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Abstract—This paper proposes an optimal preview control

law for a dual-stage actuators (DSA) system to track triangular
references, which is essential in many raster scan motion

control applications. The main difficulty of tracking triangular
reference is to follow the waveform fast and accurately when

its slope switches. For this goal, we first present a non-preview
time optimal control for the primary stage, which is proved to

have the minimal overshoot. This result is a new contribution
to DSA control because it leads to a minimal reference profile

for secondary stage to follow and thus significantly prevents
the saturation of the secondary actuator. Next, we propose an

optimal preview control with the use of the information of
the future references to further reduce the settling time and

the overshoot. Finally, the secondary actuator controller is also
given. Simulated results are shown to verify the effectiveness

of the proposed control design.

I. INTRODUCTION

Dual-stage actuators (DSA) servomechanisms are typically

characterized by a structural design with two actuators

connected in series along a common axis. The primary

actuator (coarse actuator) is of long travel range but with poor

accuracy and slow response. The secondary actuator (fine

actuator) is typical of higher precision and faster response

but with a limited travel range. By combining the DSA

system with properly designed servo controllers, the two

actuators are complementary to each other and the defects

of one actuator can be compensated by the merits of the

other one. Therefore, the DSA system can provide large

travel range, high positioning accuracy and fast response. The

DSA servomechanisms have attracted considerable industrial

application such as the dual-stage hard disk drive actuator

[1], [2], the dual-stage machine tools [3], macro/micro robot

manipulators [4], and dual-stage positioning tables [5], [6].

The mechanical design of DSA systems appears to be sim-

ple, but the control of the DSA systems is not straightforward

because of several reasons. Firstly, the DSA systems con-

tains two control inputs but only one control output, which

requires proper control strategy for control allocations of the

two actuators in response to a reference input. Secondly, the

actuators have input constraints in practice, which results in

difficulties when actuator saturation occurs. As such, these
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specific characteristics have raised challenging tasks for DSA

control design to yield an optimal performance. A variety of

approaches have been reported to deal with the dual-stage

control problems. For example, the control design for track

following and settling (i.e, disturbance and residual vibration

rejection control problem) can be found in [7]. The sec-

ondary actuator saturation problem was explicitly taken into

account during the control design [8]–[10]. Tracking control

is another main control task to drive the position output to

track a desired trajectory such as setpoint references which is

used to perform pick-and-place operations in nanoassembly

[11] and power sintering process [12]. Moreover, triangular

reference is the most common trajectories used in scanning

probe devices, which typical combine a triangular waveform

in the X-axis and a linear ramp in the Y-axis to achieve the

desired raster scan motion [13], [14]. Though the setpoint

tracking control has been extensively discussed [15], [16],

triangular reference tracking control is rarely studied in the

literature. Therefore, this paper is focused on the control of

DSA systems for triangular reference tracking with fast and

accurate performance.

Because of the redundancy of actuators, the dual-stage

control design is divided into two control problems, one

for each stage. The primary stage control problem is to

enable the primary actuator to track the triangular reference

in minimal time when the slope changes, whilst allowing

the tracking error within a manifold, which thus motivates

the preview control. The secondary-stage control problem

is then to make the secondary actuator to compensate for

the tracking error produced by the primary actuator, which

if achieved can lead to tracking the triangular reference

accurately.

Our contribution in this paper is the proposed new optimal

preview control for the primary actuator. In particular, we de-

velop a non-preview time optimal controller and an optimal

preview controller. It is proved that these controllers have

the properties of both time optimal and minimal tracking

error performance. Our preview control differs from the

conventional preview control [17], which uses the augmented

system with the preview information to generate the preview

feedforward control input that may require a large computa-

tional load. In our work, we give the optimal control directly

for the continuous time system and the result has a simple

explicit expression without solving a complex optimization

problem. Another advantage of our work is that we give

an explicit expression for the required preview time. For

the secondary actuator control design, we simple employ a

nonlinear feedback controller. As such, the combined dual-
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stage controller is shown to achieve fast and accurate tracking

of triangular references as verified by simulated results.

The rest of this paper is organized as follows. Section

II presents the DSA model and formulates the dual-stage

control problems. Section III derives the solution for

the primary-stage control which includes a non-preview

controller and a preview controller. Section IV simply gives

the controller design for the secondary actuator. Section

V shows the simulation results of the proposed control to

validate its effectiveness. Finally, concluded remarks and

future work are given in Section VI.

II. PROBLEM FORMULATION

We consider a class of DSA system that can be depicted

by Fig. 1, where M and m denote the mass of the primary

and secondary stage, respectively, F1 and F2 the actuator

applied control force, and y the total position output of the

DSA. During the process of mechanism design, it is typical

to select the configurations of two stages such that M ≫ m,

|y1| ≫ |y2|, and |F2/F1| ≫ m/M . In this way, the coupling

forces between the two actuators can be simply ignored and

the dynamic equations of the DSA system are given by:
{

Mÿ1 = F1.
mÿ2 = F2 − c0ẏ2 − k0y2.

(1)

A typical experimental setup that matches the model in

Fig. 1 has been developed [16], where the primary stage

is driven by a linear motor and the secondary stage by

a piezoelectric actuator. Suppose the power amplifier gain

of each actuator is g1 and g2, respectively and substitute

Fi = giui (i = 1, 2) to (1), where ui is the actuator control

input. We can easily obtain the state-space model for the

DSA system as follows:






Σ1 : ẋ1 = A1x1 + B1u1

Σ2 : ẋ2 = A2x2 + B2u2

y = y1 + y2 = C1x1 + C2x2

(2)

where the state x1 = [y1 ẏ1]
T , x2 = [y2 ẏ2]

T , and

A1 =

[

0 1
0 0

]

, B1 =

[

0
b1

]

, C1 =
[

1 0
]

,

A2 =

[

0 1
a1 a2

]

, B2 =

[

0
b2

]

, C2 =
[

1 0
]

.

with b1 = g1

M
, a1 = −k0

m
, a2 = − c0

m
and b2 = g2

m
. Moreover,

the control inputs of the two actuators and the secondary

actuator output have the constraints:

|u1| ≤ ū1, |u2| ≤ ū2, |y2| ≤ ȳ2. (3)

where ū1 and ū2 denote the maximum control input of the

actuator, respectively, and ȳ2 is the maximum travel range

of the secondary actuator.

For the DSA system in (2), our control aim is to design

the control law u1 and u2 such that the total DSA output can

accurately track a triangular reference r(t) with a frequency
as high as possible, where r(t) is shown in Fig.2. An intuitive

k0

y1

y2

y=y1+y2

F2

m

M

c0

M , m = masses

F1 , F2 = applied control force

k0 = spring constant

c0 = damping coefficient

y1 = absolute position of M

y2 = relative position of m to M

y = absolute position of DSA

F1

Fig. 1. Illustration of a class of DSA model

control strategy is to design u1 to track the reference at its

best capability and then u2 is designed to follow the residual

tracking error of the primary actuator. Provided that the

tracking error is within the secondary actuator’s travel range

and the secondary actuator has a much faster dynamics, the

resulting total tracking error of the DSA will be negligible.

In general, the control difficulty occurs when the slope of the

triangular reference changes because the primary stage typ-

ically suffers from an overshoot and requests a tedious time

to settle down to steady state. Therefore, in the sequel we

will focus on how to design u1 to reduce the transition time

and the overshoot. Moreover, we propose a preview control

method if the further information of the reference is known

in advance. Fig. 2 illustrates the preview control strategy. We

assume that the period of the reference is sufficiently long

so that the tracking error will be able to reach zero before

the waveform switches direction. Furthermore, we have the

following definitions:

1) The tracking error of the primary stage is denoted by:

e1(t) = y1(t) − r(t) (4)

2) The overshoot denotes the maximum tracking error:

overshoot = max |e1(t)| (5)

3) The minimum overshoot is denoted by σ, which is

defined by:

σ = min
u1∈U

max |e1(t)| (6)

where U represents the set of all feasible control inputs.

Hence, the DSA control problems is formulated as follows:

A. Primary Actuator Control Problem

For a given triangular reference r(t), find a controller:

u1(t) =

{

u1−(t), −τp ≤ t ≤ 0
u1+(t), t > 0

(7)

subject to:

|u1(t)| ≤ ū1 (8)

and an appropriate preview time τp ≥ 0 such that:

σ is achieved. (9)

Based on the (9), there are two other goals:

τs is minimized. (10)

τp is minimized. (11)
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Fig. 2. Illustration of preview control strategy for the primary actuator.
The solid line denotes the triangular reference r(t) and the dashed line the
output response of the primary actuator y 1(t) with pre-actuation. We set
the time t = 0 to represent the switching time instant at which the slope of
the triangular reference switches; τp the preview time; τs the settling time;

and T the period of the triangular reference. u 1− represents the preview
control input and u1+ the post-actuation control input; and the brackets

underneath represent the time zones that the control inputs apply to.

If such an u1 exists, we call it an optimal preview control.

Moreover, if we choose τp = 0 , then the resulting controller

is called non-preview time-optimal control.

B. Secondary Actuator Control Problem

Given the designed primary actuator controller, find a

controller:

|u2(t)| ≤ ū2 (12)

such that the secondary actuator output y2 can compensate

for the tracking error generated by the primary actuator, i.e,

y2 ≈ −e1 . As a result, we can achieve:

y = y1 + y2 = e1 + r + y2 ≈ r (13)

which implies that the total DSA output can track the

triangular reference accurately.

III. PRIMARY ACTUATOR CONTROL DESIGN

This section addresses the solution to the primary actuator

control problem as stated in Sec. II-A. We first derives a

time-optimal control (TOC) law without preview, based upon

which an optimal preview control law is proposed. Finally, a

PTOS controller is combined with the proposed control law

to achieve robust tracking performance.

A. Non-Preview Time-Optimal Control

We first transform the primary actuator system into the

error space with the following form:

ẋe =

[

0 1
0 0

]

xe +

[

0
b1

]

u1 (14)

where xe = [e1 ė1]
T , |u1| ≤ ū1, and the initial state of the

system is given by:

xe(0) = [e1(0) ė1(0)]T (15)

Firstly, we aim to find a time-optimal controller u1(t),
t ≥ 0 for the system (14) to achieve the goals of (10) for

any initial state xe(0). It is well-known that the solution is a

bang-bang function [18], whose control law is directly given

by:

u∗
1(t) = sign†

(

−sign(e1(t))
√

2b1ū1|e1(t)| − ė1(t), e1(t)
)

ū1

(16)

where sign(·) and sign†(· , ·) are defined as follows:

sign(Ω) =







+1, Ω > 0
−1, Ω < 0

0, Ω = 0
(17)

sign†(Ω1, Ω2) =

{

sign(Ω1), Ω1 6= 0
sign(Ω2), Ω1 = 0

(18)

Next, we address a very useful property of the control law

above.

Lemma 3.1: The time-optimal control law u∗
1 (16) for

the system (14) is also the optimal control law for the

minimum overshoot σ as defined by (6), i.e., the goal (9)

is also achieved under the same control law. Furthermore,

the minimum overshoot equals to:

σ = max
(

|e1(0)|, |e1(0) +
ė1(0)|ė1(0)|

2b1ū1

|
)

(19)

Proof : According to the locations of the initial state in

phase plane as shown in Fig. 3, we divide the right-half

plane into three regions indicated by I, II, and III, where the

curve going through the point O(0, 0) is:

ė1(t) = −sign(e1(t))
√

2b1ū1|e1(t)| (20)

For the initial states in the left-half plane, it is easy to follow

the similar divisions and proof procedure as stated below,

which are omitted for simplicity.

Suppose each region contains a sample pointA, B, and C ,

respectively. Applying the time-optimal control law u ∗
1 (16)

to the system (14), it is straightforward to verify that the state

trajectory of (e1(t), ė1(t)) is parabola, which appears as the
three cases of curves as shown in Fig. 3. The curves going

upwards correspond to u1 = ū1, and those going downwards

correspond to u1 = −ū1. The point O(0, 0), which is the

target state, corresponds to u1 = 0.

To prove the time-optimal control law u∗
1(t) can also

achieve the minimum overshoot compared with other control

law, we define (e∗1(t), ė
∗
1(t)) as the state response under u∗

1,

while (e1(t), ė1(t)) under non-optimal control law |u(t)| ≤
ū1. In the sequel, we derive the result (19) by proving three

cases as follows:

Case 1: When the initial state xe(0) is in region I, e.g.,

point A(e1(0), ė1(0)) (see Fig. 3), then the state trajectory

under u∗
1 starts with u1 = −ū1 until getting to point A ′′

and then reaching the target point O by switching u 1 = ū1.

It can be easily seen from Fig. 3 that the overshoot occurs

at point A′(e∗1(t1), 0), where t1 denotes the time it takes to

travel from point A to A ′. Next, we consider the system is

under non-optimal control law u1(t) within the time interval
t ∈ [0, t1]. Then, we have:

{

ė∗1(t) = ė1(0) +
∫ t

0
b1(−ū1)dt t ∈ [0, t1]

ė1(t) = ė1(0) +
∫ t

0
b1u1(t)dt t ∈ [0, t1]

(21)
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Fig. 3. System state trajectory under the time-optimal control law, which

is shown to be optimal control law for minimal overshoot as well.

From the above equation, we can obtain:

e∗1(t) − e1(t) =

∫ t

0

(ė∗1(t) − ė1(t))dt

=−

∫ t

0

b1(u1(t) + ū1)dt

≤ 0 t ∈ [0, t1] (22)

Therefore, This implies that the time-optimal control law u∗
1

has the minimal overshoot σ, which equals to:

σ = e∗1(t1) = e1(0) +
ė1(0)|ė1(0)|

2b1ū1

t1 =
ė1(0)

b1ū1

(23)

Case 2: When the initial state xe(0) is in region II, e.g.,

point B(e1(0), ė1(0)), then the state trajectory under u∗
1

follows the curve B → B ′ → O. It can be easily seen from

Fig. 3 that the overshoot occurs at point B and thus equals

to e1(0). For non-optimal control law u1(t), we can simply

get:

e∗1(t) ≤ σ = e1(0) ≤ min
u1∈U

max
t≥0

|e1(t)| (24)

Case 3: When the initial state xe(0) is in region III,

e.g., point C(e1(0), ė1(0)), then the state trajectory under

u∗
1 follows the curve C → C ′ → C ′′ → O, where point

C ′(e∗1(t1), 0) locates on X-axis. Then we have:

e∗1(t1) ≤ e∗1(t) ≤ e1(0) t ∈ [0, +∞] (25)

For non-optimal control law u1(t), we have:

e∗1(t) − e1(t) ≥ 0 t ∈ [0, t1] (26)

It follows that:

e1(t1) ≤ e∗1(t1) ≤ e∗1(t) ≤ e1(0) t ∈ [0, +∞] (27)

Therefore, we have:

σ = max
(

|e1(0)|, |e∗1(t1)|
)

= max
(

|e1(0)|, |e1(0) +
ė1(0)|ė1(0)|

2b1ū1

|
)

(28)

We can easily follow the above procedure to get the results

for initial states in left-hand plane. Combined the results from

the different cases, we can finally get the result in (19). Then

the proof is completed. �

Remark 3.1: We know that using TOC u∗
1(t) to drive the

primary actuator from xe(t2) = [p,−v] to xe(t2 + tr) = 0
will produce the minimum overshoot σ. The process can be

inversed, we can drive the primary actuator from xe(t1) = 0
to xe(t1+tr) = [p, v] by applying TOC u∗(t). Either tracking
error trajectory is the mirroring of the other. So:

min
u1∈U

max
t1≤t≤t1+tr

|e(t)|= min
u1∈U

max
t2≤t≤t2+tr

|e(t)|

= max(|p|, |p−
v|v|

2b1ū1

|) (29)

B. Optimal Preview Control

The preview control algorithm takes the advantage of the

information of the triangular reference to further reduce the

overshoot. The optimal preview controller can achieve the

goals (9)-(11) stated as follow:

Lemma 3.2: The preview controller u1−(t) with the fol-

lowing form:

u1−(t) =



















sign(v1 − v2)ū1,

− |v1−v2|
b1ū1

≤ t ≤ −3|v1−v2|
4b1ū1

−sign(v1 − v2)ū1,

−3|v1−v2|
4b1ū1

< t ≤ 0

(30)

can lead to the minimal overshoot:

σ =
|v1 − v2|

2

16b1ū1

(31)

where v1 = ṙ(t), t ∈ (−∞, 0) and v2 = ṙ(t), t ∈ (0,∞).
Proof : Because the primary actuator output trajectory and

velocity is continuous so that:






e1(0
−) = e1(0

+) = e1(0)
ė1(0

−) = ẏ1(0) − v1

ė1(0
+) = ẏ1(0) − v2

(32)

When −τp ≤ t ≤ 0, from Remark 3.1, we can get:

σ1 = max(|e1(0)|, |e1(0) −
ė1(0

−)|ė(10
−)|

2b1ū1

|) (33)

And when t > 0, from Lemma3.1, we can get:

σ2 = max(|e1(0)|, |e1(0) +
ė1(0

+)|ė1(0
+)|

2b1ū1

|) (34)

Hence, we have:

σ = max(σ1, σ2)

= max(|e1(0)|, |e1(0) −
(ẏ1(0) − v1)|ẏ1(0) − v1|

2b1ū1

|,

|e1(0) +
(ẏ1(0) − v2)|ẏ1(0) − v2|

2b1ū1

|) (35)

Moreover, σ = |v1−v2|
2

16b1ū1

only when e1(0) = −sign(v1 −

v2)
|v1−v2|

2

16b1ū1

and ẏ(0) = v1+v2

2
. We can calculate the TOC

control signal u1−(t) which drive the primary stage from

xe(−τp) = 0 to xe(0
−) = [−sign(v1 − v2)

|v1−v2|
2

16b1ū1

, v2−v1

2
]

by the optimal time theory. The u1−(t) is shown in (30).

Thus, the proof is completed. �

Remark 3.2: Consider a special case with v1 = −v2 = v,
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according to (31), we can obtain:

σ =
v2

4b1ū1

(36)

under optimal preview control. Compared with the result

without preview (19) where we will set e1(0) = 0 and

ė1(0) = 2v for a fair comparison, then we can obtain:

σ =
2v2

b1ū1

(37)

Obviously, the optimal preview control has greatly reduced

the overshoot by 8 times.

C. Combination with PTOS for Practical Implementation

For practical implementation and robustness, the proxi-

mate time-optimal servomechanism (PTOS) [18] is typically

incorprated into time-optimal control. Its control law is given

below:

u1+ = sat[k2(−f(e1) − ẏ1 + ṙ)] (38)

where

f(e1) =

{

k1

k2

e1 |e1| ≤ yl

sign(e1)
(
√

2b1ū1|e1| −
ū1

k2

)

|e1| > yl

(39)

where sat[·] is with the saturation level of ū1, k1 and k2 are

constant gains which can be designed by traditional pole-

placement method [18]. ṙ(t) is the derivative of r(t) with

the convention that ṙ(0) = 0 when slope changes. The

following constraints guarantee a continuous switching of

the controller:

yl =
ū1

k1

, k2 =

√

2k1

b1

. (40)

where yl is the linear region close to the setpoint which is

introduced to reduce the control chatter.

IV. SECONDARY ACTUATOR CONTROL DESIGN

The secondary actuator controller is a composite nonlinear

feedback controller [16]. Its control law is given by:

u2 = u2L + u2N , (41)

where u2L is a linear feedback control law and:

u2L = Wx2, (42)

where W = [w1 w2] can be calculated by linear control

design methods to achieve a higher bandwidth.

The nonlinear feedback controller is given by:

u2N = φ(y, r)H

[

y1 − r
ẏ1 − ṙ

]

(43)

where H is given by:

H =
1

b2

[(a1 + b2w1 + b1k1) (a2 + b2w2 + b1k2)] (44)

with constants k1 and k2 from the design of primary actuator,

and the nonlinear function φ(y, r) is given by:

φ(y, r) = e−β|y−r| (45)

where β is a positive parameter that can be tuned to make

the DSA achieve better performance.
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Fig. 4. Single-stage (with primary actuator only) tracking control without

preview. The maximum tracking error is 20 µm.
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Fig. 5. Single-stage tracking control with preview. The maximum tracking

error is significantly reduced to 2.4 µm due to the preview control.

V. SIMULATION RESULTS

This section presents the simulations. The triangular refer-

ence is set with the period T = 0.2 s and Amplitude = 120
µm. We assume that the states x1 and x2 are all measurable.

The DSA model parameters in (2) are given as follows:

b1 = 1.5× 107, b2 = 3 × 106,

a1 = −106, a2 = −1810,

ū1 = 10 mV, ū2 = 5 V, ȳ2 = 15 µm.

Fig. 4 shows the single-stage tracking control results with

the primary actuator only. The maximum tracking error is 20
µm. While the maximum tracking error is greatly reduced

to 2.5 µm with preview control as shown in Fig. 5. This
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actuator as shown in Fig. 4.
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Fig. 7. Dual-stage tracking with preview control. The maximum tracking
error is perfectly reduced to 0.2 µm with the preview control for the primary
actuator. Moreover, the settling time is reduced to 0.016 s as compared with
the case of 0.036 s without preview (see Fig. 6).

verifies the effectiveness of the proposed preview controller

for reduction of the maximum tracking error. Next, we apply

the optimal preview controller to the DSA system. Fig. 6

shows that the maximum tracking error achieved by the

DSA without preview is 4.3 µm, which, however, cannot
be further reduced because the primary actuator tracking

error is beyond the travel range of the secondary actuator as

shown in Fig. 4. Finally, Fig. 7 shows the maximum tracking

error is significantly reduced to 0.2 µm with preview control.

Moreover, the settling time achieved is only 0.018 s, which

is much smaller than the case of 0.036 s without preview as

shown in Fig. 6. These results coincide with our theoretical

analysis. Hence, the simulation results confirm that the pro-

posed preview controller can achieve very accurate tracking

with minimal settling time but also minimal overshoot for

the DSA system.

VI. CONCLUSION

In this paper, we have proposed an optimal preview

control law for a DSA system to track triangular references

fast and accurately. It is proved that the optimal preview

control can not only reduce the settling time but also

minimize the overshoot. Simulated results are shown to

verify the effectiveness of the proposed control design.

Our future work will implement the proposed controller

on a real DSA experimental setup and verify the control

law. Implementation issues such as robustness with respect

to references of different amplitudes and periods with be

further investigated.
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