
  

  

Abstract—The various trade-offs in CPM system design are 
discussed in the context of a realistic system specification. It is 
shown that power spectra can be adjusted to advantage and that 
multi-h systems are not always beneficial. Accurate system 
modeling and simulation is vital to design and this is discussed 
with respect to power spectra, soft decoding, and bit error rate 
(BER) computation. Straightforward methods for conditional 
probability determination in soft decoding of CPM, and for 
noise modeling in BER computation are proposed. Some 
advanced options for coded CPM are discussed.  
 

Index Terms—decoding, phase modulation, simulation, system 
modeling. 

I.    INTRODUCTION 

HE technology of terrestrial and satellite radio systems is 
constantly being improved in terms of power and 

bandwidth efficiency, and a good solution is to employ 
continuous phase modulation (CPM). Its constant envelope 
property enables it to be used with non-linear power amplifiers 
without power back-off, whilst signal bandwidth can be 
controlled without compromising the constant envelope. 
Increased power efficiency can be obtained by adding forward 
error correction (FEC), and this could be combined with the 
inherent code trellis of CPM to form a turbo-coded system.  

CPM system design is a compromise between three factors; 
power and bandwidth efficiency (reflecting Shannon’s 
capacity formulation), and system complexity. The paper 
illustrates this using a design example. It also discusses some 
important aspects of system simulation, such as noise 
modeling, and the problem of determining probability estimates 
in soft-decision decoding of CPM. 

The essential properties of an MCPM signal are expressed in 
its complex envelope (baseband) form 
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Here, { })1(,,5,3,1 −±±±±∈ Mi Kα is a data symbol, sT  is 
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the symbol period, sE  is the symbol energy, and )(tq is the 

phase response, which is the integral of a frequency pulse 
)(tg  of duration L symbols. Term nα denotes nα and all 

previous symbols. Modulation index h is can be defined as 
pkh /2= , where k and p are relative prime for a finite number 

of states. The last term in (2) is the phase state, nθ , of the 

CPM trellis, where { }ppppn /2)1(,,/4,/2,0 πππθ −∈ K  i.e. 

there are p phase states. For 2≥L  the CPM encoder is a finite 
state machine with state 
                    ),,,,( 121 +−−−= Lnnnnn αααθ KS                   (3) 

and so the maximum possible number of states in uncoded 

CPM is 1−= LpMS (only 2/S states being present in any one 

symbol period). The number of states, and therefore system 
complexity, can rapidly become large, and this has led to the 
development of state-reduction techniques [1][2].  

II.    CPM SYSTEM DESIGN 

Selection of )(  and ,,, tqhLM is generally a compromise 

between bandwidth and power efficiency. For example, 
decreasing h tends to reduce signal bandwidth, but this also 

decreases the minimum squared Euclidean distance, 2
mind , of 

the signal, and hence increases the bit error rate (BER) for a 
specified 0/ NEb . Generally speaking, large L and M tend to 

give more power and bandwidth efficient systems, but at the 
expense of increased complexity. Also, sometimes a useful 

increase in 2
mind  can be achieved by using different values of 

h for adjacent symbols (multi-h). Parameter selection is further 
complicated by the trade-off between CPM system complexity 
and the complexity of any additional FEC. In this case it is 
necessary to obtain a soft input to the FEC decoder via a 
posteriori probability (APP) decoding of the CPM signal. 

A. Power Spectrum 
A typical specification for a 64 kbps CPM system requires 

the power spectral density (PSD) to be –30 dB at 25 kHz from 

the carrier, with a BER of 610−  at 12/ 0 =NEb dB. The critical 

normalized frequency is therefore 4.0≈bTf , where bT  is the 

bit period. Increasing L and the smoothness of )(tq generally 

improves the spectral response, and here we select )(tg  to be 

the raised-cosine (RC) function. For fixed h, the theoretical PSD 
can be obtained in closed form [3], but a general PSD 
simulation was also written (in C) in order to handle the multi-h 
case. The simulation uses overlapped Hamming-windowed 
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data and the usual periodogram averaging. A comparison with 
theory (Fig.1) shows that simulation is accurate down to at 
least –50 dB, beyond which simulation deviates from theory 
due to the Hamming window. Simulation is accurate beyond -
70 dB for a Blackman window. Fig. 1 shows that for 

25.0),3(RC3,4 === hLM , the PSD is approximately -32 dB 

at 4.0=bTf (a Gaussian function rather than raised cosine 

gives a virtually identical spectrum). This satisfies the PSD 
specification. The corresponding number of states is 128, 
although only 64 are present in any one symbol period due to 
the time-varying trellis associated with (1) and (2). 

The power spectrum can be improved at the specified 
frequency (25 kHz) by modifying the raised-cosine function. 
The phase response is defined as  

                                ∫=
t

dgtq
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where )(τg is the RC function. From (2), the instantaneous 

frequency is  

               )(),(
2
1

)( s
i

in iTtght
dt
d

tf −∑=⋅=∆ ααϕ
π

          (5) 

Since )(tf∆ depends upon the amplitude of )(tg , we could  

redefine the raised-cosine function as  
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where a factor 1≤µ  has been introduced into the usual 

function in order to reduce pulse amplitude. This tends to 
affect the main spectral lobe, as shown in Fig. 1, and an 
improvement of about 6 dB at 4.0=bTf is achieved for 

65.0=µ . 

 
Fig. 1  Theoretical and simulated PSD for 4=M , 3RC, 4/1=h , and 
the theoretical PSD for a modified 3RC function 

B. Multi-h 
The gain relative to MSK can be expressed as 

                       )2/(log10 2
mindGMSK =  dB                     (7) 

and for a BER of 610 − , MSK requires 5.10/ 0 ≈NEb dB.  For 

25.0RC,3,4 == hM , a tight upper bound is 97.02 =Bd , 

giving 2.3−=MSKG dB i.e. 8.13/ 0 ≈NEb dB. This is shown 

as case A in Table 1, and falls outside the 12 dB specification. 
Rows B to J in the table show gains for some multi-h cases. 
Clearly, in order to obtain 25.0≈h , and so maintain an 
acceptable PSD, there should be at least 32 phase states (this 
is also the number of states used in [4]). Comparing 32=p  

schemes, case H appears to have a power advantage of nearly 
1.8 dB. However, it is shown in [5] that, for the same bandwidth 
efficiency and most practical h values, 8=M systems have 
inferior power gain when compared to the 4=M  systems. 
Case G offers about 2.8 dB advantage over case E, and 2.1 dB 
over case A, but at greatly increased complexity. The use of 

32=p  and 3-cycle multi-h (3 h values) at best matched case F, 

i.e. a 4-fold increase in states gives just 1.2 dB gain over case 
A. Clearly, on this analysis, multi-h appears to offer little 
advantage over fixed h, and FEC is required in order to meet 
the 12 dB specification. 

 
Table 1.  Gain relative to MSK for multi-h 3RC schemes 

III.    NOISE MODELING 

For simulation it is necessary to determine the rms noise 

nσ corresponding to a specified 0/ NEb , and several methods 

are suggested in [6]. Here we adopt a relatively simple 
approach with the help of Fig. 2. Additive white noise is added 
to the CPM signal  
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and is passed through an ideal bandpass filter of bandwidth B. 
The filter is assumed to have negligible effect upon the CPM 
spectrum, whilst permitting bandpass white noise of variance 



  

BNn 0
2 =σ  to be modeled as 

               ttyttxtn cncn ωω sin)(cos)()( −=                    (9) 

Here )(txn  and )(tyn are statistically independent (and 

therefore uncorrelated) and each is drawn from a Gaussian 

process of variance 2
nσ .  Similarly, if the ideal lowpass filters  

of bandwidth F do not significantly affect the signal, the 
complex envelope components over symbol period 

TntnT )1( +<≤ are 

             )()()(ˆ;)()()(ˆ tytQtQtxtItI nn +=+=          (10) 

where, for example, ),(cos/2)( nss tTEtI αφ⋅= .  

 

 
 
                  Fig. 2  Assumed noise model for  MCPM 

Signals )(ˆ tI and )(ˆ tQ are now over-sampled in order to 

perform a discrete approximation to matched filtering. The 
matched filters (not shown) generate the branch metric for 
Viterbi decoding. For example, assuming m samples/symbol, 
the matched filter output for the I component is  
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k
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where ( )nii kAkI αφ ,cos)( =  is a possible transmitted signal, 

and )()()(ˆ kxkIkI n+= . The significant point is that )(kxn  is 

an independent Gaussian noise sample of variance 2
nσ . 

Independent noise samples are valid provided the filter output 
is sampled at the Nyquist rate, i.e. the filter bandwidth is 
assumed to be 
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If the model samples I and Q components of amplitude 

ss TEA /2= , the signal to noise ratio is  
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Letting 1=A  and MEE bs 2log= ,  
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The model assumes that the normalized lowpass filter 
bandwidth, bTF , is high enough to avoid significant 

attenuation of the wideband CPM signal. For most cases of 
interest this is not a significant problem. As an example, for 

LRC schemes ( 1>L ) the PSD is typically -80 dB at 2=bTf , 

and so 8≥m  should more than suffice. Simpler CPM schemes 
have a broader main lobe e.g. the 8CPFSK 4/1=h  scheme 
described below is only 34 dB down at 1=bTf , although this 

appears to be adequate.  A loose upper bound on m is defined 
by the dimensionality theorem (section IV). Assuming the 
CPM signal is received according to the model in Fig. 2 i.e. it is 
a wideband signal, it is therefore valid to simulate it according 
to (14) using independent Gaussian noise samples. The 
wideband simulation can be directly compared to the standard 
matched filter bit error rate (BER) curve for MSK/QPSK. 

A.   8CPFSK Simulation 

The noise model in (14) has been verified by BER simulation 
of Viterbi (i.e. matched filter) decoded 8CPFSK ( 8=M ) 

4/1=h , Fig.3. Simulation is in very close agreement with an 
independent Viterbi decoder simulation of the same system [6], 
and with theoretical BER computation. For high 0/ NEb , the 

BER is approximated by 

                 18.2;/ 2
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2 =
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According to (7) the asymptotic gain relative to MSK should 
be about 0.4 dB.  Simulation appears to be marginally more 
accurate for 4>m , and the larger values of m are expected to 
be needed for smoother phase responses. Note that there is 

redundancy in the maximum possible set of LpM complex 

signals defined in (11), and only LM complex matched filters 
are actually required [6]. 

 
Fig. 3  BER simulation for 8CPFSK, 4/1=h  (APP decoding, Viterbi 
decoding, and theory) 

IV.    APP DECODING OF CPM 

APP decoding of CPM is needed to provide the soft output 
to an FEC decoder in coded CPM systems. The APP algorithm 
is well known [7] and here we simply highlight an 
implementation problem in the context of CPM. 



  

Consider the decoding of data symbol α  over symbol period 

TntnT )1( +<≤ given a received block of N symbols N
1r . For 

this symbol period let the received baseband signal be r. The 
APP decoder will decode α  as  
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Here, summation is over all possible signals is and states 

1, +nn SS corresponding to data k=α , and the last two 

probabilities are obtained from forward and backward 
recursions respectively.  In [8], )|( iP sr  is computed on a 

vector r corres ponding to the outputs of a reduced set of 
LMK < complex matched filters.  

   An approximation to matched filtering is obtained by 
adopting an orthonormal expansion of the received baseband 
signal, )(tr . The general objective is to utilize a reduced signal 

space and so simplify the receiver. Using an orthogonal basis 
{ })(tjψ  defined over a specific time interval, a scalar signal 

)(tr can be approximated over the same interval by 

                                  ∑≈
−

=

1

0
)()(

K

j
jj trtr ψ                             (17) 

where jr are coefficients of the expansion and K is the signal 

space dimension. If )()()( tntstr i += , where )(tsi is a 

possible transmitted signal and )(tn is a noise component, it 

follows that jjij nsr += , , where )(tsi and )(tn  have been 

expanded as in (17). If )(tn  is Gaussian, it also follows from 

linearity that coefficients jr  are Gaussian. Letting 

),,,( 110 −= Krrr Kr , ),,,( 1,1,0, −= Kiiii sss Ks , the Maximum 

Likelihood (ML) receiver will then select )(tsi (a long 

sequence of symbols) to maximize  
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where 2
nσ  is the variance of jr . Now assume that )(tr is the 

output from an ideal lowpass filter. If this is over-sampled at 
rate sTm / to give vector ),...,,( 110 −= mrrrr , then )(tr can be 

expanded as in (17) over ss TntnT )1( +<≤ with basis set  
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This would tend to a complete set as m becomes large. Given a 
set of quantized samples, (18) can be expressed over one 
symbol as  
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Extension of (20) to the sampled complex baseband signal in 
Fig.2 is then straightforward. Let 

                )ˆ,ˆ( QIr =  ; )]1(ˆ,),1(ˆ),0(ˆ[ˆ −= mIII KI                    (21) 

The required probability conditioned on signal ),( iii QIs =  is 

the joint probability 
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If  Î  and Q̂  are independent,  

)|ˆ()|ˆ()|( iii PPP QQIIsr ⋅=                                             (23) 
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    The squared Euclidean dis tances in (25) could be used as 
branch metrics in a Viterbi decoder. Alternatively, (25) can be 
used as the symbol transition probability in an APP decoder. 
Both systems approximate to ML decoding as m increases. Put 
another way, over-sampling the lowpass filter outputs and 
APP decoding approximates to optimal decoding and no 
matched filtering is required.  

 
                    Fig. 4  BER simulation for quaternary 3RC 4/1=h  
   Some justification for writing (22) as (23) can be obtained 
from statistical tests, such as a hypothesis test in the form of a 

Likelihood Ratio based on the noisy Î and Q̂ signals. This test 
showed that for additive white Gaussian noise (AWGN) of 

standard deviation nσ , Î and Q̂ can be regarded as being 



  

substantially independent when 4,1 =≥ mnσ  and 

8,5.1 =≥ mnσ . It turns out that, for the values of 

nσ computed in section III, this is quite a reasonable 

assumption, especially at the lower values of 0/ NEb . 

A.   Walsh Signal Space 
   The over-sampled lowpass filter model in Fig.2 is convenient 
for simulation, but in practice it requires linear phase filters to 
avoid phase distortion of the CPM signal. This can be avoided 
by using Walsh [10] rather than sinc functions in (17). For 
example, using 4=K dimensional Walsh space, 
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Coefficients 210 ,, rrr  are then easily computed from the four 
integrals in (21). The linear phase filters in Fig.2 are now 
replaced by simple integrators whose outputs are over-
sampled by a factor K. For simulation purposes we assume 

)(tr  is over-sampled at rate sTm / , giving samples kr  with 

noise variance 2
nσ , as in (14). For sufficiently large m, 

coefficient jr can then be estimated as 
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where kjw ,  is a sample of the jth Walsh function. Assuming 

quantized coefficients, the corresponding conditional 
probability for APP decoding is  
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                    Fig. 5  BER simulation for quaternary 3RC 2/1=h  

B.   Simulation 
   Fig. 3 shows simulation of APP-decoded 8CPFSK based 
upon (14) and (25). There is very close agreement with the two 
matched filter (Viterbi) simulations (as expected) and with 
theory. Fig. 4 compares a Viterbi simulation with simulated APP 
decoding for the quaternary 3RC 4/1=h  CPM system 
discussed in section II. Again, the two simulations are identical 
and are within 0.5 dB of theory for high 0/ NEb . Fig. 4 also 

shows the effect of a 8/sT  symbol timing error. 

    The inherent assumption is that filtering does not affect the 
CPM signal i.e. no intersymbol interference is generated (in 
contrast to [9]). This being the case, the signal set defined in 
(11) applies. As stated, in practice, the in-band phase response 
of the lowpass filter can adversely affect the CPM signal and 
so phase linearity is important. 
   Fig. 5 shows Walsh and lowpass filter simulations for a 
quaternary 3RC 5.0=h system. The discrepancy of 
approximately 0.1 dB for an over-sampling factor of 4 is 
attributed to the fact that CPM signals are comparatively 
poorly represented in Walsh space. The degree of over-
sampling is governed by the dimensionality theorem, which 
indicates that m or K need only be a small integer for most 
CPM signals. In particular, BER simulations for 4=m  show 
no significant difference to those for 8=m . 
 
V.    CODED CPM 

Rimoldi [11] showed that MCPM can be decomposed into a 
continuous phase recursive encoder (CPE) and a memoryless 
modulator/mapper (MM). The CPE can therefore provide the 
inner code of a serial concatenated convolutional code (SCCC) 
[12]. This structure is attractive, given new high rate 
convolutional codes for the outer code [13]. The authors are 
currently investigating the use of such codes for SCCC-CPM.  

 

                                              
 
             Fig. 6  Multilevel coded CPM using multistage binary decoding.  

 
Whilst SCCC-CPM systems have high potential, they do not 

deliberately combine FEC with CPM in the coded modulation 
sense (there is no set partitioning). Two well-known 
approaches to Shannon capacity are trellis -coded modulation, 
and multilevel coding, and a multilevel coding scheme for CPM 

is shown in Fig. 6. MCPM has JLPM 2= points in signal 
space, where hKP /=  (K integer) is the number of phase 
states in the time-invariant Rimoldi model. The usual approach 



  

in multilevel coding would be to partition the information 
stream into J binary substreams encoded by J binary 
component codes, iC . For CPM, set partitioning is 

constrained by the need to maintain phase continuity. For 
example, certain MCPFSK systems can have parallel phase 
transitions between the same phase states (corresponding to 
different frequency signals). In such cases, phase continuity 
can be achieved by assigning these signals to different 
subsets at the same level, and the number of levels would be 

)/2(log2 PMN = .  The decoder uses multistage soft 

decision decoding, whereby an estimate of the code sequence 
at level j is fed to the decoder at level 1+j .   

Design rules for multilevel systems are centered on 
optimizing the code rate at each level e.g. codes iC  are 

designed to maximize the overall minimum Euclidean distance 
in signal space. Given appropriate codes, the sum of the 
capacities at each level can then approach the capacity of the 

N2 -ary modulation scheme [14].   Powerful codes are assigned 
to the low levels e.g. iC  could be a high rate binary SCCC, as 

in [13]. Alternatively we could use a binary turbo product code 
(TPC) based on extended Hamming codes e.g. the 

793.0,)57,64()57,64( =× R code [15]. For this code, APP 

decoding of the overall TPC is unrealistic, although it is 
feasible for the component codes. For the )57,64( code the 

complexity is similar to that for decoding a memory-5 
convolutional code.  Only a relatively weak code is required at 
level N, which is combined with the CPE of the CPM system as 
indicated in Fig.6. 

VI.    CONCLUSIONS 

A realistic practical example has illustrated that CPM system 
design is a complex trade-off between the CPM parameters 
themselves and also between the CPM system and any 
external FEC. It is shown that multi-h systems are not always 
beneficial due to the greatly increased number of states, and 
for low values of h the required coding gain is probably better 
achieved via FEC. It is also shown that modification to the 
raised cosine frequency pulse can give significant 
improvement to the power density at important frequencies.   

Simulation is an important aspect in CPM system design, 
and fast and accurate power density simulation is achieved 
using the classical periodogram technique. Simulation of APP-
decoded CPM can use a simple probability measure based on 
m-times over-sampling of the outputs from ideal lowpass 
filters, or on K-times over-sampling of the integrators in a 
Walsh-based CPM system. The lowpass filter approach 
assumes that filtering does not significantly degrade the CPM 
signal. Both decoding techniques approximate to the ML 
decoder as the over-sampling factor increases, and can be 
viewed as greatly simplified matched filtering. Four-times over-
sampling is found to be sufficient, and both APP and Viterbi 
simulations are generally within 0.5 dB of theory at high 

0/ NEb .  

The wideband signal model also permits straightforward 
computation of the noise variance required for BER simulation 
of APP decoded CPM. The noise model is adequate since most 
CPM signals have a compact power spectrum. Modeling 
assumptions are verified by comparison with independent 
simulation and with theory.  

In terms of bandwidth and power efficiency, a near ideal but 
realistic modulation scheme could comprise a multilevel coded 
CPM system, with multistage binary decoding. Multilevel 
coded CPM can approach capacity with realistic decoding 
complexity. New, high rate binary convolutional codes in SCCC 
structures are particularly attractive for the lower levels. 
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