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Abstract— This paper studies the state estimation problem
of a stochastic discrete-time system over a lossy channel.
The packet loss is modeled as an independent and identically
distributed (i.i.d.) binary process. To reduce the effect of the
random packet losses on the stability of the minimum mean
square error estimator, we propose a linear coding method
on the measurement of the system. In particular, the linear
combination of the current and finite previous measurements
is to be transmitted to the estimator over the lossy channel.
Some necessary and sufficient conditions for the stability of
the estimator are established, and the advantage of the linear
coding method is exploited.
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I. INTRODUCTION

This work proposes a linear coding method to improve
the stability condition of the minimum mean square error
(MMSE) estimator with random packet losses. The study of
the estimation problem of networked systems over a lossy
channel has received significant attention in the recent years
[1]–[3]. This is motivated by the rapid development of the
sensing, communication, and signal processing technologies,
which enable the development of the large-scale systems for
broad applications such as monitoring, detection, tracking,
etc.

Sinopoli et al [1] studies the stability of the Kalman filter
under the random packet losses of the raw measurements.
By modeling the packet loss process as an independent
and identically distributed (i.i.d.) process, they prove the
existence of a critical packet loss rate above which the mean
state estimation error covariance matrices will diverge. For
a general system, they are unable to exactly quantify the
packet loss rate and only give an upper and lower bound
of it. Motivated but also inspired by the limitation of [1],
You, Fu and Xie [4] extend the i.i.d. packet loss model to
a Markovian packet loss model, and study the stability of
the Kalman filter by exploiting the system structure, from
which they derive the necessary and sufficient condition for
the stability of Kalman filtering of the second order systems
and some special higher-order systems. The establishment
of the stability condition for Kalman filtering with lossy raw
measurements is usually quite involved. In particular, it still
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lacks a uniform way to explicitly characterize the necessary
and sufficient condition for the stability of Kalman filtering
with lossy raw measurements.

Then, Schenate [5] focuses on the stability of the minimum
mean square error estimator over the lossy channel by
transmitting the output of the Kalman filter in the transmitter
side. This leads to a simple necessary and sufficient condition
for the stability of the optimal estimator, and implies that the
stability of the optimal estimator with packet loss is improved
by transmitting the pre-processed measurements. However,
the dimension of the estimated state is usually larger than
that of raw measurement, which needs more communication
resource for the successful transmission, and the estimation
process requires more computation capacity. Note that the
bandwidth of wireless network is limited and the wireless
sensor is unable to be charged.

In this paper, we introduce a simple linear coding method
that transmits a linear combination of the current and pre-
vious finite measurements to the estimator via the lossy
channel. Since the dimension of the linearly coded mea-
surement is the same as raw measurements, it does not
increase the communication cost. The required computation
power for coding is also less than that of running a Kalman
filter. However, the effect of linear coding method on the
stability of the MMSE estimator is explored. The good
news is that the stability condition transmitting the linearly
coded measurements would be weaker than that of the raw
measurements, and can even approach the necessary and
sufficient condition by transmitting the output of the Kalman
filter in the transmitter side.

The rest of the paper is organized as follows. The problem
under consideration is formulated in Section 2. In Section 3,
the linear coding method is introduced and its improvement
of stability is revealed. In Section 4, by transmitting the
coded measurements, two main results for stability are given.
Base on the results, to a given system, there is a method
to design the coding vectors that guarantee the estimation
stability. Concluding remarks are drawn in Section 5. To
improve the readability of the paper, all the proofs are moved
to Appendix.

II. PROBLEM FORMULATION
Consider the following discrete-time stochastic system

xk+1 = Axk + ωk; (1)
yk = Cxk + νk, (2)

where A ∈ Rn×n and C ∈ Rq×n are system matrices, and
A is invertible. xk ∈ Rn denotes the system state at time
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k, and ωk is a white Guassian noise with zero mean and
positive definite covariance matrix Q. The initial state x0
is a Gaussian random vector with mean x̄0 and covariance
matrix P0. yk ∈ Rq is the measurement vector at time k, and
νk is a white Guassian noise with zero mean and positive
definite covariance matrix R.

We are concerned with a networked system where the
measure sensor and the estimator are linked via a lossy
channel. Due to the network unreliability, packets from
the sensor to the estimator may be lost while in transit.
To quantify the effect of packet losses on the estimation
performance, we use a binary random process γk to denote
the packet loss process. Precisely, let γk = 1 indicate that
the packet transmitted from the sensor has been successfully
delivered to the estimator, while γk = 0 corresponds to the
loss of the packet. Here packet loss process is modeled as
an i.i.d. process with a packet receival rate p ∈ (0, 1), e.g.
p = E[γ1].

In the scenario of [1], [4], the raw measurement yk is di-
rectly to be transmitted to the estimator at each time because
of the very limited bandwidth and computing capability of
the sensor. Then, it is clear that the maximum information
available to the estimator at time k is given as follows

Fk = {γi, yiγi, i ≤ k}.

Denote the minimum mean square error predictor and
estimator by x̂k|k−1 = E[xk|Fk−1] and x̂k|k = E[xk|Fk],
respectively. Their corresponding estimation error covariance
matrices are then given by Pk|k−1 = E[(xk − x̂k|k−1)(xk −
x̂k|k−1)T |Fk−1] and Pk|k = E[(xk− x̂k|k)(xk− x̂k|k)T |Fk].
In view of [1], the intermittent Kalman Filtering equation is

x̂k|k = x̂k|k−1 + γkKk(yk − Cx̂k|k−1); (3)
Pk|k = Pk|k−1 − γkKkCPk|k−1, (4)

where the Kalman gain Kk = Pk|k−1C
T (CPk|k−1C

T +
R)−1.

Let P̃k := Pk|k−1, it is recursively updated as follows:

P̃k+1 = AP̃kA
T +Q (5)

−γkAP̃kC
T (CP̃kC

T +R)−1CP̃kA
T .

Their goal is to investigate the effect of the packet loss
process γk on the mean square stability of the filter, i.e.,
supk∈N E[P̃k] < ∞, where the mathematical expectation is
taken with respect to the packet loss process γk. Although it
has attracted considerable attention from the researchers, e.g.
[1], [4], [6], [7], the necessary and sufficient condition for
the packet loss process on the stability of the filter is yet to
be explicitly characterized, and turns out to closely rely on
the system structure. In particular, it depends on the present
form of each mode of the open loop system.

To reduce the effect of the packet losses on the stability of
the filter, Schenato [5] considers the situation that the sensor
has sufficient bandwidth and computing power to estimate
the state by using the Kalman filter at the transmitter side,
and the state estimator, i.e., x̂KF

k = E[xk|y1, . . . , yk] is to be
transmitted from the sensor to the estimator over the lossy

channel. Then, the optimal estimator in the receiver side is
given as follows

x̂ok =

{
x̂KF
k , if γk = 1;
Ax̂ok−1, if γk = 0.

(6)

If (A,C) is observable, the necessary and sufficient for the
stability of the estimator, i.e., supk∈N E[(xk − x̂ok)(xk −
x̂ok)T ] < ∞ is simply given by |λmax|2(1 − p) < 1, where
λmax is the maximum eigenvalue of A in magnitude. It
should be noted that the transmission of x̂KF

k requires a
large communication overhead since the dimension of the
state is usually higher than that of the system measurement,
and usually results in a larger packet loss rate.

Motivated the above, the goal of the current work is
to propose a linear coding algorithm to balance the above
scenarioes. In particular, the dimension of the transmitting
message is the same as that of raw measurement yk but
the effect of the random packet loss on the stability of the
estimator is reduced by comparing with transmitting yk. A
natural idea is to transmit a linear combination of yk and
the previous measurements at time k, which is exactly to be
investigated in this paper.

III. LINEAR CODING OF MEASUREMENTS

Suppose that x measurements yk, yk+i1 , . . . , yk+ix−1
are

received respectively at time k, k+i1, . . . , k+ix−1, 1 ≤ i1 <
. . . < ix−1. Define a matrix by:

O(k) =


C

CAi1

. . .
CAix−1

 (7)

Because of possible packet losses, the measurements re-
ceived by estimator are usually not one-by-one, i.e., ij+1 −
ij 6= 1. It can be easily proved that if O(k) is full column
rank and ix−1 < ∞, one can obtain an estimator by using
the measurements yk, yk+i1 , . . . , yk+ix−1

, and the estimation
error covariance is uniformly bounded with respect to k.
However, if O(k) is rank deficient, this is impossible. That
is, the full rankness of O(k) is essential to the stability of
the filter.

We note that whether O(k) is full rank depends on the
structure of (A,C) and that of eigenvalues of A, e.g. the
existence of a positive integer d such that λdi = λdj , where λi
and λj denote two distinct eigenvalues of A [4]. For example,
consider a second-order system given below:

xk+1 =

[
1 0
1 −1

]
xk + ωk, (8)

yk =
[
1 1

]
xk + νk. (9)

The eigenvalues of the system are 1 and −1. Then d = 2 as
12 = (−1)2. Suppose that the measurements are received at
time k, k + 2, k + 4, the measurement matrix

O(k) =

 C
CA2

CA4

 =

1 1
1 1
1 1

 .
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It still not full column rank after receiving three mea-
surements. To eliminate this issue, the sensor is designed
to transmit a linear combination of yk and the previous
measurements.

For the n-dimensional system (1), define a random coding
vector αk =

[
αk1 αk2 . . . αkn

]
where each element

of αk is independently generated from a standard Gaussian
distribution. The property of coding vector in Lemma 1 is
obvious.

Lemma 1: Suppose α1, α2, . . . , αn are all n-dimensional
random column vectors and independently generated. Then,
the matrix (αT

1 , α
T
2 , . . . , α

T
n ) is full rank with probability 1.

Suppose that αk is the coding vector at time k, i.e., the coded
measurement

ỹk = αk1yk−n+1 + αk2yk−n+2 + . . .+ αknyk (10)

is to be transmitted at time k. Compared with transmitting
the estimated state, the dimension of the transmitted data is
of the same length as that of the raw measurement. It always
less than the dimension of xk if q < n and the coding method
consumes less computation power. By transmitting the coded
measurements, the condition to guarantee the stability of
the filter is weaker than transmitting raw measurements. To
elaborate it, we write the observation equation as

ỹk = αk


CA−n+1

CA−n+2

. . .
C

xk + nk, (11)

where nk denotes the measurement noise to the re-
mote estimator at time k. It is a linear combination of
ωk−n+1, . . . , ωk and νk. Suppose that n coded measure-
ments ỹk, ỹk+i1 , . . . , ỹk+in−1

are received respectively at
time k, k+ i1, . . . , k+ in−1, 1 ≤ i1 < . . . < in−1. Similarly,
we obtain the following matrix

Õ(k) =



αk


CA−n+1

CA−n+2

. . .
C


αk+i1


CA−n+1+i1

CA−n+2+i1

. . .
CAi1


. . .

αk+in−1


CA−n+1+in−1

CA−n+2+in−1

. . .
CAin−1





. (12)

If Õ(k) is full column rank, an estimation algorithm for the
state xk using the coded measurements can be available, and
the estimation error covariance matrix is uniformly bounded
with respect to k if in−1 <∞. By using the random coding
vectors, Õ(k) will be full column rank with probability one.

Lemma 2: Suppose that the coding vector at each time is
independently generated from a standard Gaussian random

vector, and (A,C) is observable, then Õ(k) is full column
rank with probability one.
Proof: It is given in Appendix.

In fact, xk can be optimally estimated in the sense of
minimizing the mean square estimation error by using the
least square method as follows1

x̂k = Õ(k)+


ỹk
ỹk+i1

. . .
ỹk+in−1

 , (13)

where the superscript + denotes the Moore-Penrose pseudo-
inverse [8]. Let the corresponding estimation error covariance
matrix be

Pk = E[(xk − x̂k)(xk − x̂k)T |γ1ỹ1, γ1, . . . , γkỹk, γk].

Now, we revisit the second-order system in (8-9). With
the un-coded measurements, O(k) is given by

1 1
1 −1
1 1
1 −1


if measurements are received at time k, k+2 or k+1, k+3.
Then, it is obvious that O(k) is rank deficient. However, if
a set of coding vector

αk

αk+1

αk+2

αk+3

 =


1 2
1 3
1 4
1 5


is chosen for the linear coding. O(k) is modified into that

Õ(k) =


3 0
5 −1
5 2
9 −3

 ,
which is obviously full column rank if measurements are
received at time k, k+ 2 or k+ 1, k+ 3. Note that the trans-
mission of the coding measurement has the same dimension
as the raw measurement.

IV. STABILITY ANALYSIS

In this section, we derived the stability condition for the
estimator using the coded measurements.

As illustrated in the previous section, the effect of random
packet losses on the stability of the estimator can be reduced
by using the linear coded measurements. This is formalized
in Theorem 1, whose proof is given in Appendix.

Theorem 1: Suppose that the coding vector at each time
is independently generated from a standard Gaussian random
vector and (A,C) is observable, a necessary and sufficient
condition for supk∈N E[‖xk − x̂k‖2] <∞ is that

|λmax|2(1− p) < 1. (14)

1Note that x̂k can also be written in a recursive form. Due to page
limitation, it is not explicitly included here.
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The transmission of randomly coded measurement is suf-
ficient to achieve the same stability condition as that of the
output of a Kalman filter, which requires the computational
capacity of the sensor and increase the communication
overhead. However, the assumption that each coding vector
is randomly generated may be unreasonable since to estimate
from the coded measurements, the estimator must know the
sensor’s all coding vectors. If the sensor generates coding
vectors online, it is difficult for the estimator to learn them
without inducing any communication cost. An instant idea
is to use the coding vectors generated offline and stored
in sensor and estimator in advance. Thus the number of
coding vectors should be finite. To this purpose, we use
the periodical coding vectors with a period m, i.e., αk =
αk+m,∀k ∈ N and in each period, the coding vectors are
different between each other. Then the random assumption
in Lemma 1 and Theorem 1 does not hold here.

The new establishment of the stability condition for the
estimation with periodic coding vectors is thus required.

Lemma 3: Suppose that α1, . . . , αm are independently
generated from standard Gaussian random vector and αk =
αk+m for all k ∈ N(m is the period of coding vec-
tors), and (A,C) is observable. A sufficient condition for
rank(Õ(k)) = n with probability 1 is that

in−1 < m. (15)
Proof: Please refer to Appendix.

Base on Lemma 1 and 3, a sufficient condition for the
stability of x̂k is presented in Theorem 2.

Theorem 2: Suppose that α1, . . . , αm are independently
generated from standard Gaussian random vector and αk =
αk+m for all k ∈ N(m is the period of coding vec-
tors), and (A,C) is observable. A sufficient condition for
supk∈N E[‖xk − x̂k‖2] <∞ is that

|λmax|2(1− p) m
√
P (m) < 1, (16)

where P (m) =
∑n−1

i=1

(
m
i

)
( p
1−p )i,m > n and

(
m
i

)
is the

number of combinations that select i from m.
Proof: Please refer to Appendix.

By transmitting the output of the Kalman filter, the
necessary and sufficient condition for the stability of the
estimator in the receiver side is that |λmax|2(1 − p) < 1.
Since limm→∞

m
√
P (m) = 1, then |λmax|2(1 − p) < 1

becomes a necessary and sufficient condition as m → ∞.
This means that the estimator is bounded for any system
satisfying that |λmax|2(1−p) < 1 by using the linear coding
on the measurements.

Base on the Theorem 2, the coding period m can
be founded as follows. For a system with the property
|λmax|2(1 − p) = ε < 1, letting m

√
P (m) < 1

ε leads to
the solution of the coding period m. Because m

√
P (m) is a

decreasing function in m and limm→∞
m
√
P (m) = 1, there

always exists a solution m for m
√
P (m) < 1

ε .

V. CONCLUSION

We have introduced a linear coding method to reduce the
effect of the packet losses on the stability of the optimal

estimator in the receiver side of a lossy channel. The di-
mension of coded measurement is same as that of the raw
measurement. Compared with the transmission of estimated
state, the dimension of coded measurement is less and
the calculation of coded measurement is simpler. With the
random coding vectors, the necessary and sufficient condition
for stability is achieved; With periodically random coding
vectors, the sufficient condition for stability is achieved. Base
on the derived sufficient condition, we are able to design a
linear periodic coding method to guarantee the stability of
the optimal estimator.

There are two important future research topics. One is
to approach the sufficient condition in Theorem 2 to the
necessary and sufficient condition. The other is to design
deterministic coding vectors that also can improve stability
and it won’t be periodical.

APPENDIX

A. Proof of Lemma 2

Proof: Since (A,C) is observable, then
CAi−n+1

CAi−n+2

. . .
CAi


is full column rank. Suppose that n coded measure-
ments are received at time k, k + i1, . . . , k + in−1. Since
αk, αk+i1 , . . . , αk+in−1 are independently generated from
standard Gaussian random vector, then

αk


CA−n+1

CA−n+2

. . .
C

 , . . . , αk+in−1


CAin−1−n+1

CAin−1−n+2

. . .
CAin−1


can be viewed as independently generated.

Base on the Lemma 1, it is not difficult to verify that

αk


CA−n+1

CA−n+2

. . .
C


αk+i1


CAi1−n+1

CAi1−n+2

. . .
CAi1


. . .

αk+in−1


CAin−1−n+1

CAin−1−n+2

. . .
CAin−1




is of full column rank with probability one.

B. Proof of Theorem 1

Proof: 1) Sufficiency:
Suppose that n measurements are received at time k, k +

t1, k+t2, . . . , k+tn. The notion of stability in stopping time
is supn∈N E[Pk+tn ] <∞.
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By Theorem 6 in [4], the notion of stability in sampling
time supk∈N E[Pk] < ∞ and stability in stopping time are
equivalent. Denote Prn is the probability of recent n coded
measurements make the matrix Õ(k) full column rank. Then
there exists a constant matrix a > 0 such that

E[Pk+tn−1 ] ≤ a · E[|λmax|2tn−1 ] · Prn + E[|λmax|2tn−1 ] ·
E[Pk+tn−1 ] · (1− Prn)

By Lemma 2, it follows that Prn = 1. This implies that

E[Pk+tn−1 ] ≤ a · E[|λmax|2tn−1 ]

Let 4i = ti − ti−1 be the time interval between the
measurement packet i− 1 and i. We obtain that

E[Pk+tn−1 ] ≤ a · E[|λmax|2(41+42+...+4n−1)]

Since the packet loss process is i.i.d, the 4i and 4j are
independent for i 6= j. Then, it follows that E[|λmax|24i ] =
E[|λmax|24j ], and

E[Pk+tn−1 ] ≤ a · E[|λmax|241 ] · E[|λmax|242 ]

· . . . · E[|λmax|24n−1 ]

= a · E[|λmax|241 ]n−1

The quantity E[|λmax|241 ] can also be evaluated by

E[|λmax|241 ] = p|λmax|2 + p(1− p)|λmax|4

+ p(1− p)2|λmax|6 + . . .

Thus E[|λmax|241 ] <∞ if and only if (1− p)|λmax|2 < 1.
Hence, it follows that (1 − p)|λmax|2 < 1 is a sufficient
condition for supk∈N E[Pk] <∞.

2) Necessity. It is straightforward by [5].

C. Proof of Lemma 3

Proof: Because in−1 < m, the coding vectors at time
k, k+ i1, k+ i2, . . . , k+ in−1 are in the same period. Then,
all the n coding vectors are randomly generated. Base on
the Lemma 2, the matrix Õ(k) is of full column rank with
probability 1.

D. Proof of Theorem 2

Proof: Denote the time interval making the matrix Õ(k)
full column rank is T . Because the estimation error co-
variance is only associates with the noise as the recent
measurements make the matrix Õ(k) full column rank. The
stability is equivalent to the estimation error covariance is
finite between two observable measurement sequences.

sup
n∈N

Pk+tn−1
<∞⇔ E[|λmax|2T ] <∞

We turn to find the sufficient condition for E[|λmax|2T ] <
∞:

E[|λmax|2T ] = E[|λmax|2T |0 ≤ T < m] · Pr(0,m)

+E[|λmax|2T |m ≤ T < 2m] · Pr(m, 2m) + . . .

Where Pr(im, (i + 1)m), i ∈ N is the probability that
im ≤ T < (i+ 1)m. Then

E[|λmax|2T ] = E[|λmax|2T |0 ≤ T < m] · Pr(0,m)

+|λmax|2m·E[|λmax|2(T−m)|m ≤ T < 2m]·Pr(m, 2m)+. . . .

As E[|λmax|2(T−i×m)|(i − 1) × m ≤ T < i × m] ≤
|λmax|2m,∀k ∈ N. We could release the condition to a more
sufficient one

E[|λmax|2T ] < |λmax|2m ·Pr(0,m) + |λmax|4m ·Pr(m, 2m)

+|λmax|6m · Pr(2m, 3m) + . . . .

Denote P̃r(im, (i+ 1)m) is the probability that there are
n or more packets received between im ≤ T < (i + 1)m.
Because the event im ≤ T < (i + 1)m is a sufficient
condition for there are no n packets received between 0 ≤
T < m, m ≤ T < 2m, . . . and (i− 1)m ≤ T < im. So

Pr(im, (i+1)m) ≤ P̃r(0,m)P̃r(m, 2m) · · · P̃r((i−1)m, im).

The inequality change into

E[|λmax|2T ] < |λmax|2m · 1 + |λmax|4m · P̃r(0,m)

+|λmax|6m · P̃r(0,m)P̃r(m, 2m) + . . . .

Because the packet loss is a i.i.d. binary process, the
probability P̃r((i−1)m, im) = P̃r((j−1)m, jm) for i 6= j.
The inequality can be a geometric sequence form as below:

E[|λmax|2T ] < |λmax|2m · 1 + |λmax|4m · P̃r(0,m)

+|λmax|6m · P̃ 2
r (0,m) + . . .+ |λmax|2(i+1)m · P̃ i

r(0,m) + . . .

Then research on the equivalent condition

E[|λmax|2T ] <∞⇔ |λmax|2m · P̃r(0,m) < 1.

And the probability P̃r(0,m) = Σn−1
i=1

(
m
i

)
(p)i(1 −

p)m−i = (1−p)mΣn−1
i=1

(
m
i

)
( p
1−p )i. Where

(
m
i

)
is the number

of combinations that select i from m. Denote P (m) :=
Σn−1

i=1

(
m
i

)
( p
1−p )i, the sufficient condition for supk∈N Pk <

∞ is

|λmax|2 · (1− p) · m
√
P (m) < 1
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