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Distributed Estimation in Networks of Linear Time-invariant Systems

Mohsen Zamani, Damian Marelli, Brett Ninness and Minyue Fu.

Abstract— This paper is concerned with the problem of dis-
tributed Kalman filtering in a network of several interconnected
subsystems. We consider networks, which can be either homo-
geneous or heterogeneous, of linear time-invariant subsystems,
given in state-space form. We propose a distributed Kalman
filtering scheme for this setup. The proposed scheme provides
estimates based only on locally available measurements. We
compare its outcomes with those of a centralized Kalman filter,
which offers the best minimum error variance estimate, using
all measurements available all over the network. We show that
the estimate produced by the proposed method asymptotically
approaches to that of the centralized Kalman filter, i.e., the
optimal one with global knowledge of all network parameters,
and we are able to bound the convergence rate. Moreover, if
the initial states of all subsystems are mutually uncorrelated,
the estimates of these two schemes are identical at each time
step.

I. INTRODUCTION

There has been an increasing effort in the study of dis-
tributed estimation in a network environment. This is due
to its broad applications in many areas, including formation
control [1], [2], distributed sensor network [3] and cyber
security [4], [5]. This paper examines the problem of dis-
tributed estimation in a network of subsystems represented
by a finite dimensional state-space model. In particualr, our
focus is on networks of finite-dimensional linear discrete-
time dynamical systems that arise through static interconnec-
tions of a finite number of such systems. Such models arise
naturally in applications of linear networked systems, e.g.,
for cyclic pursuit [6]; shortening flows in image processing
[7], or for the discretization of partial differential equations
[8]. This framework can be seen as a generalization of
consensus algorithm, widely studied in the literature [9],
[10]. Hence, results of the current paper are applicable to
consensus-based networks as well as to more general types
of networks modelled with static interconnection links. We
suppose that states of each subsystem are manipulated by
two main components, namely, a local term and a term
associated with the neighboring subsystems. Furthermore,
there exist noise components that may affect the states and
measurements. It is worth noting that such a scenario arises
in different applications like security, where normally the
estimation of states is required to calculate a residue for
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attack detection [4]; and, in formation control [1], [11]-
[13], where each subsystem integrates measurements from its
nearby subsystems, and states of each subsystem need to be
estimated for distributed control design purposes. The main
objective of this paper is to collectively estimate the states
of all subsystems within such a network. To this end, we
propose a novel distributed version of the celebrated Kalman
filter.

The current paper, in broad sense, belongs to the large
body of literature regarding distributed estimation. One can
refer to [14]-[24] and the survey paper [25], as well as
references listed therein, for different variations of distributed
estimation methods among a group of subsystems within
a network. A consensus based Kalman filter was proposed
in [19]. The author of [20] utilized a linear matrix inequality
to minimize a H,, index associated with a consensus based
estimator, which can be implemented locally. Some of the
results there were then extended to the case of switching
topology in [21]. The same problem was solved using the
minimum energy filtering approach in [22]. A common
drawback of the state estimation methods described above
is that, being based on consensus, they require, in theory,
an infinite number of consensus iterations at each time step.
This results in computational and communication overload.
To avoid this, in this paper we exploit the network structure
to achieve a distributed Kalman filter method which requires
only one prediction/update step at each time step. We remark
that in the current paper each subsystem is dedicated to
calculate its own states; however, in the above-mentioned
works, all subsystems contribute toward estimation of a
common global state.

To show the effectiveness of the proposed algorithm, we
compare our method with the classical (centralized) Kalman
filter, which is known to be optimal (in the minimum error
covariance sense). The classical method requires the simulta-
neous knowledge of parameters and measurements from all
subsystems within the network to carry out the estimation. In
contrast, our proposed distributed estimation algorithm runs
a local Kalman filter at each subsystem, which only requires
the knowledge of local measurements and parameters, as well
as measurements from neighbor subsystems. Hence, it can
be implemented in a fully distributed fashion. We show that
the state estimate, and its associated estimation error covari-
ance matrix, produced by the proposed distributed method
asymptotically converge to those produced by the centralized
Kalman filter. We provide bounds for the convergence of both
the estimate and the estimation error covariance matrix. We
further establish that when initial the states of all subsystems
are mutually uncorrelated, the estimates produced by both



methods i.e. centralized and distributed, are identical.

The rest of the paper is structured as follows. In Section II,
we describe the network setup and its associated centralized
Kalman filter. In Section IV, we describe the proposed dis-
tributed Kalman filter scheme. In Section V, we demonstrate
the asymptotic equivalence between the proposed distributed
filter and the centralized one, and provide bounds for the
convergence of the estimates and their associated estimation
error covariances. Simulation results that support our theoret-
ical claims are presented in Section VI. Finally, concluding
remarks are given in Section VII.

II. SYSTEM DESCRIPTION

In this paper we study networks of N time-invariant
subsystems. Subsystem ¢ is represented by the following
state-space model

A = A ) )
y,gi) = C(i)x,(f) + v,(j). 2)
The subsystems are interconnected as follows
JEN;

where x,(f) € R™ is the state, y,(f) € RP* the output, w,(f) is
an i.i.d Gaussian disturbance process with w,(:) ~ N (0,Q;),

and v,(j) is an i.i.d. Gaussian measurement noise process with

ol ~ N (0, R;). We further suppose that & (w,(j)w,(j)T =
ST T

0 and & (v ) = 0, ¥i £ j and € (s ) =0,

£ (xl(ci)vl(cj)T

the subsystem i by N; = {j : L) #£0}.

Remark 1: We note in (1)-(2) that the coupling between
neighboring subsystems is solely caused through the z,(j)
term in‘(3). The main motivation for considering such cou-
pling comes from distributed control, where‘(1) represents
the model of an autonomous subsystem (or agent) with
z,(;) being the control input, and (3) represents a distributed
control protocol, which employs feedback only from neigh-
boring measurements. This type of distributed control is
not only common for control of multi-agent systems (see,
for example, [2], [11]-[13]), but also realistic for large
networked systems, since only neighbouring information is
both easily accessible and most useful for each subsystem.

Notice that the dynamical descriptions (1)-(3) can be
regarded as a very general setting for the well-known con-
sensus algorithm [9], i.e., when it is run over a group
of interconnected multi-input-multi-output linear subsystems
expressed in state space form. Additionally, this model
can capture interactions within linear dynamical networks.
Interested readers can refer to [26], [27], [28] and [29],
where the authors exploited a similar model for conducting
system identification analysis in linear dynamical networks.
Finally, this model turns out to be an effective one for
studying peroperties of networked subsystems [5].

We emphasize that the distributed state estimation problem
arises for the networked system (1)-(3) because of our

) = 0 Vi, 7. We also denote the neighbor set of

allowance for measurement noises v,(:) in (2). This consid-
eration is very important for applications because measure-
ment noises are unavoidable in practice. This also sharply
distinguishes our distributed control formulation from most
distributed control algorithms in the literature, where perfect
state measurement is often implicitly assumed.

T T

We define & = {( Ig”) e (5;&1)) ] and &, =
{&1,-++, &}, where (&, Z) stands for either (z, X), (y,Y),
(2,Z2), (w,W) or (v,V); moreover, we denote T =
diag {Y®,--- , YD}, where Y stands for either A, B, C,
Qor R,and L= [L09) :4,j=1,--- NJ.

Using the above notation, we let the initial state of all
subsystems have the joint distribution zg ~ N (u, P). We
can also write the aggregated model of the whole network
as

Tyl = Azxy + LCxy + wy, + BLuy,
= Az + ey, )
ye = Crp+vg, (5

with

A=A+LC and er = wg+ Lug. (6)

It then follows that

cov([i’;}[e;— vg]>:[5§ }ﬂ @

where Q = Q + LRLT and S = LR.

III. CENTRALIZED KALMAN FILTER

Consider the standard (centralized) Kalman filter. For all
k,l €N, let

Epp £ € (2]Y7)
Spp £ & ([xk — ] [zn — ikuf) :

Our aim in this subsection is to compute &y, in a standard
centralized way. Notice that equation (7) implies that, in
the aggregated system formed by (1)-(2), the process noise
e, and the measurement noise v; are mutually correlated.
Taking this into account, it follows from [30, S 5.5] that
the prediction and update steps of the (centralized ) Kalman
filter are initialized by Zg,0 = p and Xg)o = P, and proceed
as follows:

1) Prediction:

®)

Frsap = (A= SR7IC) gy + SRy
= Al + Lys,

€))

and
- - T
ko = (M = SRTIC) Sy (M~ SR7IC)
+Q—-SR'S
= A% AT + Q.
(10)



2) Update:

Epip = Tpp—1 + Ki (yp — Cgpp—r),  (AD
Sk = (I = KxO) Xgjp—1, (12)

with
Ky = Ek‘k_lCT (C’Ek‘k_lC’T + R)i (13)

IV. DISTRIBUTED KALMAN FILTER

Consider the i-th subsystem (1)-(2). Notice that, since the
measurements y,(f ), j € N;, are known by the i-th subsystem,
they can be treated as external inputs. This observation
leads us to the following intuitive approach for a distributed
Kalman filter scheme.

Let, foralli=1,---,I and k,l € N,

NONS

G2 (Wi e Nutitm=1, 1),

([u A<z>H<> wo}).

Tk1 Tk1
Then, the prediction and update steps for the proposed
distributed Kalman filter are initialized by iézlz) = 1@ and

(1)
E0\0

1) Prediction:

(14)

(2)
DI L2¢e

PG and proceed as follows:

B = ADED + > LD as)
JEN;
ASOTON i
S ADRH AOT Q. (16)
2) Update:
+(4) +.(9) (@)
Tk = Tklk— 1 T K ( -3 k|k 1) )
() (@) (i (@)
s = (1-K0c) 20, (18)
with
i i i)’ i)y (i i)’ i)
K = E,ﬁf,c o) (CUZI(C‘)HC() +R(>>
19

V. OPTIMALITY ANALYSIS

Since the distributed Kalman filter approach given in
Section IV is motivated by intuition, the question nat-
urally arises as to which extent it is optimal. In this
section we address this question. To this end, we define

(3};”,2;0, where leTl = [:ﬁ,(;‘)lT =1, ,N} and
22” = diag (qu)l 1=1,- N), to be the outcomes of

distributed filter and (Zy;, Ek”) to be those of centralized
one. In Section V-A, we show that the estimation error
covariance of the distributed filter EZ‘  converges to that
of the centralized one X, and provide a bound for this
convergence. In Section V-B, we do the same for the con-
vergence of i’zlk 0 Zp k-
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A. Convergence of Ez‘k 10 Y|

In this section, we show that the covariance matrices Xy,
and Zzl « €xponentially converge to each other, and introduce

a bound on sz‘k Eklkl‘. To this end, we require the
following definition from [31, Def 1.4].

Definition 1: For n x n matrices P, > 0, the Rieman-
nian distance is defined by

5(P7Q) = ZlogQUk (PQil)a
k=1
where o1 (X) > ---
matrix X.

Several properties of the above definition, which we use
to derive our results, are given in the following proposition.

Proposition 1: [32, Proposition 5] For n x n matrices
P,Q > 0, the following holds true:

1) §(P,P)=0.

2) 6(P71aQ71) =6(Q,P)=46(P.Q).

3) For any m x m matrix W > 0 and m X n matrix B,

we have

> 0, (X) denote the singular values of

§(W + BPBT,W + BQBT) < iﬁ§(P,Q),
where o = max{||BPBT|,||BQBT||} and 3
Omin (W)

4) If P> Q, then |[P — Q| < (°P@ —1) [|Q]|.

The main result of this section is given in Theorem 1.
Its proof requires the following technical result. Its proof is
omitted in this conference version and is provided in [33].

Lemma I: Let Ty, = £} and T, = 7, ". Then
o] < o
Ieulls [ ]| <
and
5(zk|k,zg|k) < ks (PP, (20)
5(Fk|k,r;|k) < kg (P, P, 1)
where
o = max{|P|.[|P*.|Z]}. (22)
w = max{[P7YL[lP | I= T}, @3

with P* denoting the diagonal matrix formed by the block
diagonal entries of the matrix P,

a|A]?
Vo= v, v = 5 —, (24)
o |AlI"+ @~
vy = ——————  U=CTR'C,
w+ [[U|

and ¥ = limg_, o0 Yk
We now introduce the main result of the section, stating
a bound on ‘Ek‘k — ZZI’CH‘ Its proof is also omitted and

provided in [33].



Theorem 1: Let ik\l = Eku—E;” and fk\l = ].—‘k”*].—‘zll.
Then

Hik"“H < kov®  and Hf‘k‘kH < Kkwo®,

where

k=P 1,

B. Convergence of ‘izlk 10 Ty,

In this subsection, we study the convergence of state
estimate Z7,,, obtained through the distributed method, and
that of the centralized one &},;. Moreover, we derive a bound
on the error ik‘k-izl - We start by introducing two lemmas
which are instrumental for establishing our main results.
Their proofs, as well as that of our main result, are omitted
in this conference version and provided in [33].

Lemma 2: Let jk\l = i‘k\l — i‘zll Then

Tpq1k = HeZpp—1 + &k (25)
where
H, = A(I-%U),
Sk = ak+bg,
a = Azk\kfk\k%\kq’
b = ASuelidh-
Lemma 3: Let
Ap=E (@k‘k_@g,k,l) . (26)
Then
Ap < HyAj_ 1 H + \oFI, (27)

where I is the identity matrix, v is defined in (24), and

A2 sup (c+2\/<||Hk||2 ||Ak_1|> <o, (@9)
keN

with
¢ = (a+B8)+2/apb,
o = w2 AP (AP +1IQl), @9
8 = /<;2w203||A||2.

The following result states a family of upper bounds on
the norm of the covariance matrix of Ty;.

Theorem 2: Consider Ay as defined in (26). Let H, =
Vi JuVie ™! and H = VJV ! be the Jordan decompositions
of Hj, and H, respectively. Then for every e > 1, there exists

ke € N such that
Ak < Acp¥ + B,

e N M
€_w5—'U7 G_U—'ll)e.
and
e = ep(H), H:klim Hy., 30)
—00
2ke—1)
- IR 171112 me ’
o = AP ()
me = wax (LI, [ H )

Theorem 2 states that the covariance of the difference
between ;i“z| s—1 and Ty ,_; is bounded by two exponential
terms. The term B.v* is due to the convergence of the
Kalman gain K} to Kj, while the term A9 is due to the
convergence of the states given by the system dynamics. In
order to use this result to show the asymptotic convergence
of ﬁz‘k_l to Zpx—1, we need that v < 1 and . < 1, for
some € > 0. While it is clear from (24) that the former is
true, guaranteeing the latter is not that straightforward. The
following proposition addresses this issue. Its proof appears
in [33].

Proposition 2: If the pair [A, C] is completely detectable
and the pair [A,Q/?] is completely stabilizable, then
p (H ) < 1, where p(H) denotes the spectral radius of matrix
H.

C. The case when the initial covariance is block diagonal

It turns out that, when the initial covariance matrix has
a block diagonal structure both estimation methods are
completely identical. This is summarized in the following
corollary.

Corollary 1: Consider the network of subsystems (1)-
(2). If the matrix P is block diagonal, then the distributed
Kalman filter scheme (15)-(19) produces, for each ¢, the same
estimate as the centralized Kalman filter (9)-(13).

Proof: Recall that matrices A, ), C' and R are all
block diagonal. It then follows from (10) that, if Xy is
block diagonal, so is ¥ 1|%. One can easily check from (12)
and (13) that the same holds for K}, and ¥, if g x—q is
block diagonal. Since Y1 = P is block diagonal, it follows
that the matrices ;1 and Y3, remain block diagonal for
all k. Now, it is straightforward to verify that (9)-(13) become
equivalent to (15)-(19), when Xj;, and Y are block
diagonal. Hence, the distributed and centralized Kalman
filters produce the same estimate and the result follows. MW

VI. SIMULATIONS

In this section, we present four numerical experiments to
study the convergence of the proposed distributed Kalman
filter to its centralized counterpart. In the first experiment, we
compare the convergence on networks with different topolo-
gies. To this end, we consider a directed communication
topology involving ten subsystems with first-order dynamics.
The subsystems’ initial conditions are drawn from the normal
distribution A (0, P). The initial covariance matrix P is
chosen by randomly generating a positive-definite matrix
using P = LLT + eylhp, with €g = 0.1, and the entries
of £ € R!X10 are drawn from the uniform distribution
U(0,1). Also, vy ~ N (0,0.1119) and wy ~ N (0,0.1119).
The poles of these ten subsystems are randomly chosen
from the uniform distribution 2/(0.4,0.8). We consider two
different topologies. The first one is a path topology, whose
weights, i.e., the scalars LG ), are randomly selected from
the distribution /(0, 1). The second one is a random topol-
ogy, whose weights are randomly drawn while guaranteeing
the stability of the overall system. We refer to these two
topologies as Case A and Case B, respectively. We examine
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Fig. 1. Settling time vs. different chioces of topologies.

the convergence rate of the proposed filtering algorithm for
these two cases. To measure this rate, we use the settling
time, which we define by

r=min {1yl <0103l ). D
where 7' is the running time. For each one of these two
topologies, we plot the average value of 7 obtained over
200 realizations of the process noise w,(;), measurement
noise v,(;), initial condition and the random selection of the
topology weights. The results are shown in Figure 1. We see
that in Case B the convergence is faster. The reason for this
is that the random topology generated in Case B has a much
larger number of edges compared to the path topology in
Case A. Indeed, the matrix L associated with Case B is a
very dense one, i.e., it contains very few zero entries.

In the second experiment we study the effect of number
of connections per node on the convergence rate. To this
end, we consider a network of five nodes with first-order
dynamics, poles at 0.15 and topology weights L(7) = 0.1.
We perform 200 Monte Carlo simulations for two classes of
topologies, namely, with two and four connections per node.
One can observe that the former results in a cycle graph and
the latter delivers a complete graph. The simulation results
are depicted in Figure 2. Again, we see how the settling time
decreases with the number of connections.

In the third experiment we study the effect of subsystems’
dynamics on the settling time of the distributed Kalman
filter. We consider a network with ten nodes with first-
order dynamics, interconnected with a random topology. We
consider three cases, in which the subsystems’ poles are
drawn from the uniform distributions 2/(0.1,0.3), 2(0.2, 0.6)
and U(0.6, 0.8), respectively. Figure 3 shows the dependence
of 7, obtained by averaging 200 Monte Carlo runs, on the
mean value of the subsystems’ poles. We see how the settling
time increases with this value.

In our final experiment, we compare the settling time
for networks with different sizes. We consider three cases,
having 5, 10 and 20 nodes, respectively. For each case, we
consider identical nodes with first-order dynamics, having
poles at 0.9, and connected using a loop topology whose

0 B

2 4
Number of connections per node

Fi

&

g. 2. Settling time vs. number of connections per node.
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The mean value of poles for ten first-order dynamics

o

Fig. 3. Settling time vs. mean value of subsystems’ poles, in a network
with random topology.

nonzero values are L(*7) = (.1. Figure 4 depicts the depen-
dence of the settling time 7, again obtained by averaging 200
Monte Carlo runs, on the number of nodes. We see how the
increase of this time with the network size is only marginal.

10
Number of nodes

Fig. 4. Settling time vs. number of nodes, in a network with path topology.

VII. CONCLUSION

We examined the problem of distributed estimation for a
network of dynamical subsystems. In particular, we consid-



ered a novel version of the Kalman filter that only exploits
local measurements. We then studied the performance of this
proposed filter with respect to a traditional Kalman filter that
has access to all measurments within the network. In this pa-

per,

we illustrated that the covariance matrix associated with

the initial value of the state vector plays an important role
on the outcomes of the distributed Kalman filter. We showed
that if this matrix is block diagonal, the proposed distributed
scheme is optimal. Moreover, if that condition is dropped, the
estimation error covariances, and the associated estimates,
obtained through these two approaches approximate each
other exponentially fast. We also established proper bounds
on error between estimates and its covariance matrix.
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