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Abstract— This paper considers the stability of Kalman filter-
ing of a discrete-time stochastic system using two periodically
switching sensors over a network subject to random packet
losses, which is modeled by an independent and identically
distributed Bernoulli process. It is proved that this problem
can be converted into the stability of Kalman filtering using two
sensors at each time instant, where the measurements of each
sensor are transmitted via an independent lossy channel. Some
necessary and sufficient conditions for stability of the estimation
error covariance matrices are respectively established, and the
effect of the periodic switching on the stability is revealed.
Their implications and relationships with related results in the
literature are discussed.

I. INTRODUCTION

This work is a contribution to the stability analysis of
Kalman filtering of a discrete-time stochastic system us-
ing two periodically switching sensors with random packet
losses. In contrast to the current literature [1]–[3], the striking
feature lies in the use of switching sensors in the networked
systems. Sensors of different nature, bandwidth, accuracy
and noise levels usually have different performances in spe-
cific operating and/or environmental conditions. The use of
different sensors may provide richer information to increase
the estimation/control performance. In some occasions, a
single sensor may not be adequate to obtain sufficient in-
formation to observe the state of a dynamical system.

We also study the stability problem of the Kalman filter
over a lossy network. See the first networked system in
Fig. 1 for an illustration. A motivating example is given by
sensor and estimator communicating over a wireless channel
for which the quality of the communication channel varies
over time because of random fading and congestion. This
happens in resource limited wireless sensor networks where
communications between devices are power constrained and
therefore limited in range and reliability. As in [2], the packet
loss process is modeled as an independent and identical
distributed (i.i.d.) Bernoulli process. The problem involving
the use of switching sensors to transmit data over a lossy
network is more complicated than the problem involving only
a single sensor. It should be noted that the stability analysis
of a switching system is much more involved than that of a
single system [4].
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Fig. 1. Networked systems with lossy channels: the open-loop system and
the sensor measurement matrices are accordingly denoted above the blocks
of systems and sensors. All the lossy channels are subject to the i.i.d. packet
loss with the same packet loss rate.

In this paper, it is proved that whether the use of peri-
odically switching sensors requires less stringent network
conditions depends on the characteristics of sensors. For
the second-order dynamical system, we exactly derive the
necessary and sufficient condition for the stability of the
estimation error covariance matrices. The interesting finding
is that the use of two periodically switching sensors may
strictly reduce the network condition to achieve stability of
the Kalman filter over a lossy network. Our approach is to
convert the original problem into the stability of the Kalman
filter of another dynamical system observed by two sensors
at each time, and each sensor’s measurements are transmitted
through an independent lossy channel.

Kalman filtering is of great importance in networked
systems due to its various applications ranging from tracking,
detection to control. The stability analysis of Kalman filtering
with intermittent measurements observed by a single sensor
can be tracked back to the influential work [2], which
studies the optimal state estimation problem for a discrete-
time linear stochastic system under the assumption that the
raw measurements are randomly dropped. By modeling the
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packet loss process as an i.i.d. Bernoulli process, they prove
the existence of a critical packet loss rate above which the
mean state estimation error covariance matrices will diverge.
Since their approach lies in the use of two upper and lower
bounds for the estimation error covariance matrices, they are
unable to exactly quantify the critical loss rate for general
systems, and only provide its lower and upper bounds, which
are attainable under some special cases, e.g., the lower bound
is tight if the observation matrix is invertible. Since then, a
large mount of efforts have been made toward finding the
critical packet loss rate as to some extent, it characterizes
the minimum network condition required for the stability of
the Kalman filter.

Recently, a new method has been proposed to evaluate
the exact packet loss rate in [1], [5] for a wider class of
systems, including second-order systems and the so-called
non-degenerate higher-order systems. A remarkable discov-
ery in [5] is that there are examples of second-order systems
for which the lower bound given by [2] is not tight. This
method requires to exploit the system structure, especially the
presence form of the unstable eigenvalue of the open-loop
matrix. We extend this approach to the problem involving
two periodically switching sensors in this paper, and establish
some necessary and sufficient conditions for the stability of
the estimation error covariance matrices, respectively.

The rest of the paper is organized as follows. The problem
is mathematically formulated in Section II. We derive the
stability condition for Kalman filtering using periodically
switching sensors without packet losses in Section III. Then,
the effect of the lossy network on stability of the Kalman
filter using two periodically switching sensors is explored in
Section IV. In particular, we are able to exactly characterize
the necessary and sufficient condition for the stability of the
Kalman filter for the second-order system. Some conclusion
remarks are drawn in Section V.

II. PROBLEM FORMULATION

Consider a linear discrete time-invariant stochastic system
as follows

xk+1 = Axk + wk, (1)

where xk ∈ Rn denotes the system state at time k and wk is
a white Guassian noise with zero mean and positive definite
covariance matrix Q. The initial state x0 is a Gaussian
random vector with mean x̄0 and covariance matrix P0.

There are two switching sensors to cooperatively monitor
the system, and at each time, one of them will take a mea-
surement from the system. For instance, the measurement
equation is given by

yk = Cσk
xk + vσk

. (2)

where σk ∈ {1, 2} represents the index of which sensor is ac-
tive to take measurement at time k, and vσk

is white Gaussian
noise with zero mean and positive definite covariance matrix
Rσk

. Both C1 and C2 are of full rank. The measurement yk is
directly transmitted to a remote estimator via an unreliable
communication channel, see the first networked system in

Fig. 1. Due to random fading and/or congestion of the
communication channel, packets may be lost while in transit
inside the network. To examine this phenomena, we use a
binary random process γk to denote the packet loss process.
Precisely, let γk = 1 indicate that the packet containing
the information of yk has been successfully delivered to the
estimator while γk = 0 corresponds to the loss of the packet.
In this paper, we assume that the communication link is an
erasure channel [6], which means that γk is an i.i.d. process.

Different from [7], [8], the present work ignores other
effects such as quantization, transmission errors and data
delays. In comparison with [1], the measurement matrix
Cσk

is time-varying. The use of switching sensors is to
alleviate the working load of one sensor for the purpose of
prolonging the life time of the network or provide richer
information for the estimator. As an initial attempt, we
consider a periodically switching rule in this work. To be
precise,

σk =

{
1, if k is odd;
2, if k is even. (3)

Since the switching rule is deterministic, the estimator is able
to know which sensor is in use at each time and whether the
packet containing the measurement information is received
or not. That is, the information available to the estimator at
time k is given as follows

Fk = {σi, γi, yiγi, i ≤ k}.

Denote the minimum mean square error predictor and
estimator by x̂k|k−1 = E[xk|Fk−1] and x̂k|k = E[xk|Fk],
respectively. Their corresponding estimation error covari-
ance matrices are then given by Pk|k−1 = E[(xk −
x̂k|k−1)(xk − x̂k|k−1)T |Fk−1] and Pk|k−1 = E[(xk −
x̂k|k)(xk − x̂k|k)T |Fk]. In view of [2], the above quantities
are able to be computed via the following update recursions.

x̂k|k = x̂k|k−1 +Kk(yk − Cσk
x̂k|k−1); (4)

Pk|k = Pk|k−1 − γkKkCσk
Pk|k−1, (5)

where the Kalman gain Kk = Pk|k−1C
T
σk

(Cσk
Pk|k−1C

T
σk

+
Rσk

)−1, x̂0|−1 = x̄0 and P0|−1 = P0. In addition, Pk+1|k =
Apk|kA

T +Q and x̂k+1|k = Ax̂k|k.
Let Pk := Pk|k−1, it is recursively updated as follows:

Pk+1 = APkA
T +Q (6)

−γkAPkCTσk
(Cσk

PkC
T
σk

+Rσk
)−1Cσk

PkA
T

:= gk(Pk, Rσk
).

The goal of this paper is to derive the necessary and sufficient
condition for the mean square stability of the filter, i.e.,
supk∈N E[Pk] ≺ ∞1, where the mathematical expectation
is taken with respect to the packet loss process {γk}k∈N.

1There exists a positive definite matrix P̄ such that Pk � P̄ for all
k ∈ N. The matrix inequality A � B means that B − A is semi-positive
definite. Similar notations will be made for ≺,� and � in the sequel.
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III. STABILITY OF THE KALMAN FILTER WITHOUT
PACKET LOSSES

In this section, we characterize the stability condition for
the Kalman filter using two periodically switching sensors
without packet losses. This allows us to focus on the effect
of lossy channels on the stability of the Kalman filter in the
next section.

For convenience, we first illustrate that the sensor noise
levels do not affect the stability analysis of the Kalman
filter of the networked system. Denote RM = R1 + R2

and Rm = min{λm(R1), λm(R2)}I , where λm(Ri) is the
minimum eigenvalue of Ri. Then, it follows that Rm �
Rσk
� RM ,∀k ∈ N and

gk(Pk, RM ) � gk(Pk, Rσk
) � gk(Pk, Rm). (7)

This essentially implies that the time-varying Rσk
does not

affect the stability analysis for Pk. Thus, there is no loss
of generality to assume that R1 = R2 = R. In comparison
with [1], the new challenge solely lies in the time-varying
observation matrix Cσk

.
It is known that the stability analysis for a time-varying

system is usually much more involved than that of a time-
invariant system. Since the focus of this work is on quanti-
fying the effect of the lossy network on the stability of the
Kalman filter, we derive the stability condition of the Kalman
filter without packet losses, which corresponds to γk = 1
for all k ∈ N. By virtue of [9], a necessary and sufficient
condition for the stability of the Kalman filter without packet
losses is that (A,Cσk

) is uniformly detectable. This requires
the unstable modes of the system uniformly observable since
all the state variables corresponding to the stable modes of
the system will be exponentially stable in the mean square
sense. For this purpose, we only need to focus on the unstable
modes, and it is sensible to make the following assumption.

Assumption 1: All the eigenvalues of A lie outside or on
the unit circle.

Then, (A,Cσk
) is required to be uniformly observable

under Assumption 1, i.e., there exist a positive integer h,
and β0 > α0 > 0 such that

β0I �
k+h∑
i=k

(Ai−k)TCTσi
Cσi

Ai−k � α0I � 0,∀k ∈ N.

Since in this work we only consider a periodically switching
rule, the above uniformly observable condition can be further
simplified as stated in the following result.

Lemma 1: The system (A,Cσk
) with σk given in (3) is

uniformly observable if and only if both(
A2,

[
C1

C2A

])
and

(
A2,

[
C1A
C2

])
(8)

are observable.
Moreover, if A is nonsingular, the observability property

of the following systems(
A2,

[
C1

C2A

])
and

(
A2,

[
C1A
C2

])
(9)

are equivalent.
Proof: The first part directly follows from the defi-
nition of observability [10]. We only need to elabo-
rate the second part. Let the observability test matri-
ces C1 = [C1;C2A; . . . ;C1A

2(n−1);C2A
2n−1] and C2 =

[C1A;C2; . . . ;C1A
2n−1;C2A

2(n−1)]. Consider C1 and C2A,
it is clear that the rows of both matrices associated with C2

are the same. By the Cayley-Hamilton theorem, there exist
ai ∈ R such that A2n = a0I + a1A

2 + . . .+ an−1A
2(n−1).

Pre-multiply both sides of the equality by C1, it follows
that the last row of C2A associated with C1 can be linearly
represented by the rows of C1. Then, it is not difficult to
verify that each row of C2A can be represented by the rows
of C1. This implies that rank(C2A) ≤ rank(C1). Similarly,
one can argue that rank(C1A) ≤ rank(C2). Since A is
nonsingular, it obviously holds that rank(C1) = rank(C1A)
and rank(C2) = rank(C2A). Combing the above, we obtain
that rank(C1) = rank(C2), which completes the proof.

Thus, the uniform observability property of the period-
ically switching system is converted into that of a time-
invariant system using two sensors at each time.

In general, the non-singularity condition of A is mild, e.g.
it holds for all systems satisfying Assumption 1. To this
purpose, we focus on the system satisfying the following
observability property in this paper since it is required for
the stability of the Kalman filter without packet loss if A
satisfies Assumption 1.

Assumption 2: Let C = [C1A;C2], the system (A2, C) is
observable.

Remark 1: By the PHB test [10], the observability of(
A2, C

)
implies that (A,C) is observable while the ob-

servability of (A,C) usually does not imply that
(
A2, C

)
is observable. For instance, A = diag(1,−1) and C = [1 1].
This, together with Lemma 1, essentially indicates that using
two sensors to observe the system at each time requires a
weaker condition for the stability of the Kalman filter than
that of periodically using one sensor at each time, which
certainly is consistent with our intuition as the former case
obtains more information than the later. We also mention that
the observability of

(A2,

[
C1

C2

]
)

does not imply that of (A2, C). For example, A =
diag(1,−1), C1 = [1 1] and C2 = [1 − 1]. It should be
noted that both (A,C1) and (A,C2) are observable.

IV. STABILITY OF THE KALMAN FILTER WITH PACKET
LOSSES

In this section, we derive the network condition on the
packet loss process γk required for the stability of the
Kalman filter using two periodically sensors.

Denote the packet receival rate p = P{γk = 1}. In view
of Theorem 4 in [1], one can easily establish the following
necessary condition.

Theorem 1: Consider the first networked system in Fig.
1, a necessary condition for supk∈N E[Pk] ≺ ∞ is that
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|λmax|2(1−p) < 1, where λmax is the maximum eigenvalue
in magnitude of A.

In fact, the above necessary condition has been derived
by many authors [1], [2], [11], [12] using a single sensor,
and shown to be sufficient under some special cases as well.
It is more interesting to investigate whether this condition is
sufficient. For a time-invariant observation matrix, i.e., C1 =
C2, it is shown that it is also sufficient if C1 is invertible on
the observable subspace [12] or (A,C1) is a non-degenerate
system [1]. Note that the periodic switching between two
stable subsystems may lead to an unstable system due to
the destabilizing effect induced by switching. For example,
one can verify that the system xk+1 = Akxk is internally
unstable where

Ak =
1

8
·
[

0 9 + 7 · (−1)k

9− 7 · (−1)k 0

]
,

although Ak has all eigenvalues inside the unit circle for
each k.

This intuitively implies that the sufficiency is more in-
volved for the time-varying observation matrices.

In the previous section, the stability condition of the
Kalman filter using two periodically switching sensors is
lifted into that of a time-invariant system with two measure-
ment sensors if there is no packet loss. This will motivate us
to check whether under i.i.d. packet losses, the problem under
consideration can be converted into the study of stability
condition of the Kalman filter for a time-invariant system
using two measurement sensors, each of which is subject to
an i.i.d. packet loss process. It turns out to be positive.

Theorem 2: Consider the first networked system in Fig.
1 satisfying Assumption 1, a sufficient condition for
supk∈N E[Pk] ≺ ∞ is that

E

( ∞∑
i=0

ζi(A
−2i)T

[
ATCT1 CT2

] [C1A
C2

]
A−2i

)−1
≺ ∞,

(10)
where ζi is an i.i.d. process with P{ζi = 1} = p2.
To elaborate it, we recall a result in [1].

Lemma 2: [1] Let O =
∑∞
i=1 γi(A

−i)TCTσi
Cσi

A−i.
Under Assumption 1, there exists two positive numbers α
and β such that

βE[O−1] � sup
k∈N

E[Pk|k] � αE[O−1]. (11)

Proof of Theorem 2:
Note that Pk|k−1 � Pk|k and Pk+1|k = APk|kA

T + Q,
it is obvious that supk∈N E[Pk] ≺ ∞ is equivalent to
supk∈N E[Pk|k] ≺ ∞. By Lemma 2, we only need to
establish the network condition such that

E[O−1] ≺ ∞. (12)

Since γk is an i.i.d. process, then O can also be rewritten by

O =

∞∑
i=1

(A−2i)T
[
γ2i−1A

TCT1 γ2iC
T
2

] [C1A
C2

]
A−2i

d
=

∞∑
i=1

(A−2i)T
[
αiA

TCT1 βiC
T
2

] [C1A
C2

]
A−2i, (13)

where d
= means equal in distribution on both sides, and αi, βi

are two i.i.d.Bernoulli process with the same statistics with
γi, i.e., E[αi] = E[βi] = p.

This can help us easily establish a sufficient condition for
the stability of the Kalman filter with intermittent observa-
tions. To be precise, define ζi = min{αi, βi}, which is again
an i.i.d. process with P{ζi = 1} = P{αi = 1}P{βi = 1} =
p2.

Combing Lemma 2 and (13), the proof is completed.
By Theorem 1 and 2, a simple necessary and sufficient

condition for supk∈N E[Pk] ≺ ∞ is obtained.
Theorem 3: Consider the first networked system in Fig.

1 satisfying Assumption 1 and 2. If C is of full rank, a
sufficient condition for supk∈N E[Pk] ≺ ∞ is that

|λmax|4(1− p2) < 1. (14)
Proof: Since |λmax|2(1 − p) < 1, there exists a sufficiently
small ε > 0 such that (|λmax| + ε‖A‖)4(1 − p2) < 1. Let
ρ = |λmax| + ε‖A‖, it follows from Lemma 15 [1] that
‖A‖k ≤Mρk for any k ∈ N, where M =

√
n(1 + 2/ε)n−1.

If C is of full rank, it holds that CTC � λmin(CTC)I ,
where λmin(CTC) > 0 is the minimum eigenvalue of CTC.
This implies that

E

( ∞∑
i=0

ζi(A
−2i)TCTCA−2i

)−1

≺ 1

λmin(CTC)
E

( ∞∑
i=0

ζi(A
−2i)TA−2i

)−1
(15)

Note that P{ζ1 = 0, . . . , ζk = 0, . . .} = limk→∞(1−p2)k =
0. Then, the sum

∑∞
i=0 ζi(A

−2i)TA−2i is positive definite
with probability one.

Define a stopping time τ as follows, i.e.,

τ := inf{k ∈ N|ζk = 1}, (16)

whose probability mass distribution is given by P{τ = k +
1} = p2(1− p2)k. Hence,

E

( ∞∑
i=0

ζi(A
−2i)TA−2i

)−1
≤ E[ζτA

2τ (A2τ )T ]

≤ (E[‖A‖4τ ])I ≤ (M · E[ρ4τ ])I

= Mρ4(1− p2)

∞∑
k=0

ρ4k(1− p2)k · I,

which is finite since ρ4(1 − p2) < 1. The rest of the proof
follows from Theorem 2.

Remark 2: The main conservativeness of the sufficient
condition lies in the use of Theorem 2. We use a sim-
ple example to illustrate the conservativeness, where A =
diag(λ1,−λ1), and C1 = C2 = [1, 1]. By [1], the necessary
and sufficient condition is that |λ1|4(1 − p) < 1, which is
still weaker than |λ1|4(1− p2) < 1.

In fact, it follows from Lemma 2 and (13) that E[O−1] ≺
∞ is equivalent to the stability condition of the Kalman filter
of the networked system

xk+1 = A2xk + wk, (17)
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which is observed by two sensors at each time by measure-
ment equations

yk,1 = C1Axk + vk,1,

yk,2 = C2xk + vk,2. (18)

In the above, vk,1 and vk,1 are two independent white
Gaussian noises. The sensor measurements yk,1 and yk,2
are sent via two independent lossy channels, whose packet
loss processes are modeled by two independent process αk
and βk, respectively. Then, the corresponding Kalman filters
to the networked systems in Fig. 1 have the same network
condition if A is nonsingular. Thus, it is sufficient to establish
the network condition required for the stability of the Kalman
filter of the second networked system in Fig. 1.

In general, it is challenging to establish the necessary and
sufficient condition for a general vector system. Nonetheless,
the following procedures can help to reduce the complexity
of the problem. Motivated by [1], we will exploit the system
structure under Assumption 2, which is classified as follows.

1. Both (A2, C1A) and (A2, C2) are observable.
2. Only one of (A2, C1A) and (A2, C2) is observable.
3. Neither (A2, C1A) or (A2, C2) is observable.

In fact, it only needs to consider Case 1 since the other two
cases can be converted into the combination of Case 1 and
that in [2], [5].

For Case 2, it does not lose generality to assume that
(A2, C1A) is observable but (A2, C2) is not observable.
By Kalman canonical decomposition [10], there exists a
coordinate transformation such that (A2, C) is transformed
into the following structure

A2 =

[
A1,1 A1,2

0 A2,2

]
, C1A = [C1,1 C1,2], C2 = [0 C2,2].

(19)
This intuitively means that the state variables corresponding
to A1,1 is only observed by the sensor with measurement
matrix C1A, and independent of the other sensor measure-
ments2. Then, the stability study for the state variables of
this part is the same as the case of using only one sensor
as in [1], [2], [5]. The new thing is to establish the stability
condition for the complement state variables associated with
A2,2 which are observed by two sensors at each time.

For Case 3, it follows from Proposition III.1 in [13] that
there exists a coordinate transformation such that (A2, C)
has the structure either

A2 =

[
A1,1 A1,2

0 A2,2

]
, C1A = [0 C1,2], C2 = [C2,1 0] (20)

or

A2 =

A1,1 A1,2 A1,3

0 A2,2 A2,3

0 0 A3,3

 (21)

C1A = [0 C1,2 C1,3], C2 = [C2,1 0 C2,3]. (22)

The first structure indicates that the measurement matrix C1

can only observe the state subspace corresponding to A2,2

2The rigorous proof shall be included in the full version of the paper.

and C2 observes the complement state subspace. While in
the second structure, both sensors can observe a common
subspace corresponding to A3,3. The decomposition in the
first structure is very appealing as it helps us to convert
the problems under consideration into the case with only
an observation matrix, which has been considered in [1], [2],
[5]. In the second structure, the common observable subspace
associated with A3,3 is observed by both sensors, whose
stability condition has not be established in the literature.

To sum up, to consider systems satisfying Assumptions
1 and 2, we only need to study the network condition for
stability of the Kalman filter over two independent lossy
channels for the system satisfying the following assumption.

Assumption 3: Both (A2, C1A) and (A2, C2) are observ-
able.

A. Second-order System

Together with [1], we are able to fully characterize the
necessary and sufficient condition for the stability of the
Kalman filter using two periodically switching sensors over
a lossy network for the second-order system, i.e. A ∈ R2×2.

Assumption 4: A = diag(λ1, λ2) where λ1 =
λ2 exp(2πrI/d), I2 = −1 and d > r > 0 are irreducible
integers.

Theorem 4: Consider the second-order networked system
in Fig. 1 satisfying Assumption 3-4. If C or [C1;C2] is
rank deficient, then a necessary and sufficient condition for
supk∈N E[Pk] ≺ ∞ is that

|λmax|2d/(d−1)(1− p) < 1. (23)
Proof: If C is rank deficient, there exist a ∈ R such that
C1A = a · C2. Consider the second networked system in
Fig. 1, it is equivalent to the system observed by one sensor
but the packet loss process is given by an i.i.d. process ξi =
max{αi, βi} with P{ξi = 0} = (1 − p)2. This is because
the measurements from both sensors are the same except for
a scaling by a. If [C1;C2] is rank deficient, it is equivalent
to the case without switching. Then, the rest of the proof
follows from [1].

Note that the study of general vector systems under
Assumption 3 is generically challenging and left to our future
work. However, if A is with certain form, the necessary and
sufficient condition for the stability of the Kalman filter can
be easily established.

Assumption 5: A−1 = diag(J1, . . . , Jm) and rank(C1) =
rank(C2) = 1, where Ji = λ−1i Ii+Ni ∈ Rni×ni and |λi| >
|λi+1|. Ii is an identity matrix with a compatible dimension
and the (j, k)-th element of Ni is 1 if k = j + 1 and 0,
otherwise.

Theorem 5: Consider the first networked system in Fig. 1
satisfying Assumptions 1 - 4. Then, a necessary and sufficient
condition for supk∈N E[Pk] ≺ ∞ is that

|λmax|2(1− p) < 1. (24)
Proof: It can be proved by following a similar line as that
of Theorem 13 in [1].
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V. CONCLUSION

Motivated by the necessity of using switching sensors in
the networked system, we have examined the stability of
Kalman filtering with i.i.d. packet losses. Some necessary
and sufficient conditions have been derived, which are able to
characterize the effect of the periodically switching sensors
on the stability. It is stressed that the result of this work is
very preliminary and the problem requires further investiga-
tion.
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