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Abstract— With the increasing penetration of intermittent
renewable energy sources (e.g., photovoltaic and wind gen-
erations), more reserve energy is needed to deal with the
fluctuations in power supply, which increases the cost of elec-
tricity energy. In addition, the deployment of electric vehicles
(EVs) further stresses the grid. In this paper, we study a
smart charging problem for a network of electrical vehicles
using a distributed method to counter the fluctuations in the
power supply. A three-level controller is proposed. The top-
level controller provides a feasible charging schedule based
on the forecast power supply, EVs’ initial and target state-
of-charge (SOC) levels and their required plug-off times. For
the middle-level controller, we develop a distributed control
algorithm that adapts the charging rate of each EV to the
fluctuation of power supply while providing a fair dispatch of
the available power to all EVs. The bottom-level controller uses
the frequency deviations to correct the difference between the
forecast power and actual available power. The features of the
proposed method are demonstrated using a bank of Lithium-ion
batteries with ADVISOR models.

I. INTRODUCTION

Electric vehicles and wind energy are both green tech-
nologies intended for reducing fossil fuel consumption and
environmental pollution. However, the former can signifi-
cantly increase the electric grid’s load during charging, which
could stress generation and transmission systems. The latter
is intermittent in nature and its higher penetration requires
more energy reserve to counter the negative impact, which
increases operation costs. Fortunately, with the development
of smart grid, advanced metering and communication sys-
tems enable the development of better algorithms to deal
with these problems.

Many control methods already exist for EV charging. In
[1], [2] and [3], a central controller is used to coordinate the
charging. In [4], [5] and [6], the charging problem is cast
as an optimization problem. In both approaches, decisions
are made on the basis of system-level considerations, such
as mitigating the distribution system loss or maximizing
the load factor, but the requirements for individual EVs
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are neglected. The three-level hierarchical control algorithm
proposed in [7] considers users in terms of the current SOC
and plug-off time. In [8], a distributed control algorithm is
put forward, which adapts the charging rate of each EV
to the available power to ensure that every EV receives
a proportionally fair share, [9], of the available power.
However, neither of them considers the heterogeneity of EVs,
such as initial state of charge (SOC), target SOC and battery
capacity.

Wind power is a cheap and green power source, but its
intermittency has been a problem. Although wind farms help
to smooth the fluctuations, [10], the grid operator may still
need to procure more reserves for the wind intermittency.
Researchers are tackling the wind intermittency in various
ways. Some research efforts have focused on reducing pre-
diction error of wind power to assist grid operations. An-
other research direction focuses on developing strategies for
scheduling generation sources. Several researches included
wind energy probabilities when conducting optimizations
for generation scheduling, [11] and [12]. Despite of the
improvement achieved by the above methods, curtailment of
wind power will still happen when there is very little energy
storage capacity.

Therefore, it is necessary to integrate EV charging and
wind intermittency. This paper proposes a three-level con-
troller to achieve such integration. The top-level controller
schedules conventional power plants and wind power to
supply enough power to EVs. Meanwhile, the power can
not exceed the maximum power that all EVs can absorb.
Based on average consensus, the middle-level controller
allocates forecasted power supply to individual EV, according
to energy need and plug-off time in a distributed fashion.
Consensus and similar techniques have been adopted to de-
sign distributed/decentralized algorithms in many literatures,
such as [13], [14]. The bottom-level controller corrects the
power allocated to each EV according to the frequency devi-
ation, which is caused by the difference between forecasted
power supply and actual power supply. The correction of the
bottom-level controller does not affect the allocation criterion
of the middle-level controller and the two controllers work
together without confliction because of different time scales.

The remainder of the paper is organized as follows.
Section 2 presents preliminaries about EVs and average
consensus. Section 3 presents the proposed control method.
Section 4 exposes simulation results Concluding remarks are
given in Section 5.
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Fig. 1. CC-CV charging process of Lithium-ion batteries

II. PRELIMINARIES

A. Elctric Vehicles

Nowadays, almost all EVs use Lithium-ion battery because
of its advantages, e.g., high energy density, good load char-
acteristics and low maintenance. SOC is the equivalent of a
fuel gauge for the battery in EVs and is defined as:

SOC =
CR
C
× 100% (1)

with C representing the battery capacity (Ah) and CR is the
remaining battery capacity (Ah). SOC evolution, from t1 to
t2 is formulated as:

SOC(t2) = SOC(t1) +

∫ t2
t1
I(t)dt

C
η (2)

η is the charge-discharge efficiency. It is assumed to be 1
and neglected in the following paper.

The relationship between power supply P and the charging
current I is formulated as:

P = UI = VocI +RI2 (3)

where U is closed circuit voltage while Voc is open circuit
voltage. R is internal resistance. Actually, Voc and R are
dependent on SOC instead of being constant, which is
considered in the model we use in Section 4.

Traditionally, constant current constant voltage (CC-CV)
charging method is used to charge EVs, shown in Fig.
1. First, the EV is charged with a constant current (rated
current) and when the battery voltage limit is reached, Stage
2 begins. In terms of SOC, the best work range of Lithium-
ion batteries is from 20% to 85%. Actually, when Stage 1
terminates, SOC can reach 85%, so it is recommended to
ignore Stage 2. The rated current is typically around 0.25C
for the sake of the lifespan of batteries. See [15].

In this paper, EVs are charged with variable power to
absorb the fluctuation of wind power. As regard to effects
of variable charging current on Lithium-ion battery, [16]
has given a detailed description in terms of capacity fade
and efficiency, from which, we can conclude that Lithium-
ion batteries can be charged with dynamic current. So
EVs should be charged by a smart charger, which could
determine the charging current of EV based on the power

allocated and U . Also, smart charger can stop charging when
the battery voltage limit is reached. Moreover, Lithium-ion
batteries can be charged to a higher SOC with variable
current than with constant current, without negative effect
on batteries.

B. Average Consensus

Average consensus uses a distributed linear iteration to
asymptotically compute the average of some initial values
given at the nodes. We consider a network (connected graph)
G = (V, E) consisting of a set of nodes V = {1, ..., n} and a
set of edges E , where each edge {i, j} ∈ E is an unordered
pair of distinct nodes. The set of neighbors of node i is
denoted by Ni = {j|{i, j} ∈ E}. Each node i holds an
initial scalar value, xi(0) ∈ R and x(0) = (x1(0), ..., xn(0))
denotes the vector of the initial node values on the network.
The network gives the allowed communication between
nodes: two nodes can communicate with each other, if and
only if they are neighbors. The distributed linear iterations,
shown in (4), can compute the average of the initial values,
1/n

∑n
i=1 xi(0), asymptotically, using local communications

only.

xi(t+ 1) = Wiixi +
∑
j∈Ni

Wijxj(t), i = 1, ...n (4)

where t = 0, 1, 2, ... is the discrete time index, and Wij is
the weight on xj at node i; see [17] for the selection of the
weights. The middle-level controller developed in this paper
will employ an average consensus algorithm.

III. THREE-LEVEL CONTROLLER

A. Objectives

We allow every EV owner to set a target SOC
(SOCtarget) and a plug-off time. The objective is to charge
all EVs to their target SOC by the given plug-off time and
meantime to absorb wind power fluctuation using a variable
power charging approach. Only charging is permitted, i.e.,
at any time instant, the power allocated to each EV must be
non-negative and its corresponding charging current should
not exceed its rated value.

B. Approach

The controller developed in the paper consists of three
levels and they work in different time scales, as shown in
Fig. 2. The top-level controller provides a schedule every
T1 seconds. Its task is to determine an intermediate target
SOC for each EV in the next T1 period, based on the
available long-term forecast power and the (final) targets and
plug-off times for all the EVs. The middle-level controller
allocates the forecast power at each time instant to the EVs
in a distributed manner. This controller is updated every T2
seconds with T2 = T1/N for a relatively large integer N .
The bottom-level controller uses frequency deviation as a
feedback signal to correct the difference between the forecast
power and actual available power. This difference is assumed
to be relatively small. This controller runs in continuous time.
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𝑇𝐸𝑉𝑖
The time from the 𝑖-th EV starts charging 

to its plug-off time 

𝑇1
Top-level controller determines an intermediate 

target SOC for each EV in the next 𝑇1 period

𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 − 𝑡𝑖𝑚𝑒
Bottom-level controller runs in continuous-time 

𝑇2
Middle-level controller updated output 

every 𝑇2 seconds

Fig. 2. Time scales of the three-level controller

1) Top-Level Controller: The time period for this con-
troller is T1. For simplicity, we assume that every EV can
start charging only at the beginning of a time period. Denote
by TEVi

the required charging time for the i-th EV, i.e.,
TEVi

is the time difference between the plug-off time and
the starting time for charging. We also assume that TEVi =
MiT1 for some integer Mi. Suppose the charging starts at
kT1 for some k and initial SOC is SOCi(kT1). The goal of
the top-level controller is to determine the intermediate SOC
targets SOCi,target[(k + κ)T1] for κ = 1, 2, . . . ,Mi such
that SOCi,target[(k+Mi)T1] = SOCi,target. For notational
simplicity, the time period T1 will be suppressed whenever
possible. We will also assume that the closed circuit voltage
for each EV does not vary much during each T1 period
so that it can be assumed to be constant. This is a valid
assumption because the voltage does not vary much for the
SOC between 0.2 to 0.85.

The strategies for choosing the intermediate target SOCs
are not the scope of this paper. This is an optimisation
problem by itself. In general, we can choose according to
forecast power, remaining charge time and target SOCs. And
use the error between target SOCs of last batch and the
actual SOCs EVs reached after last batch as a feedback
signal to make the intermediate target SOCs more accurate.
Moreover, moving horizon is more suitable. If intermediate
target SOC is reached ahead of time, a new one can be
selected. Otherwise, intermediate target SOCs are only need
to updated every T1 seconds

The supply-demand relationship when charging EVs is
described with (5).

Pc + Pw = PEV (5)

where PEV is the power demand of all EVs, Pw is the
available wind power supply, which tends to be volatile,
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Fig. 3. A 24-h snapshot of the NREL eastern wind dataset, includes
Pw,forecast and Pw,actual

and Pc is the conventional (baseline) power supply which
is assumed to have low fluctuation. We can assume that Pc
is constant during each time period of T1. The Eastern Wind
Dataset, [18], from National Renewable Energy Laboratory
(NREL), as shown in Fig. 3, will be used in this paper.

The constraints for the top-level control are given by∫ (k+1)T1

kT1
Pw(t)dt+ Pc(k)T1 ≥ T1

∑n
i=1 Ii,min(k)Ui(k)∫ (k+1)T1

kT1
Pw(t)dt+ Pc(k)T1 < T1

∑n
i=1 Ii,ratedUi(k)

(6)
where n is the number of EVs that need charging from k
to k + 1, Pc(k) is the available conventional power supply
at time k, Ii,rated is the rated charging current of EVi, and
Ii,min(k) is the minimum charging power of EVi, given by

Ii,min(k) =
Ci[SOCi,target(k + 1)− SOCi(k)]

T1
(7)

2) Middle-Level Controller: Middle-level controller and
bottom-level controller are the main work in this paper,
shown in Fig. 4.

The middle-level controller is designed using an average-
consensus type of algorithm which involves iterative com-
putation and a communication network for each EV (node)
to transfer information with its neighbors. For this, it is
assumed that communication and computation are fast so that
a large number of iterations can be done within the given
time period T1, which is needed for average consensus to
converge. Accordingly, the time scale for this controller is
T2 = T1/M for a relatively large integer M . For notational
simplicity, we denote mT2 by m (m = 0, 1...M − 1). We
also assume that, for every EV, the charging current and
closed-circuit voltage remain constant from m to m+ 1.

After discretizing equation (2), we get, for the i-th EV,

SOCi(m+ 1) = SOCi(m) + Ii(m)T2

Ci

= SOCi(m) + Pi(m)T2

Ui(m)Ci

(8)

Weight is designed to allocate power.

Wi(m) =
CiUi(m)[SOCi,target − SOCi(m)]

Timei(m)
(9)

Timei(m) is the remaining charging time of EVi before
plug-off time. If EVi does not need charging, Ci is set to 0.
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But the charging post is still in the network and participates
in communication. Equation (9) means power is allocated
according to energy need and plug-off time of different EVs.

So the power allocated to EVi is

Pi(m) = PEV,forecast(m) · Wi(m)∑N

i=1
Wi(m)

=
1
N PEV,forecast(m)

1
N

∑N

i=1
Wi(m)

·Wi(m)
(10)

where N , the maximum number of EVs in the network, is
known to all EVs. PEV,forecast can be broadcast to every
EV and 1

N

∑N
i=1Wi(m) can be calculated using average

consensus. Thus, Pi(m) can be calculated in a distributed
way. SOCi(m), Timei(m) and Ui(m) are updated, which
forms a closed loop and makes the allocation more precise.

However, after the allocation, Pi(m) may exceed Pi,r. Pi,r
is the rated charging power of EVi, which is regarded as
a constant by the smart charger. Lithium-ion batteries had
better be charged at or below Pi,r for the sake of lifespan.
So, the weight may need some adjustment. Suppose Pp(m)
to Pq(m) surpass their rated power, weight adjustment can
be done in the following way. First, set EVp to EVq at their
rated power. After adjustment, equation (11) is established.

PEV,forecast(m)

[
∑N
i=1Wi(m)− α]

· [
q∑
i=p

Wi(m)− α] =

q∑
i=p

Pi,r (11)

α is the sum of weight decrease of EVp to EVq and it
can be calculated using average consensus too.

α =
PEV,actual(m)

∑q

i=p
Wi(m)

PEV,actual(m)−
∑q

i=p
Pi,r

−
∑N

i=1
Wi(m)

∑q

i=p
Pi,r

PEV,actual(m)−
∑q

i=p
Pi,r

(12)

To calculate
∑q
i=pWi(m) and

∑q
i=p Pi,r, just set the

corresponding value of EVs to 0, except for EVp to EVq .
Then average consensus can be used, so α can also be

calculated is a distributed way. Power allocated to EVp to
EVq has been set at its rated power and Pj(m) of other EVs
is calculated by

Pj(m) = PEV,forecast(m) · Wj(m)∑N

i=1
Wi(m)−α

j = 1, ...p− 1, q + 1...N
(13)

For j = 1, ...p − 1, q + 1...N , Pj(m) may exceed Pj,r
because the denominator decreases from

∑N
i=1Wi(m) to∑N

i=1Wi(m) − α. If this happens, set the allocated power
of these EVs at their rated power, along with EVp to EVq ,
do the weight adjustment again in equation (11). Keep doing
weight adjustment until every Pi(m) is less than or equal to
Pi,r.

3) Bottom-Level Controller: There will be inevitable im-
balance between the forecast power and the actual power and
also imbalance between allocated power and actually used
power. To address these supply and demand imbalances, we
use the frequency deviations as the feedback signal. Indeed,
the power imbalances can be observed from the frequency
deviation detected at each smart charger [19]. Based on this
idea, the frequency deviation, ∆f , works as an input signal
to a proportional-integral (PI) controller. The output signal,
γ, is subtracted from 1 and the result is used to multiply the
power allocated by the middle-level controller to reallocate
the power, which makes the sum of the power charged to
each EV much close to the actual available power PEV,actual.
The output of the this controller, Pi(m), is the power to be
charged to EVi at time m.

C. Algorithm

Based on the middle-level and bottom-level controllers
described above, the control algorithm is developed as Al-
gorithm 1.

IV. CASE STUDY

The simulation in this paper is based on Matlab/Simulink
and ADVISOR – the National Renewable Energy Labora-
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Algorithm 1 Distributed charging control
Input: PEV,forecast(m), N, Ui(m), Ci, SOCi(m),

SOCi,target, T imei(m), Pi,r, ∆f
Output: Pi

1: broadcast PEV,forecast(m) to all EVs
2: if EVi do not need to be charged then
3: Ci ⇐ 0
4: end if
5: use average consensus to compute 1

N

∑N
i=1Wi(m)

6: use (10) to compute Pi(m)
7: while for all i = 1...N , Pi(m) ≤ Pi,r is not true do
8: weight adjustment and compute Pi(m) according to

(12) and (13)
9: end while

10: ∆f ⇒ PI controller ⇒ γ
11: Pi ⇐ Pi(m)(1− γ)

 

 

 

 

 

1 ,7 

2 3 

5 6 4 

Fig. 5. Communication Network Topology of EVs

tory’s advanced vehicle simulator, [20]. ADVISOR is open-
source. The battery models in ADVISOR are more accurate
because the parameters, like Voc, R, use the data taken from
battery tests and they vary with SOC and temperature. In
this simulation, there are seven EVs, whose communication
network topology and parameters are shown in Fig. 5 and
Table I, respectively. The starting and exit times are also
shown. For example, EV7 starts charging after EV1 finishes.

We see the communication network form a connected
graph when all batteries participate in the charging process.
To ensure that the communication network is connected all
the time, the batteries not participating in the power dispatch
will be assigned with a zero charging capacity so that they
still seem to participate and maintain their communication
and thus maintain the connectivity for the whole network.

In the simulation, T1 = 900s, T2 = 10s and it lasts for
3600 seconds. In Fig. 6, PEV,actual is the power supply
from the grid, scheduled by the top-level controller with pen-
etration of wind power. The middle-level controller allocates
PEV,forecast to EVs. The difference between PEV,actual and
PEV,forecast causes frequency deviation, which is used as

TABLE I
PARAMETERS OF THE SEVEN EVS

NO. Initial
SOC

Target
SOC

Nominal
Voltage

(V )

Capacity
(AH)

Rated
Power
(KW )

Start
(s)

Leave
(s)

1 60% 70% 323 210 17 900 2700
2 60% 80% 305 175 13.5 0 3600
3 55% 85% 340 175 10.5 0 4500
4 70% 80% 323 245 20 900 3600
5 75% 85% 305 210 16 0 2700
6 60% 80% 340 210 18 0 4500
7 70% 85% 323 210 17 2700 5400

0 900 1800 2700 3600
3

4

5

6

7

8

9
x 10

4

Time(sec)

P
ow

er
(W

)

 

 
charge
actual
forecast

Fig. 6. Comparison of PEV,forecast, PEV,actual and PEV,charge

PEV,actual and PEV,forecast causes frequency deviation,
which is used as the input signal of the bottom-level
controller. The sum of the power allocated to EVs (see Fig.
7) is represented by the curve charge and it almost overlaps
with the curve actual, which means the fluctuation of
PEV,actual is well absorbed by the EVs. (In the Table,
change the rated power to rated current)
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Fig. 7. Power allocated to each EV

It can be seen from Fig. 7 that every EV is constrained
to its rated current. There is some excess caused by the
reallocation of the bottom-level controller, but the amount
is small and acceptable. The charging power of EV3 almost
remains the rated power during the whole simulation
process because the allowed charging time is short. Fig. 7
also shows when SOCi reaches its target SOC (see Fig.
8), the charging power decreases to 0.

Fig. 8 shows the SOC evolution of each EV. We see that
every EV is charged to its target SOC before the plug-
off time. Fig. 9 describes the frequency deviation, which
is caused by the difference between the actual available
power and the allocated charging power by the middle-
level controller, although the two almost overlap. When
the conventional power supply is changed at 900s, 1800s
and 2700s, large frequency deviations occur.

5. CONCLUSION

Will rewrite this later This paper presents a three-
level controller for smart charging of electric vehicles. The
top-level controller schedules conventional power plant
to provide decent power to EVs when wind power also
penetrates. Based on average consensus, the middle-level
controller allocates power according to the energy need
and plug-off time of different EVs in a distributed way.
It also guarantees that no EV exceeds its rated power.
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Fig. 8. SOC evolution of each EV
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Fig. 9. Frequency deviation

Frequency deviation is used as an input signal of the
bottom-level controller to make sure the sum of power
charged to every EV is as close to the power supply of the
grid as possible. Simulation results show the effectiveness
of our algorithm.
However, every EV may leave before its plug-off time if
it has been charged to its target SOC. This can be a big
problem for the top-level controller and we do not give an
effective method to solve it. And if too many EVs leave,
power allocated to others may exceed its rated power.
So, a possible extension to our work would be to design
an effective top-level controller. In addition, we can not
decide when the algorithm of the middle-level controller
converges. Future work may solve these problems.
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the input signal of the bottom-level controller. The sum of
the power allocated to EVs (see Fig. 7) is represented by the
curve charge and it almost overlaps with the curve actual,
which means the fluctuation of PEV,actual is well absorbed
by the EVs.

It can be seen from Fig. 7 that every EV is constrained
to its rated current. There is some excess caused by the
reallocation of the bottom-level controller, but the amount
is small and acceptable. The charging power of EV3 almost
remains the rated power during the whole simulation process
because the allowed charging time is short. Fig. 7 also shows
when SOCi reaches its target SOC (see Fig. 8), the charging
power decreases to 0.

Fig. 8 shows the SOC evolution of each EV. We see that
every EV is charged to its target SOC before the plug-
off time. Fig. 9 describes the frequency deviation, which
is caused by the difference between the actual available
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PEV,actual and PEV,forecast causes frequency deviation,
which is used as the input signal of the bottom-level
controller. The sum of the power allocated to EVs (see Fig.
7) is represented by the curve charge and it almost overlaps
with the curve actual, which means the fluctuation of
PEV,actual is well absorbed by the EVs. (In the Table,
change the rated power to rated current)

0 900 1800 2700 3600
3

4

5

6

7

8

9
x 10

4

Time(sec)

P
ow

er
(W

)

 

 
charge
actual
forecast

Fig. 6. Comparison of PEV,forecast, PEV,actual and
PEV,charge

0 900 1800 2700 3600
0

0.5

1

1.5

2
x 10

4

Time(sec)

P
ow

er
(W

)

 

 

1
2
3
4
5
6
7

Fig. 7. Power allocated to each EV

It can be seen from Fig. 7 that every EV is constrained
to its rated current. There is some excess caused by the
reallocation of the bottom-level controller, but the amount
is small and acceptable. The charging power of EV3 almost
remains the rated power during the whole simulation
process because the allowed charging time is short. Fig. 7
also shows when SOCi reaches its target SOC (see Fig.
8), the charging power decreases to 0.

Fig. 8 shows the SOC evolution of each EV. We see that
every EV is charged to its target SOC before the plug-
off time. Fig. 9 describes the frequency deviation, which
is caused by the difference between the actual available
power and the allocated charging power by the middle-
level controller, although the two almost overlap. When
the conventional power supply is changed at 900s, 1800s
and 2700s, large frequency deviations occur.

5. CONCLUSION

Will rewrite this later This paper presents a three-
level controller for smart charging of electric vehicles. The
top-level controller schedules conventional power plant
to provide decent power to EVs when wind power also
penetrates. Based on average consensus, the middle-level
controller allocates power according to the energy need
and plug-off time of different EVs in a distributed way.
It also guarantees that no EV exceeds its rated power.
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Frequency deviation is used as an input signal of the
bottom-level controller to make sure the sum of power
charged to every EV is as close to the power supply of the
grid as possible. Simulation results show the effectiveness
of our algorithm.
However, every EV may leave before its plug-off time if
it has been charged to its target SOC. This can be a big
problem for the top-level controller and we do not give an
effective method to solve it. And if too many EVs leave,
power allocated to others may exceed its rated power.
So, a possible extension to our work would be to design
an effective top-level controller. In addition, we can not
decide when the algorithm of the middle-level controller
converges. Future work may solve these problems.
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power and the allocated charging power by the middle-
level controller, although the two almost overlap. When the
conventional power supply is changed at 900s, 1800s and
2700s, large frequency deviations occur.

V. CONCLUSION

This paper presents a three-level controller for smart
charging of electric vehicles. The top-level controller sched-
ules conventional power plant to provide decent power to
EVs when wind power also penetrates. Based on average
consensus, the middle-level controller allocates power ac-
cording to the energy need and plug-off time of different EVs
in a distributed way. It also guarantees that no EV exceeds its
rated power. Frequency deviation is used as an input signal
of the bottom-level controller to make sure the sum of power
charged to every EV is as close to the power supply of the
grid as possible. Simulation results show the effectiveness of
our algorithm.

However, every EV may leave before its plug-off time if
it has been charged to its target SOC. This can be a big
problem for the top-level controller and we do not give an
effective method to solve it. And if too many EVs leave,
power allocated to others may exceed its rated power. So,
a possible extension to our work would be to design an
effective top-level controller. In addition, we can not decide
when the algorithm of the middle-level controller converges.
Future work may solve these problems.
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