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Abstract— In this paper, we introduce a set of sensor net-
works, called the cascading quadrilateral network, and study
how to compute the positions of its nodes in a cooperative
way. We investigate the condition for determining whether all
the sensor nodes are localizable. If not, we provide a method to
detect the un-localizable nodes for the whole network. The nec-
essary and sufficient conditions for the network localizability and
node localizability are given from the view of algebraic property,
respectively. Specifically, we provide algorithms to show how to
detect un-localizable nodes from a partially localizable network.
Numerical simulation is provided to show the effectiveness of
the developed method of computing positions.

I. INTRODUCTION

Accurately computing the positions of sensor nodes is
a key issue for providing localization based service (LBS)
using sensor networks in both civil and military applica-
tions. The common way of computing locations is inherited
from the GPS localization algorithm, which aims to solve
an optimization problem with a non-convex cost function.
During the past decade, many localization algorithms to
solve this optimization problem in a distributed way were
proposed, such as the Semi-Definite Programming (SDP)
based method [1], sub-gradient algorithm [2], Gaussian it-
eration [3] and so on. These works focus on finding a way
to compute the positions by using distance, angle or any
other measurements that can be easily obtained at sensor
nodes. The success of these methods mainly depends on
finding the solution of an optimization problem. But the cost
functions defined by the distance measurements and the esti-
mated positions are not convex, so these optimization based
methods cannot guarantee convergence to true positions of
sensor nodes.

From the perspective of systems and control, the lo-
calization problem can be solved by two categories of
methods. The first one is based on local embedding and
eigen decomposition. Ravazzi et al. [4] provide a randomized
algorithm to iteratively estimate the relative positions of
sensor nodes by reconstructing the position vector from local
measurements of the differences between pairwise neighbors.
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The convergence of such an algorithm is proved by the
randomized PageRank dynamics, as shown in [5].

The second category of method is to solve the localization
problem based on consensus algorithms and formation con-
trol formulations. From the view of consensus algorithms,
the localization problem is strongly related to the distance
based formation control [6], which has been well studied
in [7], [8], [9], [10], [11], or formation control based on the
measurement of relative position in [12], [13], [14], [15].
The success of this method depends on the synchronization
of the local coordinate framework held by each single node.
In contrast, the demanded measurement in this paper is only
the distance measurement, which could be obtained at each
node in a fully distributed way.

Before bringing such measurements of distances or angles
into the positioning step, we need a ‘filtering’ process to filter
out certain measurements and even some nodes, which would
cause ambiguities into the computation of positions. Such a
‘filtering’ process is called localizability test, during which
the un-localizable nodes are filtered out, whereas the left
ones are detected to be localizable. Such a localizability test
is fundamental for the LBS since the service provided by the
un-localizable nodes will be meaningless in practice [16].

From the graphical view, the localizability test is equiv-
alent to determine the uniqueness of a graph-embeddability
problem [17], i.e., whether there exists a unique embedding
for the graph given a set of distance measurements. For a
randomly deployed network, this graph-embeddability prob-
lem has been proved to be NP-hard. Thus, people turn to
study which kind of graphs have the unique and “generic”
embedding [18]. In [19], Moore et al. introduce a concept of
robust quadrilateral and the object network is divided into
clusters of quadrilaterals. In this paper, we also studies the
network formed by clusters of quadrilaterals, but we give
up the stitching strategy, i.e., the network topology is with
less constraints than that of [19], which leads to a more
generalized scope of networks.

The criterion of the localizability test is called the lo-
calizability condition. Most existing conditions are based
on the graph rigidity theory, which models the network to
be an abstracted distance graph and analyzes the graphical
properties of the network topology [20].

The concept of network localizability has been proposed to
answer whether or not a network is localizable given a set of
pairwise distance constraints. In contrast, the concept of node
localizability focuses on the location-uniqueness of every
single node [16]. In practice, a randomly deployed network
is usually partially localizable, which means the positions of
only a part of the nodes can be uniquely determined given
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certain constraints of distance measurements.
Another challenging issue for the localization problem

is on how to compute the positions using only the local
measurements and communication. In [14], [21], [4], the
measurements of relative positions require different nodes to
share a unified reference frame, i.e., the coordinate frame at
each node should agree with that of others. By the term
of local measurements, we refer to the measurements of
distances and bearing angles between pairwise neighboring
nodes, which can be obtained by each single node. In
this paper, we consider only the distance measurements
among pairwise neighboring nodes in cascading quadrilateral
networks. This mechanism is defined to be a fully distributed
or cooperative way.

In this paper, for a set of networks called the cascading
quadrilateral network, we provide a necessary and sufficient
condition for its localizability. Then, we show how to detect
the un-localizable nodes through analyzing the structure of
the eigenvectors of a specific weight matrix. Moreover, the
eigenvectors are estimated by each node in a cooperative
way. While detecting un-localizable nodes, a necessary and
sufficient condition for node localizability is also obtained.
For the best of our knowledge, this is the first time that
a necessary and sufficient condition is proposed for node
localizability. Based on the proposed condition in this paper,
every un-localizable node can be detected by using only local
measurements and estimations.

Notations: R denotes the set of real numbers. ι =
√
−1

denotes the imaginary unit. 1n represents the n-dimensional
vector of ones and In denotes the identity matrix of order
n. EIG(•) and EIG(•) denote the eigenvalues of a certain
matrix with the largest and smallest module, respectively. Ed

denotes the d-dimensional Euclidean space. [A]i,j denotes
the j-th entry of the i-th row in matrix A. ∅ denotes the
empty set. We also use

(

n

k

)

= n!
k!(n−k)! .

II. PRELIMINARIES

A. Graph Theory

Let G = (V , E) denote a graph of a network with N sensor
nodes, where V = {1, · · · , N} and E denote a node set and
an edge set, respectively. For ∀i, j ∈ {1, · · · , N}, the edge
{i, j} satisfies {i, j} ∈ E if and only if i and j can measure
the distance between each other. In this way, the graph G
here is usually called to be a distance graph.

Let Hi be a neighboring set of i, i ∈ V . For ∀j ∈ V and
j 6= i, it satisfies j ∈ Hi if and only if {i, j} ∈ E . The
distance graph is undirected, i.e., for all i, j ∈ V , if the edge
{i, j} ∈ E , then {j, i} ∈ E .

A framework is a pair (G,p), where G = (V , E) denotes
a distance graph and p = [p1, · · · , pN ]T denotes Euclidean
coordinates of the vertices in V , where N = |V| and pi ∈ R

2

for all i ∈ V . The framework (G,p) is said to be generic
if p does not satisfy any nontrivial algebraic equation with
rational coefficients [22]. In this paper we make an implicit
assumption that frameworks are generic.

Definition 1 ([20]): A framework is said to be globally
rigid if any equivalent framework is also congruent. It is

said to be generically globally rigid if almost all of its
representations are globally rigid.

B. Network and Node Localizability

Consider a network of N sensor nodes in R
2, with

Euclidean coordinates p = [p1, · · · , pN ]. Define the nodes,
whose ground truth coordinates are clear to themselves, to be
anchor nodes, and the remaining ones to be normal sensor
nodes.

Considering a network associated with a distance graph
G = (V , E) and given distance measurements ‖pi − pj‖, for
all i and j satisfying {i, j} ∈ E , the question arises as to
whether or not the whole network is localizable. This is
called network localizability [16].

The following lemma from [23] states a relationship
between the localizability of a network and the rigidity of
its underlying graph.

Lemma 1 ([23]): The positions of all the nodes in a 2-
dimensional generic framework (G,p) are uniquely deter-
mined if and only if the following three conditions are
satisfied simultaneously.

1) Positions of at least three (anchor) nodes are known.
2) The distance measurements ‖pa−pb‖, for all {a, b} ∈ E ,

are known.
3) The distance graph G is globally rigid.
If the network is partially localizable, it becomes challeng-

ing to determine whether a single node is localizable. This is
because it does not exist a necessary and sufficient condition
for the localizability of each single node. This problem is
called the node localizability. As pointed out in [16], network
localizability is actually a special case of node localizability.

III. PROBLEM STATEMENT

In this paper, we start by representing the position of each
node into a linear combination of its neighbors. Then, a coop-
erative and recursive method for computing the positions of
sensor nodes is proposed, which uses only local information.
Its convergence is guaranteed by introducing certain scaling
coefficient. Finally, we propose a necessary and sufficient
localizability condition for each node.

To represent the position of each node, we use the concept
of barycentric coordinates. Their key characteristics are that
1) they represent each node’s position as a linear combination
of its neighbors, and 2) they can be computed using only
distance measurements between pairwise neighboring nodes.
On how to compute barycentric coordinates by using distance
measurements, readers may refer to [24].

In this paper, we consider a set of networks called cas-
cading quadrilateral network. Given four vertices in E

2,
connecting each pair of these vertices by an edge forms
a fully connected quadrilateral. For a network G = (V , E),
it is a cascading quadrilateral network as long as, for all
i ∈ V , there exists at least one quadrilateral containing i. One
example of the cascading quadrilateral network is shown in
Fig. III.

Remark 1: The requirement of being a cascading quadri-
lateral network does not imply that the its distance graph
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Fig. 1. An example of cascading quadrilateral network.

is complete, in which case the localization problem would
become trivial. The example of the cascading quadrilateral
network shown in Fig. III is obviously not a complete graph.

According to the definition of barycentric coordinate, the
position of Node i in a cascading quadrilateral network
can be written into a linear combination of its neighbors’
positions and the combination coefficients can be uniquely
determined by using the barycentric coordinate of i with
respect to its neighbors, say j, k and l. Specifically, for all
i /∈ Va, where Va denotes the set of anchor nodes, we have

pi = aijpj + aikpk + ailpl
1 = aij + aik + ail

(1)

Here, pi denotes the Euclidean coordinates of Node i, and
{aij , aik, ail} are barycentric coordinates of i with respect
to its three neighbors j, k, l ∈ Hi.

When |Hi| = m > 3, for i ∈ V , there will be
(

m

3

)

possible combinations of writing pi as a weighted sum of
its three neighbors. Let Cτ , τ = 1, · · · ,

(

m

3

)

, be one of such
combinations. Denote Sj = {Cτ |j ∈ Cτ , τ = 1, · · · ,

(

m

3

)

},
for each j ∈ Hi. Then, the number of the appearance of
pj in all

(

m

3

)

combinations should be |Sj|
3 . Denote a

(υ)
ij ,

υ ∈ {1, · · · , |Sj |
3 }, as one possible barycentric coordinate

of Node i with respect to Node j in the set Cτ . Then,

pi =
∑

j∈Hi

ãijpj, (2)

where ãij = 1

(m3 )

∑

|Sj |

3

υ=1 a
(υ)
ij , and pi and pj are Euclidean

coordinates of nodes i and j, respectively.
Given a network with N nodes, each node’s position can

be written as (2). Writing the positions of all nodes in matrix
form, we have

p = (A⊗ I2)p, (3)

where the vector p ∈ R
2N contains the coordinates of

the sensor nodes and A ∈ R
(N×N) with [A]ij = ãij .

Specifically, the (2n−1)-th and 2n-th entries of p are x-axis
and y-axis coordinates of Node n, respectively. Without loss
of generality, we further assume that

A =

[

I3 0
B C

]

, (4)

p =

[

pa

ps

]

, (5)

where pa denotes the positions of anchor nodes and ps

denotes that of the remaining nodes. Substituting (4) and
(5) into (3) leads to

ps = (C ⊗ I2)ps + (B ⊗ I2)pa. (6)

Let M = I − C, then we have.

(M ⊗ I2)ps = (B ⊗ I2)pa. (7)

In the following of this paper, we study the localizability
problem by analyzing the existence of solution for ps in (7),
and propose a necessary and sufficient condition for localiz-
ability of a network. Moreover, when the network is partially
localizable, we show how to use a necessary and sufficient
condition for localizability of one node to exhaustively detect
every localizable node. Regarding how to compute positions
in a cooperative way, we design a linear system to recursively
compute the ps in (7). The convergence of this system is
guaranteed by a proper diagonal stabilizer.

IV. A NECESSARY AND SUFFICIENT CONDITION FOR

THE LOCALIZABILITY OF A CASCADING

QUADRILATERAL NETWORK

Reorganizing (3) leads to

(L⊗ I2)p = 0, (8)

where L = I −A. Moreover,

L =

[

0 0
−B M

]

.

We can then state our localizability result.
Theorem 1: A cascading quadrilateral network N is local-

izable if and only if rank(M) = N − 3, where M is defined
in (7).

Proof:
Sufficiency: If M is of full rank, the solution of ps is

ps = (M ⊗ I2)
−1(B ⊗ I2)pa. (9)

Then the network is uniquely localizable as ps in (7) has a
unique solution,.

Necessity:
Let ξ denote the x-axis value of N , i.e., ξ = [p2n−1] for

all n = 1, · · · , N .
According to (1) and (8), we know

{

L1 = 0,

Lξ = 0.
(10)

Since the positions of any two nodes are not overlapped,
then, ξi 6= ξj for all i 6= j. Thus, ξ 6= 1.

Next, we complete the proof by contradiction. Suppose by
contradiction that det(M) = 0. Thus, there exists a nonzero
vector η ∈ R

(N−3), such that

Mη = 0.

Let B = [b1, b2, · · · , bn], where bi ∈ R
N−3, for all i ∈

{1, · · · , N}. Let φ ∈ R
N . Denote φ = [φ1, φ2, φ3, φ

T
r ]

T and
ξ = [ξ1, ξ2, ξ3, ξ

T
r ]

T , where φr ∈ R
(N−3) and ξr ∈ R

(N−3).
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From (10), we know L(ξ11 − ξ) = 0. Thus, for the
following equation,

(ξ2 − ξ1)b2 + (ξ3 − ξ1)b3 = Mφr, (11)

there exists a special solution of φr, say φ∗
r , with a form like

φ∗
r = ξ11n−3 − ξr.

Here, the 1N−3 indicates a full-one vector with (N − 3)
dimension.

Define a set F as F = {X |X = α1 + βξ}. Since ξ
denotes the true positions of sensor nodes, the set F denotes
all possible positions of sensor nodes up to rotation and
translation. Now, we will show that there exists such a vector
ξ̃ that Lξ̃ = 0 and ξ̃ /∈ F .

Since Mη = 0, a general solution of φr in (11) should be

φr = kη + φ∗
r , (12)

where k ∈ R.
Let ξ̃ = [0, ξ2− ξ1, ξ3− ξ1, φr]

T . Then, Lξ̃ = 0. Now, we
show that ξ̃ /∈ F . Since ξi 6= ξj , for all i, j ∈ {1, · · · , N},
thus there is no zero entry in φ∗

r . Then, there exists a k in
(12) such that ξ̃i 6= ξ̃j for all i, j ∈ {1, · · · , N}.

The first three nodes’ positions in ξ̃ are {0, ξ2−ξ1, ξ3−ξ1},
which are translated from the {ξ1, ξ2, ξ3} with an offset of ξ1.
But, the translation of the rest positions in φr has a distinct
offset with ξ1. That is, ξ̃ 6= ξ and ξ̃ cannot be obtained from
an affine transformation of ξ.

Thus, ξ̃ is not congruent with ξ up to translation and
rotation. In other words, ξ̃ becomes a distinct position vector
indicating the x-axis coordinate of N . This is contradict with
the assumption that N is uniquely localizable. Now, we can
complete the proof.

V. COOPERATIVE METHOD FOR DETECTING

LOCALIZABLE NODES AND COMPUTING THEIR POSITIONS

In this section we propose a method for detecting node
localizability in a distributed manner. This method is based
on an algorithm for computing node positions, which is
proposed in [25]. We summarize this algorithm in Section V-
A. Then, in Section V-B, we derive a necessary and sufficient
condition for the localizability of each node.

A. A cooperative method for computing node positions

Assume that the measurement noise can be modeled as
additive noise in (7), we then have

(M ⊗ I2)ps = (B ⊗ I2)pa + υ, (13)

where υ ∼ N (0, R), for some R > 0. We can then
obtain a recursive algorithm for finding ps, using the method
proposed in [25]. We summarize the idea below.

Let Φ = (M ⊗ I2)
TR−1(M ⊗ I2) and α = (M ⊗

I2)
TR−1(B⊗I2)pa. We can obtain a weighted least-squares

estimation p̂s of ps as follows.

p̂s = Φ−1α. (14)

Let γ > 0 and
α̃ =

√
γα,

˜̂ps =
z√
γ
.

Then, (14) becomes

˜̂ps = (γΦ)−1α̃. (15)

If γ is chosen such that ‖I − γΦ‖ < 1, we can obtain
a recursive algorithm for solving (15) using Richardson’s
iterations [26]. This yields

˜̂ps(t+ 1) = (I − γΦ)˜̂ps(t) + α̃. (16)

Then, substituting α̃ and ˜̂ps into (16) we obtain

p̂s(t+ 1) = (I − γΦ)p̂s(t) + γα. (17)

Let p̂s = [p̂
(1)
s , · · · , p̂(N)

s ], α = [α(1), · · · , α(N)] and Φ =
[Φ(i,j)]i,j=1,··· ,N . Then, at node i we obtain

p̂(i)s (t+1) = γΦ(i)p̂(i)s (t)−γ
∑

j∈Hi

Φ(i,j)p̂(j)s (t)+γα(i), (18)

where Hi = {j : Φ(i,j) 6= 0}.
Since Φ > 0, if we choose

0 < γ <
2

‖Φ‖ , (19)

then ‖I − γΦ‖ < 1. Hence, any value of γ satisfying (19)
will guarantee that (17) converges. As pointed out in [25],
the value leading to the fastest convergence rate of the
recursions (17) is

γ =
2

‖Φ‖+ ‖Φ−1‖−1

=
2

EIG(Φ) + EIG(Φ)
. (20)

The values of EIG(Φ) and EIG(Φ), and thus γ, can be
computed in a distributed manner, using the methods [27],
[25] based on power iterations. We summarize the idea
below.

The largest eigenvalue of Ψ can be estimated in a coop-
erative way using the power iteration, i.e.,

b̃(k) = τkb(k), (21)

b(k + 1) = Φb̃(k). (22)

where ‖b(0)‖ = 1 and τk is a re-scaling constant whose
role is to avoid that ‖b(k)‖ either increases or decreases
indefinitely. Then, EIG(Φ) can be estimated at node i using

EIG(Φ) = lim
k→∞

bi(k + 1)

b̃i(k)
,

where bi(k), b̃i(k) ∈ R
2 are the components of b(k) and b̃(k)

available at node i.
In order to estimate EIG(Φ), we use the algorithm above

to find EIG(Λ), where Λ = cI − Φ, and c ≥ EIG(Φ).
Then,

EIG(Φ) = c− EIG(Λ).

Remark 2: The estimation of eigenvalues can also be
addressed by several other techniques, such as the random-
ized method [28] and spectral analysis method [29], [30].
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Specifically, in [29], [30], the eigenvalue estimation problem
can be solved by Fast Fourier transform (FFT), but they
require the system matrix to be a symmetric Laplacian.

B. Cooperative method for detecting localizable nodes

We have the following immediate corollary of Theorem 1.
Corollary 1: A cascading quadrilateral network is unique-

ly localizable if and only if EIG(Φ) > 0, where Φ =
MTM .

Then, we obtain the following necessary and sufficient
condition for node localizability, which we will use as a
criterion for detecting un-localizable nodes.

Theorem 2: Let en = [0, · · · , 0, 1, 1, 0, · · · , 0] ∈ R
2(N−3)

be such that its nonzero entries are in the (2n − 1)-th and
2n-th position. Then, Node n is localizable if and only if
ωT en = 0, for all ω ∈ ker(Φ), where ker(Φ) denotes the
kernel of Φ.

Proof:
Sufficiency: Let ξ = ps and ζ = (M ⊗ I2)

T (M ⊗ I2)pa.
Pre-multiplying by (M ⊗ I2)

T on both sides of (7) leads to

Φξ = ζ,

with Φ = (M ⊗ I2)
T (M ⊗ I2).

Clearly, ker(Φ) = ker(M). Then, the condition of the
theorem is equivalent to ωT en = 0, for all ω ∈ ker(M).

Let ω ∈ ker(Φ). Then,

Φ(ξ + ω) = ζ.

Let en = [0, · · · , 0, 1, 1, 0, · · · , 0] ∈ R
2(N−3) be such that

its nonzero entries are in the (2n− 1)-th and 2n-th position.
Then, Node n is uniquely localizable if

eTnω = 0 for all ω ∈ ker(Φ),

and the sufficiency follows as the solution of ξn and therefore
that of pn is unique.

Necessity: Notice that, when Node n is localizable, all
the solutions ps = [pT1 , · · · , pTn−3]

T of (7) have the same
components pn corresponding to Node n. Thus, the proof is
complete.

Using Theorem 2, we can devise a method to determine
whether an individual node is localizable or not. The idea is
to use the algorithm described in Section V-A for estimating
EIG(Φ). This algorithm gives as a byproduct, at Node n,
a re-scaled version of ωn, where ω = [ωT

1 , · · · , ωT
N−3]

T

is a vector in the kernel of Φ (notice that Node n only
knows ωn, and not the whole ω). Suppose that the algorithm
gives at Node n, that EIG(Φ) = 0, i.e., the network is not
localizable. Then, if ωn 6= 0, Theorem 2 asserts that this
node is un-localizable.

VI. SIMULATION AND PERFORMANCE EVALUATION

In this section we provide an example to show the appli-
cation of our method. Fig. 2(a) shows a network with eight
nodes, whose positions are given by

p = [−5, 0, 5, 0, 0, 5,−7, 8, 7, 8, 0, 12, 20, 1, 20, 4]T.

Notice that each node position is determined by two contigu-
ous entries from the above vector. The three nodes indicated
by solid triangles are anchor nodes, whereas the other ones
are normal sensor nodes. The existence of a line segment
connecting two nodes indicate that they can measure mutual
distances. The estimation is done using the iterations in (18),
which are started by a random guess of p.
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Fig. 2. A sensor network of 8 nodes.

Nodes 7 and 8 indicated in Fig. 2(a), are un-localizable
nodes. Their coordinates are determined by the last four
entries of p. The eigenvalues of the matrix Φ are

eig(Φ) = diag{0, 0.5731, 1.1273, 4.2970, 9.9556}⊗ 12,

where 12 = [1 1]. Hence, the kernel of Φ has two dimension-
s. We use the distributed method summarized in Section V-A,
to compute, at Node n, a re-scaled version ωn of the entries
2n− 1 and 2n, of a vector ω ∈ ker(Φ). This gives a vector
ω̃ ∈ R

2N like

ω̃ = [0 0 0 − 0.7253δ1 − 0.6884δ2]
T ⊗ 1T

2 .

Here, δ1 and δ2 are different re-scaling factors for different
ωn’s, which are given by the algorithm at each node. As
a result, when we stack all ωn’s together, ω may not be
identical with an eigenvector. Then, Theorem 2 asserts that
Nodes 4 and 5 are un-localizable, as their corresponding
entries in ω are non-zero.
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Finally, Fig. 2(b) shows the residual error of the position
estimation for localizable nodes.

VII. CONCLUSIONS AND FUTURE WORKS

In this paper, we provide a novel framework to analyze
the localizability of a sensor network and each individual
sensor node from the algebraic view. A linear system to
cooperatively compute the positions of the localizable sensor
nodes is obtained. The required information to achieve these
aims are distance measurements and coordinate estimations
of neighbors for each node, which belong to local in-
formation. Under certain assumptions on the topology of
the network, we give a necessary and sufficient condition
for the localizability of that network. It is shown that the
localizability of the sensor network is strongly related with
the algebraic property of its adjacency matrix. We also show
how to detect the un-localizable nodes by exploring the null
space of the adjacency matrix, which uses local information
only.
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