)
and 1 have very different distributions. It is clear that if
vy + vy is large, we have In(exp(vy + vg) + 1) & vy + vo,
which is approximately Gaussian. When vy + vy is small,
we have In(exp(v1 + v2) + 1) & exp(v1 + v2), which is
indeed lognormal.

Going back to (1), one useful observation is that even if
the inputs u; are not very Gaussian-like, the output v tends
to be more Gaussian-like. This is especially true when d,,
is large, following from the law of large numbers. Another
useful observation is that when u;,i =1,2,--- ,d, — 1, are
relatively small compared with ug, the output v tends to be
well approximately by a Gaussian distribution because ug
is Gaussian.

Therefore, our conclusion can be summarized as follows:

o The message densities given update rule (1)-(2) are
approximately Gaussian.

o The accuracy of Gaussian approximation tends to be
much more accurate at the variable nodes than the
check nodes.

o At the variable nodes, the accuracy of Gaussian ap-
proximation tends to be more accurate when the mes-
sages from the check nodes are very small (in terms
of S/N) or large.

1109

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE ICC 2006 proceedings.

0.045

— Gaussian
0.041f —— lteration 2 |
—— lteration 5

|| —=— lteration 10 |
0.035 —— lteration 20

0.031 1

0.025(1

0.02F 1

0.015(1

0.01r 1

0.005(1

-3 -2 -1 0 1 2 3

Fig. 1. Density functions at Variable Nodes

0.14

— Gaussian
—e— lteration 2
0.12{| —— Iteration 5 1
—=— lteration 10
—— lteration 20

0.081

0.06

0.04[

0.02f

Fig. 2.

Density functions at Check Nodes

o At the check nodes, the accuracy of Gaussian approx-
imation tends to be more accurate when the message
from the variable nodes are not very small.

Note that these properties are all known [6], [2], but
we have now given a justification. To demonstrate these
properties, we show in Figures 1-2 the densities of the
variable nodes and check nodes, respectively, for a (3,6)
LDPC code with g¢p = 0.85. We see that the densities are
very close to Gaussian at variable nodes, but not so close
at check nodes.

B. Mean vs. Variance

Given that the message densities at the variable nodes
are well approximated by Gaussian distributions, we can
obviously model the density evolution by tracking the
mean and variance only. Our purpose here is to examine
the relationship between the mean and variance of the
message densities. Since we know that the densities are
more Gaussian-like for variable nodes, we only study them
here.

The key observation we want to show here is that it is
grossly inaccurate to assume the relationship of o2 = 2y

50 ;
= unvs. o2
— 02=2u curve

40t]

45|

35r 1

25 1
20¢ 1
15 1

10} 1

0 5 10 15 20 25

Fig. 3. Mean vs. Variance Curve

for the message densities. This is illustrated in Figure 3
which plots the mean-variance curve for the variable nodes
of a (3,6) LDPC code with oy = 0.86.

It is clear from the figure that the mean-variance curve
deviates substantially from the o? = 2u curve. Indeed, the
approximation o2 = 2 is very good initially. ' The curve
then deviates slightly towards o > 2u. At some point, this
trend reverses and the curve crosses o2 = 2u. Afterwards,
the curve deviates grossly towards o2 < 2u. We note that
this is a typical behavior for regular LDPC codes. The same
behavior applies to turbo decoding [12].

We note that Gaussian approximation does violate the
symmetry condition [3]. If the symmetry condition is forced
onto the approximated density, it may grossly distort the
density. In reality, relaxing the symmetry condition hardly
matters because the density function is typically near zero
in the negative region (assuming all 1’s are transmitted).

It is reported in [2] that the single-parameter model based
on the mean value only gives a good approximation for
the threshold of oy. This is because as oy approaches the
threshold, the mean value of the message is typically small
and o2 ~ 2y is reasonably valid.

C. Dynamic Model of LDPC Decoding

Using the Gaussian approximation, we understand that
the density update rule can be modeled approximately as a
two-input, two-output (TITO) mapping. More specifically,
denoting the mean and variance of the density at the variable
node in iteration k by p and o, the TITO mapping can
be expressed as

(M1, Org1) = Mg, ox) @)

which is a dynamic model of the decoding process. The
state of the process is (g, o).

For a given regular LDPC code with a large block
size, the mapping can be calculated numerically using the
algorithm described in the previous section.

I'This is not surprising because ug satisfies o2 = 2u; see, e.g., [12].

1110

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE ICC 2006 proceedings.

1L,

stability by
201

151

unstable fixed poi

101

stablefixed point

Fig. 4. Dynamic Model of Regular LDPC Decoding

To illustrate this dynamic model, we apply it to a (3, 6)
LDPC code with o9 = 0.95. Note that this value is
above the threshold in Table I and is chosen deliberately to
demonstrate the complex dynamic behavior of the decoding
process. Given any (u, 0y), we take u;, i = 1,2, d, —
1, to be a set of i.i.d. Gaussian distributions with mean and
variance equal to py, and o7, respectively, and carry out
density evolution as described in the previous section to
compute the resultant 511 and o 1 1- The result is shown
in Figure 4.

As we see in Figure 4, the dynamic behavior is very
nonlinear. The state space of (uy,oy) is divided into 2
regions by a stability boundary. There are also two fixed
points, a stable one to the left of the stability boundary and
an unstable one right on the stability boundary. If the initial
state is to the left side of this boundary, the trajectory of
(1, o) always converges to the stable fixed point. This
corresponding to the “failed” decoding case because the
final S/N is finite (or decoding error probability is nonzero).
However, if the initial state is to the right of this boundary, it
always diverges with S/N approaching infinity (or decoding
error probability to zero). If the initial state starts on the
stability boundary, it always converges towards the unstable
fixed point and then either converges to the stable fixed
point or diverges to a high S/N as described above.

The step size for the state varies depending on its
location. In general, the closer (further away) it is to either
of the fixed points, the slower (or faster) the state moves.

As the channel noise density o decreases, the two
fixed points will move towards together. At the o reaches
the threshold, the two points merge. After that, they both
disappear along with the stability boundary, i.e., the whole
state space becomes one region only; and S/N always
converges to infinity no matter where the decoding starts.

We point out that the dynamic behavior of the LDPC
decoding process as described above holds for all regular
LDPC codes. In fact, the decoding dynamics for turbo

codes behave in the same way, as reported in [12]. This
is not surprising because turbo decoding also uses the sum-
product rule. Moreover, this dynamic behavior is also valid
for other update rules (e.g., max-Log-MAP rule, soft Viterbi
algorithm).

Apart from the use in understanding the behavior of
the decoding process, the dynamic model as described
here is also useful for several other purposes. Firstly, it
helps understand how sensitive the threshold of oy by
examining the movement of the two fixed points when oy is
moving away from the threshold. Secondly, it helps design
a faster decoder. Indeed, since the step size for decoding
depends on the state, a sub-optimal but faster decoder
can be used where the step size is expected to be large
and an optimal decoder (i.e. the sum-product rule) is used
when the step size may become small. Using a sub-optimal
decoder will change the decoding trajectory. But because
the final decoding outcome is independent of the initial state
when the channel noise is below the threshold, switching
between decoders as described above does not affect the
final decoding results. Provided the switching is optimized,
such a decoder can potentially be faster than the optimal
decoder without sacrificing any decoding errors. See [12]
for an example of a fast decoder for turbo codes. Thirdly,
the model is useful for partial re-transmission design. More
specifically, in the event the decoding of a particular block
fails, one may estimate where the state is (which can be
approximated without knowing the correct codeword) and
use this information to estimate how much additional S/N
is needed for successful decoding.

IV. IRREGULAR LDPC CODES

Irregular LDPC codes employ different degrees at either
variable nodes or check nodes or both. Following the
notation in [3], we use two polynomials to describe the
degree distributions at variable nodes and check nodes,

dy de
Aa) =Y Nz pla) =D pia'! ®)
=2 =2

respectively. In the above, d, (resp. d.) is the maximum
degree of the variable (resp. check) node and \; (resp. p;) is
the probability for an edge to connect to a degree ¢ variable
(resp. check) node.

Recall the notation Py, P*), Q) and T. It is shown in
[2] that the update rule for P*) and Q(*) is given by

QY = py @ A(P™))
PEFD = P (p(r(Q™ 1)) (10)
where

AP) = Z&'P@(Fl)% p(Q) = ZPiQ(X)(Fl)

That is, only the averaged density needs to be updated.
We now modify the density evolution algorithm in
Section II to suit irregular LDPC codes. Note that the

1111

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE ICC 2006 proceedings.

0.05

;
— Gaussian

0.045H —— lIteration 2 B
—— [teration 5

0.04 Iteration 10
Iteration 20

0.035

0.03

0.025

0.02

0.015

0.01

0.005

[V

Fig. 5. Density functions of Irregular LDPC Codes at Variable nodes

samples of P®! can be generated by adding the sam-
ples of P®(~1) and the samples P. Similarly, the sam-
ples of Q® can be generated by using the samples of
Q®0=1) and the samples of @ through the operation
2tanh ™! {tanh(z/2)tanh(y/2)}. Also note that for N;
samples of the averaged density, only N; = \;N (or p;N)
samples of degree ¢ samples are needed because the samples
of the averaged density can be formed by concatenating all
the N; samples of the degree 7 densities.

Next we consider Gaussian approximation for irregular
LDPC codes. Since only the averaged density needs to
be considered in each iteration, the key question here is
whether the averaged density can be approximated by a
Gaussian distribution if the individual densities are Gaussian
or approximately Gaussian. The answer to this question is
obvious no in general because the sum of two Gaussian
densities (not the sum of two Gaussian variables) tends to
have two peaks. However, when the individual densities are
such that their means are close and their variances are not
too small, the sum tends to be approximately Gaussian.

Following the discussion above, we see that the averaged
density can be approximated by Gaussian distributions if the
degree distributions are not very wide. This is supported
by simulations as shown in Figure 5, where a rate 1/2
irregular LDPC code with A\(x) = 0.38354x +0.0423722 +
0.5740922 and p(z) = 0.24123z*+0.758772" is used. The
channel noisy density oy = 0.88 is used. We see from the
Gaussian approximation is reasonably good, although not
as good as in Figure 1.

Based on Gaussian approximation, a two-input, two-
output dynamic model is also naturally developed for ir-
regular LDPC codes. Figure 6 shows the dynamic model
for the same rate 1/2 irregular code but with o9 = 0.92.
We see that the state space also exhibits two regions and a
stable fixed point, but it does not appear to have an unstable
fixed point. The main difference, which is rather interesting,
is that the 02 vs. u curves tend to grow superlinearly when
1 is large, whereas in the regular LDPC case the growth is

50
4s¢ 1

40r 1

301 1
Y25 1
201 1
15F stability boundary-|

1 4
0 stable fixed point

O I I
0 5 n 10 15

Fig. 6. Dynamic Model of Irregular LDPC Decoding

sublinear.

REFERENCES

[1] T. J. Richardson and R. L. Urbanke, “The capacity of low-
density parity-check codes under message-passing decoding,”
IEEE Trans. Inform. Theory, vol. 47, no. 2, pp. 599-618,
Feb. 2001.

[2] T. J. Richardson, M. A. Shokrollahi and R. L. Urbanke,
“Design of capacity-approaching irregular low-density parity-
check codes,” IEEE Trans. Inform. Theory, vol. 47, no. 2,
pp. 619-637, Feb. 2001.

[3] S-Y. Chung, T.J. Richardson and R. L. Urbanke, “Analysis of
sum-product decoding of low-density parity-check codes us-
ing a Gaussian approximation,” IEEE Trans. Inform. Theory,
vol. 47, no. 2, pp. 657-670, Feb. 2001.

[4] S-Y. Chung, G. D. Forney, Jr., T. J. Richardson and R. L.
Urbanke, “On the design of low-density parity-check codes
within 0.0045dB of the Shannon limit,” IEEE Communica-
tions Letters, vol. 5, no. 2, pp. 58-60, Feb. 2001.

[5] D. MacKay, “Good error correcting codes based on very
sparse matrices,” I[EEE Trans. Inform. Theory, vol. 45, no. 2,
pp- 399-431, March 1999.

[6] N. Wiberg, “Codes and decoding on general graphs,”
Ph.D. Dissertation, Department of Electrical Engineering,
Linkoping University, 1996.

[7] S. ten Brink, “Convergence behavior of iteratively decoded
parallel concatenated codes,” IEEE Trans. Commun., vol. 49,
no. 10, pp. 17271737, Feb. 2001.

[8] D. Divsalar, S. Dolinar, and F. Pollara, “Iterative turbo de-
coder analysis based on density evolution,” IEEE J. Selected
Areas in Commun., vol. 19, no. 5, pp. 891-907, 2001.

[9] H. El Gamal and A. R. Hammons, “Analyzing the turbo
decoder using the Gaussian approximation,” /IEEE Trans. In-
form. Theory, vol. 47, no. 2, pp. 671-686, Feb. 2001.

[10] J. W. Lee and R. E. Blahut, “Generalized EXIT chart and
BER analysis of finite-length turbo codes,” Proc. GlobeCom
2003, San Fransisco, Dec. 2003.

[11] R. M. Gary, Probability, Random Processes, and Ergodic
Properties. Springer-Verlag, New York, 1988.

[12] M. Fu, “Stochastic analysis of turbo decoding,” [EEE
Trans. Inform. Theory, vol. 51, no. 1, pp. 81-100, Jan. 2005.

[13] N. C. Baulieu, A. Abu-Dayya and P. J. McLane, “Estimating
the distribution of independent lognormal random variables,”
IEEE Trans. Commun., vol. 43, no. 12, pp. 2869-2873, 1995.

1112

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE ICC 2006 proceedings.

