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Abstract. This paper studies two control problems
for linear systems using quantized feedback, namely
quadratic performance control and H∞ control. We
first revisit the work by Elia and Mitter on quadratic
stabilization of linear systems using quantized state
feedback with a logarithmic quantizer. We reinter-
pret their result on coarsest quantization density us-
ing a sector bounded method. This allows us to gen-
eralize their work to the aforementioned performance
control problems. We give conditions under which a
given quantization density yields a linear controller
that guarantees a required level of performance.

1 Introduction

There is a new line of research on quantized feedback
control where an quantizer is regarded as an informa-
tion coder. The fundamental question of interest is
how much information needs to be communicated by
the quantizer in order to achieve a certain control ob-
jective. Noticeable works include [1, 2, 3, 4]. In [4],
the problem of quadratic stabilization of discrete-time
single-input-single-output (SISO) linear time-invariant
(LTI) systems using quantized feedback is studied. The
quantizer is assumed to be static and time-invariant
(i.e., memoryless and with fixed quantization levels).
It is proved in [4] that for a quadratically stabilizable
system, the quantizer is the so-called logarithmic (i.e.,
the quantization levels are linear in logarithmic scale).
Further, the coarsest quantization density is given ex-
plicitly in terms of the system’s unstable poles. The
work of [4] is also generalized to some extent to guaran-
teed performance control [5], stabilization of two-input
systems [6], and multi-input systems [7].

The most pertinent work to this paper is [4] which no
doubt has a significant value in this line of research.
However, the work in [4] is about stabilization only,
and it seems non-trivial to generalize their approach to
performance control. In a companion paper [8], we have
revisited the key result in [4] which is on quadratic sta-
bilization of SISO linear systems using quantized state
feedback. We have shown that the coarsest quantiza-
tion density for a logarithmic quantizer can be simply
obtained using the sector bound method. This not only
gives a simpler interpretation of the result, but also pro-

vides the basis for generalization of the result. Indeed,
we have generalized the work of [4] to robust stabi-
lization using quantized output feedback and to robust
stabilization of multi-input-multi-output systems using
quantized state or output feedback.

In this paper, we generalize our results in [8] fur-
ther to performance control using quantized feedback.
Both linear quadratic performance and H∞ perfor-
mance problems are studied. We give conditions under
which a given quantization density yields a linear con-
troller that guarantees a required level of performance.

2 Stabilization using Quantized State Feedback

This section is basically duplicated from [8]. The pur-
pose is to introduce the main tool for our approach, i.e.,
the sector bound method for analysis of quantization
error. More specifically, we revisit the work of Elia and
Mitter [4] on stabilization using quantized state feed-
back and show how to reinterpret their result.

Consider the following system:

x(k + 1) = Ax(k) + Bu(k) (1)

where A ∈ Rn×n, B ∈ Rn×1, x is the state and u is a
quantized state feedback in the following form:

u(k) = f(v(k)) (2)

v(k) = Kx(k) (3)

In the above, K ∈ R1×n is the feedback gain, and f(·)
is a quantizer assumed to be symmetric, i.e., f(−v) =
−f(v). The set of quantized levels is denoted by

U = {±ui, i = 0,±1,±2, · · ·} ∪ {0} (4)

Throughout this paper, we consider the so-called loga-
rithmic quantizer below:

U = {±u(i) : u(i) = ρiu(0), i = ±1,±2, · · ·}
∪{±u(0)} ∪ {0}, 0 < ρ < 1, u(0) > 0

(5)

The parameter ρ will be called the quantization density.

For the quadratic stabilization problem, a quadratic
Lyapunov function V (x) = xT Px, P = PT > 0, is used
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to assess the stability of the feedback system. That is,
the quantizer must satisfy

∇V (x) = V (Ax + Bf(Kx)) − V (x) < 0, ∀x �= 0 (6)

The coarsest quantizer is the one which minimizes ρ
subject to (6), and the result is given below as in [4],
but we provide an alternative proof using the sector
bound method.

Theorem 1 Consider the linear system in (1). The
coarsest quantization density is given by

ρ =
1 − δ

1 + δ
(7)

with
δ−1 =

∏
i

|λu
i | (8)

where λu
i are the unstable eigenvalues of A.

Proof. Define the quantization error by

e = u − v = f(v) − v (9)

Let the quantization levels be given by (5) for any 0 ≤
ρ < 1. It is straightforward to check that e is bounded
by the following sector:

e = ∆(v)v, ‖∆(v)‖ ≤ δ (10)

where δ is obtained from (7). Therefore, we can model
the quantized feedback system as the following uncer-
tain system:

x(k + 1) = Ax(k) + B(1 + ∆(Kx))Kx(k) (11)

and the quadratic stabilization condition becomes

∇V (x) = V ((A+B(1+∆(Kx))K)x)−V (x) < 0, ∀x �= 0
(12)

Let P and K be fixed for the moment. It is trivial to
see that the above holds if the following holds:

∇P (∆) = (A + B(1 + ∆)K)T P (A + B(1 + ∆)K) − P

< 0, ∀|∆| ≤ δ (13)

where ∆ is independent of the state. Next, we show
below that the converse is also true, i.e., (12) implies
(13). Indeed, suppose (12) holds but (13) is violated
for some |∆0| ≤ δ. Let x0 be the eigenvector of
∇P (∆0) corresponding to a non-negative eigenvalue,
i.e., xT

0 ∇P (∆0)x0 ≥ 0. Note that Kx0 �= 0 because of
(12). Now choose any x1 = αx0 for some scalar α �= 0
such that ∆(Kx1) = ∆0, which is possible because ∆(·)
swings between −δ and δ. We have

∇V (x1) = xT
1 ∇P (∆(Kx1))x1 ≥ 0 (14)

This contradicts the assumption that (12) holds.
Hence, the converse is proved.

The result above means that the problem of coarsest
quantization is equivalent to finding the maximum δ
for the following system

x(k + 1) = Ax(k) + B(1 + ∆)u(k), |∆| ≤ δ (15)

to be quadratically stabilizable. It is well-known [9]
that this is equivalent to minimizing the H∞-norm of
the transfer function

Gc(z) = K(zI − A − BK)−1B (16)

More specifically,

sup
P,K

δ =
1

infK ‖Gc(z)‖∞ (17)

Hence, it remains to show that the solution to (17)
leads to (8). This is a standard H∞ problem. The
details can be found in [8].

3 Stabilization of MIMO Systems

In this section, we summarize a result from [8] for quan-
tization stabilization of MIMO systems. Both quan-
tized state feedback and quantized output feedback are
considered. For the latter, we consider the case where
the measured output y(k) is quantized.

Qnantized State Feedback. The system is as in (1)
except that u ∈ Rm, y ∈ Rr. Suppose quantized state
feedback (2)-(3) is used, where K ∈ Rm×n and

f(v) = diag{f1(v1), f2(v2), · · · , fm(vm)} (18)

where vj is the jth component of v and fj(·) is a quan-
tizer (5) with 0 < ρj < 1. Because we have more than
one quantizer, the notion of coarsest quantization is not
well-defined. Instead, we ask the following question:
Given a vector of quantization levels ρ = [ρ1 ρ2 · · · ρm],
does there exist an quantized feedback controller that
quadratically stabilizes the system (1)?

Theorem 2 Given the system in (1) and a quantiza-
tion level vector ρ, consider the auxiliary system:

x(k + 1) = Ax(k) + B(I + ∆(k))v(k) (19)

where |∆j(k)| ≤ δj for all j = 1, 2, · · · , m and k, and
δj are converted from ρj using (7), and v(k) is a con-
trol input. Suppose the auxiliary system is quadratically
stablizable via state feedback (3), then (1) is quadrat-
ically stabilizable via quantized state feedback. Con-
versely, suppose the system (1) is quadratically stabiliz-
able via quantized state feedback and, in addition, sup-
pose ln ρi/ lnρj are irrational numbers for all i �= j
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when m > 1. Then, for any (arbitrarily small) ε > 0,
the auxiliary system (19) with |∆j(k)| ≤ δj − ε is
quadratically stabilizable via state feedback (3). Fur-
ther, the auxiliary system is quadratically stabilizable
via state feedback (3) if the following state feedback H∞
control has a solution K for some diagonal scaling ma-
trix Γ > 0:

‖ΛΓK(zI − A − BK)−1BΓ−1‖∞ < 1 (20)

where
Λ = diag{δ1, · · · , δm} (21)

In particular, any K that renders (20) is a solution to
either quadratic stabilization problem.

Remark 1 It is easy to see that if a given set of ρj , j =
1, 2, · · · , m do not satisfy the condition that ln ρi/ lnρj

are irrational for i �= j, we can make it so by perturbing
the ρj arbitrarily slightly. That is, the condition above
holds generically.

Quantized Output Feedback. When quantized
measurements are used, the system becomes

x(k + 1) = Ax(k) + Bu(k)
y(k) = Cx(k) (22)

where C ∈ Rr×n, and y(k) is to be quantized. The
controller is in the form

xc(k + 1) = Acxc(k) + Bcf(y(k))
u(k) = Ccxc(k) + Dcf(y(k)) (23)

It is verified that the closed-loop system is given by

x̄(k + 1) = A(∆(y(k))x̄(k) (24)

where ∆(·) is the same as in (10) and

Ā =
[

A 0
0 0

]
, B̄ =

[
0 B
I 0

]
, C̄ =

[
0 I
C 0

]

Î =
[

0
I

]
, Ĉ =

[
C 0

]
, K̄ =

[
Ac Bc

Cc Dc

]
(25)

A(∆) = Ā + B̄K̄(C̄ + Î∆Ĉ) (26)

Theorem 3 Given the system in (22) and a quantiza-
tion level vector ρ, consider the auxiliary system:

x(k + 1) = Ax(k) + Bu(k)
y(k) = Cx(k)
v(k) = (I + ∆(k))y(k)

(27)

where |∆j(k)| ≤ δj for all j = 1, 2, · · · , m and k, and
δj are converted from ρj using (7), and v(k) is the out-
put available for feedback. Suppose the auxiliary system
is quadratically stablizable, then (22) is quadratically

stabilizable via (23). Conversely, suppose the system
(22) is quadratically stabilizable via (23) and, in addi-
tion, suppose ln ρi/ lnρj are irrational numbers for all
i �= j when m > 1. Then, for any (arbitrarily small)
ε > 0, the auxiliary system (27) with |∆j(k)| ≤ δj−ε is
quadratically stabilizable. Further, the auxiliary system
is quadratically stabilizable if the following state feed-
back H∞ control has a solution H(z) for some diagonal
scaling matrix Γ > 0:

‖ΛΓ(I − G(z)H(z))−1G(z)H(z)Γ−1‖∞ < 1 (28)

where Λ is given in (21). In particular, any H(z) that
renders (20) is a solution to either quadratic stabiliza-
tion problem.

4 Quantized Quadratic Performance Control

Now we extend the results in the previous sections to
including a quadratic performance objective. Consider
the system in (22). Suppose the output y(k) needs to
be quantized. We now want to design a controller in
(23) such that the following performance cost function

J(x(0)) =
∞∑

k=0

xT (k)Qx(k) + uT (k)Ru(k),

Q = QT ≥ 0, R = RT > 0 (29)

is minimized in the sense below:

min EJ(x0) (30)

In the above, x(0) is assumed to be a white noise with
covariance Ex(0)xT (0) = σ2I for some σ > 0.

Because the state of the closed-loop system is x̄(k), we
may rewrite the performance cost as

J(x̄(0)) =
∞∑

k=0

x̄T (k)Q̄x̄(k) + u(k)T Ru(k) (31)

where

x̄(0) =
[

x(0)
0

]
; Q̄ =

[
Q 0
0 0

]
(32)

Suppose we want the closed-loop system to be quadrat-
ically stable. Let V (x̄) = x̄T P̄ x̄, P̄ = P̄T > 0, be the
associated Lyapunov function. Define

∇V (x̄(k)) = V (x̄(k + 1)) − V (x̄(k)) (33)

Then, using (24), the performance cost is given by

J(x̄(0))
= x̄T (0)P̄ x̄(0)

+
∞∑

k=0

∇V (x̄(k)) + x̄T (k)Q̄x̄(k) + u(k)T Ru(k)

= x̄T (0)P̄ x̄(0) +
∞∑

k=0

x̄T (k)Ω̄(∆(y(k)))x̄(k) (34)
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where

Ω̄(∆) = A(∆)T P̄A(∆) − P̄ + Q̄

+ (C̄ + Î∆)Ĉ)T K̄T ÎRÎT K̄(C̄ + Î∆)Ĉ) (35)

For the case without quantization, i.e. ∆(·) = 0, it
is well-known (and easy to see from above) that the
optimal solution for K̄ is such that x̄T (k)Ω̄(0)x̄(k) = 0
for all k, which leads to J(x̄(0)) = x̄T (0)P̄ x̄(0) and
minimization of trP̄ . In the presence of the quantizer,
we can formulate the performance control problem as
follows: Given a performance bound γ > 0 and ρ > 0,
find P̄ , K̄, if exist, such that tr(P̄ ) < γ subject to

x̄T Ω̄(∆(Ĉx̄))x̄ < 0, ∀x̄ �= 0 (36)

This problem will be called Quantized Quadratic Per-
formance Control (QQPC) problem. Its solution is re-
lated to the so-called guaranteed-cost control (GCC) for
the auxiliary system (22) and (27), i.e., we want to find
P̄ , K̄ such that tr(P̄ ) < γ subject to

Ω̄(∆) < 0, ∀ |∆j | ≤ δj (37)

where δj and ρj are related by (7).

Theorem 4 Consider the system in (22), the perfor-
mance cost in (29), the controller structure in (23),
some performance bound γ > 0 and quantization level
vector 0 < ρ < 1. Suppose the GCC problem has a
solution. Then, there exists a solution to the QQPC
problem. Conversely, if the QQPC problem has a so-
lution and in addition (when m > 1), ln ρi/ lnρj are
irrational numbers for all i �= j, then, given any (arbi-
trarily small ε > 0), the GCC problem for (37) has a
solution for |∆j(k)| ≤ δj − ε.

Proof. The key is to show the relationship between
(36) and (37). Obviously, (37) implies (36). The fact
that (36) implies (37) but with |∆j | ≤ δj − ε is proved
following Theorem 2. The details are omitted.

When quantized state feedback is used instead, we have
the following result:

Theorem 5 Consider the system (1) with B ∈ Rn×m

and quantized state feedback as in (2)-(3), where f(·) =
[f1(·), · · · , fm(·)]T with given quantization levels 0 <
ρ1, · · · , ρm < 1. Given the performance cost function
in (29) and a performance bound γ > 0, the QQPC
problem becomes to finding P = PT > 0 and K, if
exist, such that trP < γ subject to

xT Ω(∆(v))x < 0, ∀x �= 0 (38)

where v = Kx and

Ω(∆) = (A + B(I + ∆)K)T P (A + B(I + ∆)K)
−P + Q + KT (I + ∆)R(I + ∆)K (39)

The related GCC problem becomes to finding P = PT >
0 and K, if exist, such that trP < γ subject to

Ω(∆) < 0, ∀|∆j | ≤ δj (40)

Further, the GCC problem has a solution if the follow-
ing linear matrix inequalities

tr P̃ < γ,

[ −P̃ I
I −S

]
≤ 0 (41)




−S ∗ ∗ ∗ ∗
AS + BW −S + BΛΓΛBT ∗ ∗ ∗

W ΛΓΛBT −R̃ ∗ ∗
W 0 0 −Γ ∗

Q1/2S 0 0 0 −I


 < 0

(42)
have a solution for some P̃ = P̃T , S = ST , W and a
diagonal scaling matrix Γ, where R̃ = R−1−ΛSΛ, Λ is
given in (21), and * denotes the symmetric part. Also,
P and K are related to S and W as follows:

P = S−1, K = WP (43)

Proof. The simplification of the QQPC and GCC
problems is easy to check. We proceed to verify (42)
as a sufficient condition for the GCC problem. Indeed,
(40) holds if and only if


 −P + Q ∗ ∗

A + B(I + ∆)K −P−1 ∗
(I + ∆)K 0 −R−1


 < 0 (44)

for all |∆j | ≤ δj . Using (43), the above becomes

 −S + SQS ∗ ∗

AS + B(I + ∆)W −S ∗
(I + ∆)W 0 −R−1


 < 0 (45)

which is equivalent to

 −S + SQS ∗ ∗

AS + BW −S ∗
W 0 −R−1


 +


 0

B
I


∆[W 0 0]

+


 WT

0
0


∆[0 BT I] < 0 (46)

Taking Γ > 0 to be a diagonal matrix, (46) holds if

 −S + SQS ∗ ∗

AS + BW −S ∗
W 0 −R−1


 +


 0

BΛ
Λ


Γ[0 ΛBT Λ]

+


 WT

0
0


Γ−1[W 0 0] < 0 (47)

which is equivalent to (42) by Schur complement.
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5 Quantized H∞ Control

Next, we extend the quantization results to H∞ con-
trol. For simplicity, only quantized state feedback is
considered. The system of interest is as follows:

x(k + 1) = Ax(k) + Bu(k) + B1w(k)
z(k) = Cx(k) + Du(k) + D1w(k) (48)

where x ∈ Rn, u ∈ Rm, w ∈ Rm1 , z ∈ R� and the
control signal is in the form of (2)-(3). Given a quanti-
zation level vector ρ and H∞ performance bound γ > 0,
the design objective is to find K such that the induced
L2-gain from w to z is less than γ.

Then, the closed-loop system is given by

x(k + 1) = [A + B(I + ∆(v))K]x(k) + B1w(k)
z(k) = [C + D(I + ∆(v))K]x(k) + D1w(k)(49)

As in the quadratic performance control problem, we
consider the following relaxed H∞ control problem:
Find P = PT > 0 and K such that

xT Π(∆(Kx))x < 0, ∀x �= 0 (50)

where

Π(∆) = AT
∆PAT

∆ − P + γ−2(AT
∆PB1 + CT

∆D1)
×[I − γ−2(DT

1 D1 + BT
1 PB1)]−1

×(BT PA∆ + DT
1 C∆) + CT

∆C∆ < 0 (51)

A∆ = A + B(I + ∆(v))K, C∆ = C + D(I + ∆(v))K
(52)

Theorem 6 Consider the given system (48), con-
troller structure (2)-(3), quantization level vector ρ and
a H∞ performance bound γ > 0. Suppose there exist
P = PT > 0 and K such that (50) holds, then the
induced L2-norm from w to z is less than γ.

Further, for any P = PT > 0 and K, (50) holds if
Π(∆) < 0 for all |∆j | ≤ δj, where δj are related to
ρj by (5). Conversely, if (50) holds, Π(∆) < 0 for all
|∆j | ≤ δj − ε, where ε > 0 is arbitrarily small.

In addition, there exist P = PT > 0 and K such that
Π(∆) < 0 for all |∆j | ≤ δj if the following linear matrix
inequality



−S + BΛΓΛBT ∗ ∗ ∗ ∗
(AS + BW )T −S ∗ ∗ ∗

BT
1 0 −γI ∗ ∗

DΛΓΛBT CS + D1W D1 −γI ∗
0 W 0 0 −Γ


 < 0

(53)
has a solution for S = ST , W and diagonal scaling ma-
trix Γ, where Λ and the relationship between (S, W )
and (P, K) are the same as in Theorem 5.

Proof. The proof is similar to that of Theorem 5. The
details are omitted.

6 Conclusions

We have generalized the work of [4] to performance
control problems. We have given conditions, in terms
of linear matrix inequalities, under which a linear con-
troller exists to provide a guaranteed level of perfor-
mance for a given logarithmic quantization density.
Furthermore, the use of the sector bound method al-
lows us to see the connection between quantized feed-
back control and robust control with sector-bounded
uncertainties. This insight is important because it al-
lows many robust control results to be applied to quan-
tized feedback control. For example, we now under-
stand why it is difficult to find the coarsest quantiza-
tion level for performance control. The reason is that
this problem is similar to finding the maximum sec-
tor bound for an uncertainty block in a linear system
which yields a guaranteed level of performance, a diffi-
cult problem well-known in the robust control area.
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