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Abstract— This paper studies the wind power regulation
problem by controlling a population of thermostatically con-
trolled loads (TCLs) in smart grids. With each TCL endowed
with a cost function related to its room temperature, we
formulate the wind power regulation problem into a quadratic
optimization problem, for which we present a decentralized
bisection algorithm relying on an aggregator. The algorithm
converges fast and is decentralized in the sense that the TCLs
conduct local computation and keep the parameters’ privacy
from the aggregator. The proposed algorithm also includes a
Kalman filter based parameter identification technique to deal
with the time-varying thermal characteristics of TCLs. Simu-
lations are given to show the performance of our algorithm.

I. INTRODUCTION

Distributed power generation feeding on renewable energy
(e.g. wind and solar energy) has been intensively researched
by scientific communities, with a growing penetration in
future smart grids due to its environmental and econom-
ic benefits, including sustainable development, less power
transmission loss due to relatively short transmission distance
and better robustness than centralized power plants. Due to
the volatile nature of the renewable energy, the integration of
distributed generation with conventional generation remains
a great challenge.

A possible way to counter the fluctuations of distributed
power generation is to deploy real-time control of the load in
the energy management system (EMS) such that the fluctua-
tions in the power supply can be absorbed cooperatively by
the variations in the loads. In this paper, we adopt the idea
of manipulating a population of TCLs (e.g., air conditioning
and refrigeration systems) to meet a supply and demand
balance between the aggregate power consumption of TCLs
and fluctuating distributed power generation. The idea of
real-time power regulation using TCLs was, to the authors’
knowledge, originated in [1]. In this paper, we focus on
countering the fluctuations of wind power generators whose
outputs can be reliably forecasted [2], [3].

Future smart grid, which will likely integrate advanced
metering infrastructure (AMI), distribution automation (DA)
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devices and distributed generation and storage, is typically a
large-scale system, where decentralized algorithms for con-
trol, estimation and optimization are preferred to centralized
ones, due to the features including enhanced robustness,
reduction in communication between agents, and uniform
power consumption between agents [4], [5].

Continuing along the idea developed in [1], and in the
framework of smart girds, we formulate the wind power
regulation problem into a quadratic optimization problem,
in which the individual cost function of each VFAC reflects
its relative temperature deviation, i.e., the difference between
the room temperature and the temperature set point scaled
by its comfort tolerance set by its users, and propose a
decentralized bisection method, which converges fast due
to the nature of bisection [6], [7]. Furthermore, due to the
time-varying nature of thermal characteristics, e.g., time-
varying ambient temperature through the day, we further
propose a Kalman filter based technique for online parameter
identification. Compared with others’ work mainly by [1],
[8], [9], ours has the following novel features. We assume
the TCLs to be variable frequency air conditioners (VFACs),
which can run with any power between 0 and the rated
power. Though requiring an aggregator, our algorithm is
decentralized in the sense that the TCLs also conduct local
computation, and hence the computation burden of the ag-
gregator is reduced, and TCLs’ privacy including parameters,
operation states, is preserved, while the ones are centralized
in [1], [8], [9]. Moreover, our algorithm can be applied
to deterministic and heterogeneous models of VFACs, and
thus can be applied to both large-scale systems and small-
scale systems. In comparison, the work in [1] used a hybrid
model based on probability distribution of on/off states as the
aggregated model of TCLs, which actually requires a large
amount of TCLs for sake of controlling accuracy. Finally,
by formulating the wind power regulation problem into a
quadratic optimization problem, we try to dispatch the power
supply as fairly as possible, while previous work in [1], [8],
[9] didn’t involve fair dispatch.

In Section II, we introduce the model of single air condi-
tioner, and present the problem formulation. In Section III,
we propose the the decentralized bisection algorithm and
the Kalman filter based parameter identification method. In
Section IV, simulations are given to illustrate the algorithm.
We conclude our paper in Section V.

II. PRELIMINARIES AND PROBLEM FORMULATION

In this section, we first introduce the single air condition-
er’s model, and then formulate the power regulation problem.
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A. Air Conditioner Model

We assume that by changing the frequency of the compres-
sor through the frequency converter, the power of a VFAC
can vary from zero to its rated power continuously. As for
a constant frequency air conditioner (CFAC), by adopting
the idea of PWM control, or with the help of direct load
control programmes, we can approximate the average power
consumption of a CFAC over short periods of time to be
any desirable value between 0 and the rated power, since
air conditioners are such electrical appliances that can be
turned off or cycled for relatively short periods of time [10].
Moreover, in a smart grid scenario, due to VFACs’ advan-
tages compared with CFACs, including energy saving, lower
noise and high precision of temperature control, VFACs will
eventually take place of CFACs. Therefore, we assume all
the TCLs to be VFACs hereinafter.

Let n be the number of air conditioners under considera-
tion. We consider the cooling process and use the following
discrete time model, originally developed in [11]:

Ti[k + 1] = aiTi[k] + (1− ai)(Ta,i − ηiRixi[k]) + wi[k],
(1)

where Ti[k] (◦C), Ta,i (◦C) and xi[k] (kW), i = 1, 2, . . . , n,
are the room temperature, ambient temperature, and the
power of the ith VFAC at time k, respectively. The sampling
time interval is denoted by ∆τ , and the power consumption
is assumed constant as xi[k] during the interval between
time k and k + 1. The parameters in (1) are as follows:
ai = exp(−∆τ/CiRi) represents the thermal characteristics,
where Ci (kWh/◦C) is the thermal capacitance, and Ri

(◦C/kW) is the thermal resistance; ηi is the load efficiency,
which equals to the rate of energy transfer between the
thermal mass and its environment divided by the power
consumption of the ith VFAC; wi[k] is Gaussian white noise
with variance ∆τσ2.

In this paper, we take ∆τ = 5 minutes and assume that
all the parameters including Ci, Ri, ηi, Ta,i are constant.
These parameters can be obtained by direct measurements
or by system identification. The latter method is preferred,
which does not require extra measuring apparatus. A system
identification method will be introduced in a later section.

B. Problem Formulation

Consider a power grid consisting of n VFACs, denoted
by the set V = {1, 2, ..., n}, where the wind power supply
fluctuates over time. The wind power supply meant for
VFACs only, denoted by P , is assumed to be predictable
and with a reasonable forecasting period, is considered to
be constant during each interval, i.e., the power supply is
assumed constant as P [k] between time k and k + 1.

The power of the ith VFAC shall be non-negative and no
larger than its rated power (i = 1, . . . , n), i.e.,

0 6 xi[k] 6 xratedi , k = 1, 2, . . . (2)

where xratedi is the rated power of the ith VFAC. In order
to compensate the wind power supply’s fluctuations, the

aggregate power consumption of n VFACs should satisfy
the supply constraint:

n∑
i=1

xi[k] = P [k], k = 1, 2, . . . (3)

Combined with (2) and (3), it is assumed that:
A1: There exists an aggregator, and the forecast of the total
power supply P [k] is known by the aggregator and satisfies

0 6 P [k] 6
n∑

i=1

xratedi , k = 1, 2, . . . (4)

To make the decentralized algorithm in our paper work,
we further assume that:
A2: The aggregator is computationally capable, and conducts
bidirectional communication with all the VFACs, i.e., the
communication topology between the aggregator and the
VFACs is a star network, where the aggregator acts as the
hub node and the VFACs are the leaf nodes.

Remark 1: Though in reality the power grid also consists
of other inflexible electrical appliances which share a com-
mon power supply with VFACs, in a smart gird scenario
assumption A1 and A2 can be technically met with the help
of advanced metering infrastructures (AMIs) [12], i.e., an
AMI can measure the power consumption of any load among
all the loads in a house and communicate bidirectionally with
the aggregator. Denoting the total power supply meant for all
the loads in the grid between time k and k+1 by P †[k], the
aggregator receives and sums up the power consumption of
any other loads except VFACs, and computes:

P [k] = P †[k]−Q[k],

where Q[k] is the total power consumption of the other
inflexible loads in the gird during time k and k + 1.

We hope by using VFACs to counter wind power’s fluc-
tuations, the users’ comfort won’t be severely compromised.
For this purpose, each VFAC is given a temperature set point
Ts,i (◦C) and a thermal comfort tolerance ∆Ti (◦C) by its
users, i.e., the users expect their room temperature to stay
within the comfort zone [−∆Ti + Ts,i,∆Ti + Ts,i]. Since
the temperature Ti[k + 1] at time k + 1 depends on xi[k],
with the process noise ignored, for each VFAC we define its
local comfort degree as the relative temperature deviation of
VFAC i, given by

hi(xi[k]) =
Ts,i − Ti[k + 1]

∆Ti
. (5)

Along with (1), it follows

hi(xi[k]) = αixi[k] + βi[k], (6)

where
αi = (1− ai)ηiRi/∆Ti, and

βi[k] = (Ts,i − aiTi[k]− (1− ai)Ta,i)/∆Ti.

We then endow each VFAC with its own cost function at
time k, defined as

fi(xi[k]) =
h2i (xi[k])

2αi
=

(αixi[k] + βi[k])2

2αi
. (7)
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Therefore the total cost function of all the VFACs is given
by

f(x[k]) =

n∑
i=1

fi(xi[k]), (8)

where x[k] = [x1[k], ..., xn[k]]T is the global vector. One can
easily verify that hi(xi[k]) = f

′

i (xi[k]) = dfi(xi[k])/dxi[k].
In the physical sense, h2i (xi[k]) is the square of relative
temperature deviation, and the total cost function f(x[k])
is a weighted square sum of all the relative temperature
deviations, where the weight for each VFAC is 1/2αi.

From the above, we now formulate the wind power
regulation problem at time k = 1, 2, ... into the following
quadratic optimization problem:

minimize f(x[k]) =

n∑
i=1

fi(xi[k]),

subject to
n∑

i=1

xi[k] = P [k],

0 6 xi[k] 6 xratedi , i = 1, ..., n

(9)

The centralized solution to problem (9) can be easily
achieved by the Lagrange dual method [13]. Define

gi(λ) =


0 λ < hi(0)

(βi[k]− λ)/αi hi(0) 6 λ 6 hi(x
rated
i )

− xratedi hi(x
rated
i ) < λ

(10)

If problem (9) is feasible, it has a unique optimal Lagrange
multiplier λ∗[k], satisfying

P [k] +

n∑
i=1

gi(λ
∗[k]) = 0. (11)

Accordingly, problem (9) has a unique optimal solution given
by x∗i [k] = −gi(λ∗[k]), i = 1, 2, . . . , n, i,e.,

x∗i [k] =


0 λ∗[k] < hi(0)

(λ∗[k]− βi[k])/αi hi(0) 6 λ∗[k] 6 hi(x
rated
i )

xratedi hi(x
rated
i ) < λ∗[k]

(12)
At any time k > 0, we solve the optimization problem (12)
in a decentralized fashion and assign the optimal solution
x∗[k] to the VFACs as their power consumption during the
interval between time k and k+ 1, and the equality between
demand and supply is guaranteed by the equality constraint
in (12).

Remark 2: The optimization problem (9) and its variation-
s also find applications in economic dispatch problem (EDP)
[14] and optimal resource allocation problem (ORAP) [15].

III. MAIN RESULTS

In this section, we show some properties of the optimal
power regulation (9), and then present a decentralized bisec-
tion method to solve the problem.

A. Decentralized Bisection Method

Since the total cost function (8) has a separable structure,
i.e., it’s the total sum of the local costs, it’s possible to be
solved in a decentralized fashion. With time index k omitted
in this subsection, we now present a decentralized bisection
method for the optimization problem (9).

Let s = 0, 1, 2... denote the bisection steps. We establish
3 variables, λ+(s), λ−(s) and λ(s), which are commonly
shared by all the VFACs. For the problem with the utility
function defined in (6), all the room temperatures are desired
to be kept in the comfort zone [−∆Ti + Ts,i,∆Ti + Ts,i],
while the air conditioning systems are considered to absorb
the power supply fluctuation. Thus the initialization at s = 0
is given by λ+(0) = 1 and λ−(0) = −1 as otherwise the
problem does not have a feasible solution.

At each bisection step s, the update of λ(s) performed by
each VFAC follows

λ(s) =
λ+(s) + λ−(s)

2
. (13)

For i = 1, ..., n, each VFAC then computes

xi(λ(s)) =


0 λ(s) < hi(0)

(λ(s)− βi)/αi hi(0) 6 λ(s) 6 hi(x
rated
i )

xratedi hi(x
rated
i ) < λ(s)

(14)
Every VFAC then sends xi(λ(s)) to the aggregator. The

aggregator computes the sum of all the VFACs’ xi(λ(s)),
denoted by X(s):

X(s) =

n∑
i=1

xi(λ(s)), (15)

compares X(s) with P , and broadcasts γ(s) to all the
VFACs, given by

γ(s) =

{
1 X(s) > P

0 X(s) 6 P
(16)

After receiving γ(s), each VFAC then updates λ+(s+1) and
λ−(s+ 1) by{

λ+(s+ 1) = λ(s), λ−(s+ 1) = λ−(s) γ(s) = 1

λ+(s+ 1) = λ+(s), λ−(s+ 1) = λ(s) γ(s) = 0
(17)

For practical use, Algorithm 1 can either run fixed S steps,
e.g., S = 20 steps, and then stop, or stop when certain tol-
erable supply-demand gap is reached. The aggregator makes
decision on whether to stop or to continue the algorithm and
then broadcasts a signal δ given by:

δ =

{
0 |X(s)− P | < ε

1 otherwise

where ε is a small positive number denoting the tolerable
supply-demand gap. For each VFAC, it stops the algorithm
if δ = 0, and continues if δ = 1.

One can easily verify that though all the VFACs update
λ(s), λ+(s) and λ−(s) locally, since they receive the same
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γ(s) from the aggregator, and obey the same updating rule
(17), for s = 0, 1, 2, ..., they always get the same λ+(s+ 1),
λ−(s+ 1) and λ(s+ 1).

The inequality constraints (2) are guaranteed by (14),
while the equality constraint (3) is gradually satisfied dur-
ing the course of bisections. The complete process of the
decentralized bisection method is described in Algorithm 1.
Next we show in the following theorem that Algorithm 1
converges to the solution to our problem and also the optimal
solution to optimization problem (9).

Algorithm 1 Decentralized Bisection Method
Input: P [k]: the forecast of the wind power supply at time

k.
Output: xi[k]: power assignment for each VFAC at time k,

i = 1, ..., n.
1: Initialization: λ−(0) = −1; λ+(0) = 1;
2: for s = 0, 1, 2, . . . do
3: Each VFAC updates λ(s) = (λ−(s) + λ+(s))/2;
4: Each VFAC computes xi(λ(s)) using (14) and sends

it to the aggregator;
5: The aggregator computes X(s) and γ(s), and broad-

casts γ(s) and δ to the VFACs;
6: Each VFAC receives γ(s) and δ, and then updates

λ−(s+ 1) and λ+(s+ 1) using (17);
7: if δ = 0 then
8: Break;
9: end if

10: end for

Theorem 1: If problem (9) is feasible, Algorithm 1 con-
verges to the unique optimal solution of problem (9) as
s→∞.
Proof The individual cost function fi(xi) is twice continu-
ously differentiable with second derivative f

′′

i (xi) = αi > 0,
thus the total cost function f(x) =

∑n
i fi(xi) is strictly

convex, which means problem (9) has at most one optimal
solution. Since αi > 0, xi(λ) is monotonically increasing
with respect to λ(s). Thus, if there is a feasible solution for
the problem, then the sum

∑n
i=1 xi(λ) is strictly increasing

with respect to λ. Therefore, combined with the nature
of bisection, Algorithm 1 converges. Moreover, since the
optimal solution of problem (9) is unique, Algorithm 1
converges to the unique one.

Remark 3: Due to the nature of bisection, within s steps,
we have

|λ(s)− λ∗| ≤ |λ+(0)− λ−(0)|2−s,

where λ∗ is the optimal Lagrange multiplier. Therefore our
algorithm converges fast.

Remark 4: Advantages of our algorithm are as follows
due to the decentralization. The VFACs do not need to know
how large P [k] is. They merely update λ(s) and send their
xi(λ(s)) to the aggregator. On the other hand, the aggregator
does not need to know the VFACs’ parameters, including αi,
βi and xratedi . Therefore, the computational burden of the
aggregator is reduced and the VFACs’ privacy is preserved.

B. Parameter Identification

In Section II-A, the temperature evolution of thermal
mass is described by the discrete time model (1), where
the parameters remain to be determined. In [1], the per
square meter (of floorage) capacitance C and resistance R are
approximately described by variables randomly distributed,
e.g., capacitance C per square meter ranges from about 0.015
to 0.065 kWh◦C. Thus a feasible way to determine the
parameters of a room is to simply multiply the area the floor
by the associate per square meter factor. However, it is crucial
to get as precise estimation of the parameters as possible,
because though small parameter errors may not make much
difference for one single VFAC, they cause a large deviation
for the population of VFACs, i.e., the parameter errors of
each VFAC will accumulate. Besides, we cannot get the
ambient temperature, unless the room is equipped with extra
thermometers. A better method with higher accuracy is by
system identification, which requires no extra equipment and
guarantees more accurate estimation of parameters. We now
present a Kalman filtering based method [16].

Let us assume all the parameters to be time-varying,
i.e., every parameter is subject to some perturbation, which
allows us to ignore the process wi[k]. Then all the parameters
are indexed by k. Assuming the measurements to be noisy,
and omitting the index i, defining I[k] ≡ 1, the state equation
(1) can be transformed into the following equation

T [k]+α1[k]T [k−1] = α2[k]I[k−1]+α3[k]P [k−1]+ν[k]
(18)

where for j = 1, 2, 3,

α1[k] =− a[k]

α2[k] =(1− a[k])Ta[k]

α3[k] =− (1− a[k])η[t]R[k]

αj [k + 1] =αj [k] + µj [k]

(19)

and µj [k] and ν[k] are zeros mean, white, gaussian random
process and mutually independent. Define

ξ[k] = [α1[k], α2[k], α3[k]]T , µ[k] = [µ1[k], µ2[k], µ3[k]]T .

From (19), we have

ξ[k + 1] = ξ[k] + µ[k] (20)

Then define

H[k] = [−T [k − 1], I[k − 1], P [k − 1]]T . (21)

From the above, we have

T [k] = HT [k]ξ[k] + ν[k] (22)

Now the system identification problem has been converted
into a Kalman filtering problem [16]. Denoting the state
estimated at time k + 1 from measurements at time k by
ξ̂k[k + 1], the corresponding covariance as Σk[k + 1] and
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Fig. 1. Power supply forecast for 12 hours.

Kalman gain as K[k], the filter is

ξ̂k[k + 1] = [I −K[k]H[k]]ξ̂k−1[k] +K[k]T [k],

Σk[k + 1] = Σk−1[k]− Σk−1[k]HT [k]× [H[k]Σk−1[k]HT [k]

+ S[k]]−1H[k]Σk−1[k] +Q[k],

K[k] = Σk−1[k]HT [k][H[k]Σk−1[k]HT [k] + S[k]]−1.
(23)

where S[k] = E[ν2[k]] and Q[k] = E[µ[k]µT [k]] are
respectively the covariance of ν[k] and µ[k]. Then through
the method above, the parameters α1[k], α2[k], and α3[k]
are determined, and from (19), we can get η[k], R[k], Ta[k]
and a[k] in an online fashion.

C. Decentralized Wind Power Regulation Scheme

In this subsection, we present the complete process for
decentralized power regulation via VFACs by Algorithm 2.

Algorithm 2 Decentralized Power Regulation
1: for k = 1, 2, ... do
2: The aggregator receives the forecast P [k];
3: Each VFAC measures the current temperature Ti[k]

and estimates other necessary physical parameters by
(19) - (23);

4: Each VFAC computes its own power assignment by
the decentralized bisection method (Algorithm 1);

5: Each VFAC adjusts its working power.
6: end for

IV. SIMULATION RESULTS

In this section we give several numerical examples to show
the performance of our algorithm. We deal with wind power
regulation problem with homogeneous VFACs in Case 1,
while in Case 2 heterogenous VFACs are considered. We
also show in Case 3 the demand-supply gap over time stays
in an acceptable range.

Just for the demonstration purpose, we consider a small
number of VFACs (10 VFACs and an aggregator in a
star network). The forecast of fluctuating wind power is
illustrated in Fig. 1.
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Fig. 2. Temperature ratios of the VFACs.

A. Case 1: Dealing with Homogenous VFACs

In this case we use homogenous group of VFACs to
regulate wind power, i.e., except for their initial temperatures
Ti[0], the 10 VFACs share the same parameters given by: the
thermal capacity C = 1.8kWh/◦C, thermal resistance R =
12.5◦C/kW, ambient temperature Ta = 30◦C, temperature
set point Ts = 25◦C, thermal efficiency η = 2.5, comfort
tolerance ∆Ti = 2.5◦C and rated power xrated = 2.15kW.
The process noise wi[k] is considered with standard deviation√

∆τσ2 = 0.005◦C. Their initial temperatures take random
values uniformly distributed in [26, 30] ◦C.

At each time k, we perform 20 steps of bisection, and
the results are shown in Fig. 2. The ratios of temperature
deviation reach consensus at around 3.8h, after which all
the VFACs stay in the consensus team, no matter how the
power supply changes over time. Moreover, after consensus
is reached, in this homogenous VFACs’ case, the power
assignment of every VFAC simply reduces to the average
of the total power supply since then.

B. Case 2: Dealing with Heterogenous VFACs

In this case we consider heterogenous VFACs where all
the parameters adopted from [17] are given as follows

C = [1.5760 1.9222 1.8721 1.9661 1.7104

1.9218 1.5826 1.5270 1.7037 1.6652],

R = [13.091 12.177 12.834 12.586 12.252

12.780 12.315 12.773 12.027 12.452],

Ta = [29.824 30.324 30.1523 30.095 29.679

30.107 30.436 29.620 29.777 30.284],

Ts = [25 27 25 25 25 26 24 25 24 25],

η = [2.3662 2.2277 2.2583 2.6941 2.6169

2.3903 2.7701 2.2207 2.4632 2.4289],

∆T = [2.0 2.0 2.0 2.5 5.0 3.0 2.5 2.0 1.5 2.5].

The process noise is the same as the one in Case 1.
Fig. 3 shows the performance of our algorithm for het-

erogenous VFACs with 20 bisections performed at every time
k as well. In this case, the ratios of temperature deviation still
tend to reach consensus, and consensus is achieved at around

359



1 2 3 4 5 6 7 8 9 10 11 12
−150

−100

−50

0

50

100

150

time (h)

te
m

pe
ra

tu
re

 r
at

io
 (

%
)

 

 
No.1
No.2
No.3
No.4
No.5
No.6
No.7
No.8
No.9
No.10

Fig. 3. Temperature ratios of the VFACs.
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Fig. 4. The demand-supply gap for the example of 10 VFACs in a static
network.

3.4h. However, after about 8h, some VFACs start to leave the
consensus team, which is seen from the 6th VFAC’s ratio
curve. This is because the wind power supply is such small
that the consensus takes on a trend of rising temperature
and some of them may be assigned 0 power (turned off) by
our algorithm. In particular, the temperature tolerance of the
6th VFAC is much larger than the others, which makes it
unable to keep up with the others strictly. Nevertheless, the
fair dispatch in general is still achieved.

C. Case 3: Demand-supply Gap

From the last 2 cases, we can see that both in homogenous
and heterogenous cases, fair dispatch is achieved. Now we
study to what extent the demand and supply constraint is met
with in terms of Case 2.

The demand-supply gap (the difference between the total
power supply and total power demand) is plotted in Fig. 4 for
Case 2, in which the bisection algorithm runs 20 iterations
at every step. From the simulation result we can observe
that the demand-supply gap arrives below 0.15% of the total
power supply.

V. CONCLUSIONS

In this paper, we study the problem of using TCLs to
counter the fluctuations in wind power supply, which is

formulated as a quadratic optimization problem. For this pur-
pose, we present a decentralized bisection method. Through
simulation we show that our algorithm is applicable to both
homogeneous and heterogenous VFACs. We also comment
that although we study the use of VFACs, the proposed
algorithm can be applied to other types of loads and energy
storage devices, such as refrigerators and plug-in electric
vehicles.
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