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Abstract— This paper presents the convergence analysis of a
new distributed algorithm, which is inspired by the celebrated
BP (Belief Propagation) algorithm, for networked estimation
in large-scale sparse systems. The proposed algorithm owns
fast convergence rate and other advanced properties of the
BP algorithm. We reveal that the distributed algorithm is
guaranteed to converge correctly under the assumption that
the system is generalized diagonally dominant. The convergence
analysis for both acyclic graphs and loopy graphs have been
studied. Specifically, the distributed algorithm will converge
after finite number of iterations, which is equal to the diameter
of the network graph, if the graph is acyclic. For a loopy
network, the distributed algorithm is guaranteed to converge
to the optimal estimates asymptotically. It can be shown from
simulation results that the proposed distributed algorithm
outperforms some existing distributed estimation algorithms.

I. INTRODUCTION

Distributed algorithms, which play an increasingly sig-
nificant role in modern industrial systems and advanced
technologies, have been studied extensively by researchers.
It is undeniable that distributed estimation algorithms are
robust to communication failures and with low computational
complexity. More importantly, these algorithms are scalable
to large networked systems. In the early years, centralized
estimation, which requires a central controller to collect the
measurements from all the nodes in the network in order to
carry out estimate, was widely used. Distributed estimation
algorithms are preferred nowadays in dealing with large-scale
systems. The most critical feature of distributed estimation
algorithm is that every node acts as a local estimator and only
cooperates with its neighboring nodes. Distributed algorithms
convert estimates in each node associated to the system
using the combination of local measurement and messages
received from neighbors. Hence, the communication burden
will be dramatically reduced since each local estimator only
needs to compute simple low-dimensional additions and
multiplications.

Generally, weighted least squares estimation, weighted
average and a series of static estimation problems can be
converted into the problem of solving a system of linear
equations, which is regarded as a very fundamental problem
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in numerical computation. In other words, the development
in solving linear systems also makes important contributions
to the field of state estimation. With this motivation, a
distributed algorithm for solving linear systems, which is
inspired by the celebrated Belief Propagation algorithm, will
be introduced in this paper, and the main properties and
convergence analysis of the algorithm will be presented as
well. The well-known Belief Propagation algorithm, also
called as Pearl’s BP [1], was intended to calculate marginal
probabilities in a fully distributed way. Gaussian Belief
Propagation algorithm [2], which is applied to Gaussian
graphical models, is a special case of the BP algorithm. A
number of comprehensive studies have been done on the
Gaussian BP algorithm. For instance, it has been shown
in [2] that Gaussian BP generates correct marginal means
asymptotically provided that the associated information ma-
trix is diagonally dominant. After that, [3] has relaxed the
convergence condition to generalized diagonally dominance.
Recently, necessary and sufficient conditions for convergence
of Gaussian BP has been put forward by [4]. In the proposed
algorithm, each node repeatedly calculates the estimate of
an associated element of the solution to the linear system
at every iteration until the correct solution is acquired. To
be specific, the proposed algorithm will converge to the
correct solution of the linear system in acyclic graphs after
d iterations, where d is the diameter of acyclic graph.

The linear systems we focus on here is the so-called
generalized diagonally dominant systems. It has been proved
that generalized diagonally dominance is equivalent to walk-
summability [3]. With the assumption of generalized di-
agonally dominance, the proposed algorithm is guaranteed
to converge asymptotically in loopy networks. Overall, the
convergence rate is dramatically faster than other laplacian
matrix based methods that is supported by simulation re-
sults by comparisons. This is due to the low complexity
of proposed algorithm in information exchange between
neighboring nodes, local computation and local storage. In
order to have a more intuitive understanding of the exact
convergence rate , we have put forward a relaxed exponential
convergence rate of proposed algorithm.

II. PROBLEM FORMULATION AND PRELIMINARIES

Consider an undirected Gaussian graphical model G =
V, &), where V = {1,---,n} is the node set and & =
{(#,7)} denotes the edge set. With the graph G, there
is an associated linear system Ax = b where A =
col{a¥ a¥ -  a,,.} and b = col{by,ba, - ,by}. A =
{ai;} is a sparse information matrix with a;; # 0 if and



only if (4,5) € £. We assume that matrix A always satisfies
(1) A is invertible and (2) the diagonal part of A is an n-
dimensional unit matrix. Hence the unique solution to the
linear system is

= A" (D

where z* = col{x7,---,2%}. Each node ¢ € V only
acquaints with the information of aiT and b; where a;;, b;
are related to node ¢ and the nonzero a;; is related to the
edge (i,7). An estimate of z which is denoted as z;(k)
is carried out at each node 7 € V in the k-th iteration.
The distributed algorithm we intend to design is to obtain
at each node 7 the solution z; by usingh the local infor-
mation and shared information from its neighboring nodes
iteratively. The distributed algorithm is inspired by Gaussian
BP algorithm [2], which is an elegant distributed algorithm
for computing the marginal probability density functions in
the Gaussian graphical model p(z) = exp{—3z” Az +b"z}
where the information matrix A is symmetric and positive
definite. Each node 7 calculates the marginal probabilities
associated with unknown variable z; with local measurement
and potential function of pairwise neighbors. It can be easily
inferred that the Gaussian means of this model is the solution
to a symmetric linear system. For the seek of a wider range
of applications, we have proposed the distributed algorithm
to adapt to linear systems with non-symmetric matrix A and
still converge to the correct solution.

For clarity, some notations and definitions will be given
in this paragraph. A graph is undirected when (¢, j) € & if
and only if (j,7) € £. An acyclic graph contains no loops. A
loopy graph contains at least one loop. Note that a loop is a
path which starts and ends at the same node % but also passes
through at least a node j # i. The neighbors or neighboring
nodes of node 7 is the node set N; = {j|(i,j) € £} that
denotes all of the nodes j connected to node ¢ by some edge
(i, 7). The cardinality of node i is written as |\;|. The graphs
we discuss here are all connected which means there exists a
path (i, k1), (k1,k2),- -+, (kn, ) that starts from a node 7 to
another arbitrary node j. The distance between an arbitrary
pair of nodes (7,j) is the minimum number of nodes that
a path from node i to j passes through. The diameter of a
graph is the maximum distance between two nodes.

Definition 1. A matrix A = {a;;} € R"™" is said
to be strictly diagonally dominant (or simply, diagonally
dominant) if for each row i, a; > 0 and a;; > Zj# lai;.
The matrix A is said to be generalized diagonally dominant
if there exists a diagonal matrix D = diag{d;} with all
d; > 0 such that D~YAD is diagonally dominant.

For a diagonally dominant matrix A, we associate the
parameter
pi=a;" Y lag| <1 (2)
J#i
with each node ¢ € V. It has been proved in [3] that

generalized diagonal dominance is equivalent to the notion
of walk summability.

A brief introduction of walk-summable models will be
given in this part. First of all, the diagonal elements A;;,7 €
V of information matrix A is scaled to be 1 after matrix
nomalization. It is directed to write A as A = I — R where
R;; # 0, (Z,j) € & and R; = 0,7 € V. A walk of length [
in the Gaussian model is a sequence w = (wg, w1, -+ ,w;)
where (w;—1,w;) € £,i <1 is the walk’s single step which
corresponds to the weight R,,, ,.,. The so-called weight of
a walk, denoted as ¢(w), is the product of the weights related
with every single step, which can be expressed as:

I(w)
¢(w) = H ka—lwk7 3)
k=1

where [(w) is the length of the walk w. The definition of
walk-summability is given as followed.

Definition 2. A system is said to be walk-summable (or
generalized diagonally dominant) if for all of the i,j € V),

> dw), e

wii—j

which is the sum of all of the possible walks from node i to
7, is well-defined.

Here, well-definedness indicates that the sum converges to
the same value regardless of the order of summation. It is
well known that this is equivalent to the absolute convergence
condition, i.e., the sum >, .. |$(w)| converges; see [3] for
more details.

Besides, several equivalent
summability are given as followed:

conditions for walk-

o D i |#(w)| converges for all 4, j € V;
« 3, R converges;

« I —-R>0,
where R = {|r;;|}.

Some brief notations of walk-sums are necessary for the
rest of of the paper. A walk from node 7 to j is denoted
as w : ¢ — j and denoted as w : ¢ LN j with the length
of [. Especially, a single node ¢ is treated as a zero-length
walk. We write the set of walks from i to j as {¢ — j} and
{i 4 j} with the length of [. The walk-sum interpretation
of Gaussian means p and variances P in Gaussian graphical
models are expressed as:

P=A"=(I-R"'=> R (5)
=0

p=A"b=> R (6)
=0

where ;1 = z* which is the solution to linear system.



Denoting P = {p;;} and z* = {z}}, it follows that

pii=> (R = > ¢w) =e(i—j5) (D
=0 w:ii—]

2f = Pubs=> ¢(s > ibs.  (8)

III. MAIN RESULT

In this section, we give a distributed algorithm for solving
the linear system (1). This will be followed by analysis
results, studying the convergence properties of the algorithm.
The detailed proofs are omitted for this conference version.

A. Distributed Algorithm

The distributed algorithm runs on each node i € V,
using its local information and information received from its
neighboring set ;. The algorithm is given in Algorithm 1.

Algorithm 1 (Distributed Algorithm for Average Consensus)
Initialization: For each node 4, do: For each j € N, set
ai—;(0) = a;i, bi—;(0) = b;, and transmit them to node
j.

Main loop: At iteration £k = 1,2,---, f or each node 1,
compute
Qs s
a; (k) = az; — I L 9
ai(k) =a UGZN.GU—H'(I“*U €)
7 aivbv—n'(k - 1)
b;(k) = b; — _ 7 10
(k) ; b ) (10)
R bi(k
&i(k) = ;Ek)y (11)
then for each j € N, compute
Qi Qs
i—i(k) = a;(k vy 12
. aijbji(k —1)
_ — b g Zy e\ ) 1
bini(h) = bilk) + = ) 1)

and transmit them to node j.

B. Convergence Analysis for Acyclic Graphs

For an acyclic graph G, Algorithm 1 has the following
excellent finite-time convergence property. In the following,
the sub-graph G;(k) of G, for k > 0, is formed from G by
removing all the nodes and edges beyond k& hops away from
node i, and G; ;(k) is formed by further removing all the
paths going through node j.

Theorem 1. For any node i € V, j € N; and k > 0, running
Algorithm 1 will yield

1
ai—j(k) = pTEE z}\gz\J(k)) > 0, (14)
bisi(k) = ¢({s = i}|Gi; (k))bs, (15)

where s ranges over all nodes in Gy (k). In addition,
alﬁj(k) = alﬁj(d — 1), bzg)](k) = bi*)j fO}’ all k Z d,
where d is the diameter of graph G.

C. Convergence Analysis for Loopy Graphs

For a general cyclic (loopy) graph, the unwrapped tree is
an effective tool to analyze the convergence properties of
Algorithm 1. This is constructed as follows.

Fig. 1. Left: A loopy graph. Right: The unwrapped tree around node 1
with 4 layers (t = 4)

o Find all leaves of the tree (start with the root);

o For each leaf, find all the nodes in the loopy graph that
neighbor this leaf node, except its parent node in the
tree, and add all these node as the children to this leaf
node.

The variables and weights for each node in the unwrapped
tree are copied from the corresponding nodes in the loopy
graph. It is clear that taking each node as root node will gen-
erate a different unwrapped tree. Fig. 1 shows the unwrapped
tree around node 1 for the loopy graph. Note, for example,
that nodes 1/,1”,1”,1¢,1%,1* all carry the same values y;
and A;1. Based on the result of convergence analysis, we
have given a further and deeper insight into the analysis of
the convergence rate of proposed algorithm.

The unwrapped tree is expanded in breadth first order
which starts from the root node followed by the first layer,
then the second layer and so on until to the ¢-th layer.
Denote the unwrapped tree with ¢ layers as G;. When the
t increases to be large enough, there must be a one-to-one
correspondence between finite-length walks in G and finite-
length walks in G; for any 7 € V and k£ > 0.

Lemma 1. With the assumption of generalized diagonal
dominance, we have

)=, D, éwh,

=1 w:j—1i|G,

(16)

where i €V and w : j — i|G; denotes a walk in unwrapped
tree Gy from node i to j.

Using the unwrapped tree model, we can obtain the
following asymptotic convergence property.

Theorem 2. Suppose the linear system 1 is generalized
diagonally dominant. Then, running Algorithm 1 yields
ai—;(k) > 0 foralli €V, j € N;and k = 0,1, ,
and that

lim #;(k) =«},Vi e V.

k—o0

a7



Fig. 2. A 9-node Acyclic Graph

D. Convergence Rate Analysis

The definition of simple cycle is critical to the derivation of
convergence rate of the proposed algorithm. A simple cycle
is a cycle or loop with a sequence of unique nodes, other than
the the starting and ending node are the same. The geometric-
mean node gain of a simple cycle p = (ig,i1,- - ,40) is
define to be

1
p(P) = (Pio: Pins s Pir 1) (18)
where p;_,m < k has been defined in section 2.

Theorem 3. Give a matrix A € R™ "™ with positive diago-
nals and associated graph G(V, ), suppose 0 < p; < 1 for
all v =1,2,--- ,n. Then, it holds for algorithm 1 that

|2(k) — 2| < max p(p)*C (19)
peC

where C is the set of all of the simple cycles in a graph and
C is a constant.

IV. SIMULATION

We have illustrated the convergence performance of Algo-
rithm 1 in both acyclic and loopy graphs. Among the loopy
graphs, we compare the convergence rate of the proposed al-
gorithm in graphs with different graph degrees. The systems
are all generalized diagonally dominant and each element in
the information matrix is selected to be random. In Fig. 2,
the acyclic graph has the longest path with length of 5 which
leads to d = 5. In Fig. 3, the error of Algorithm 1 converges
to around 1073Y and remains stable after 5 iterations which
verifies our conclusion. Consequently, we add several edges
to Fig. 2 to form a loopy graph in Fig. 4. It turns out that it
takes Algorithm 1 more iterations to converge to the same
error precision as in the acyclic graph. In this case, despite
the number of nodes are the same, the loops can make a big
difference in the convergence performance.

Consequently, we have done more simulations in a series
of loopy graphs with different degrees. Suppose there are 50
random nodes and connect to a fixed number of neighboring
nodes that are selected arbitrarily. As shown in Fig. 6, Fig. 7
and Fig. 8, the degrees of the 50-node graphs, which have the
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Fig. 7. A 50-node Graph with Degree of 8

same node number and positions, are 3, 8 and 15 respectively.
It can be observed that the convergence rate of proposed
algorithm is decreasing as the graph degree increases. Since
the the number of loops in a graph increases the burden
and complexity of information exchange and computation
between neighbors which will induce the proposed algorithm
to converge after more iterations. Although the connectivity
and information fusion performance of graphs with higher
degree is enhanced, the number of loops in a graph has a
more serious impact on the convergence rate of proposed
algorithm. Thus, we can see from Fig. 9 that the convergence
rate of proposed algorithm is the fastest with the minimum
graph degree among the three examples.

V. CONCLUSION

In this paper, we have studied a novel distributed algo-
rithm, which is generalized from the Gaussian BP algorithm,
to solve the linear matrix equations that is also the essence of
solving distributed estimation problems. In a system with an
associated acyclic graph, the distributed algorithm converges
in a finite number of iterations which is equal to the diameter
of the graph. For a loopy graph, the algorithm will converge
asymptotically under the assumption of generalized diago-
nal dominance. We also give a bound on the exponential
convergence rate of the distributed algorithm.
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Fig. 8. A 50-node Graph with Degree of 15
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Fig. 9. A 50-node Graph with Degree of 15
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