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Abstract— The paper studies the formation control problem
for distributed robot systems. It is assumed each robot only has
access to local sensing information (i.e. the relative positions
and IDs of its neighbors). Taking into consideration physical
sensing constraints (e.g. limited sensing range) and the motion
of the robots over time, it may be noted that the sensing graph
for the system is directed and time-varying. This presents a
challenging situation for formation control. As an initiative
attempt to study this challenging situation, we suppose the
sensing graph switches among a family of graphs with certain
connectivity properties, under which a switching linear control
law is then proposed. We show that for arbitrary dwell times
or average dwell times, the proposed control law with properly
designed control parameters can ensure global convergence to
a desired formation shape. The proposed formation control law
can be implemented in a distributed manner while the design
of certain control parameters requires some global information.

I. INTRODUCTION

Distributed robot systems including autonomous under-
water, ground or aerial vehicles, which are intended to
perform coordinated tasks, have a broad range of applica-
tions ( [16], [19]) such as search and rescue operations in
hazardous environments, ocean data retrieval and sampling,
and surveillance/combat tasks. Among all the coordinated
missions, formation control has been considered as one of
the fundamental issues, with the goal of controlling a team of
autonomous robots to form a rigid or flexible structure. The
research on formation control of distributed robot systems
has experienced rapid growing since the 1990s. However,
several challenges still exist and have not been fully over-
come in the situations that only local information (GPS-free)
is accessible and the sensing graph may change over time.

For realizability of rigid formations, graph rigidity is
used to characterize information architecture among robots
( [2], [8], [17]), for which relative distances between pairs
of robots are concerned. With this idea, nonlinear gradient
control strategies are developed to stabilize a group of
mobile robots into a desired rigid formation ( [4], [12]) and
maneuver a robot formation while maintaining a formation
shape ( [1], [10]). A variation is the use of bearing angle
information for the objective of formation shape control (
[3], [11]). Moreover, in responding to possible environment
changes, the problem of scaling the size of a formation
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is addressed without a re-design of formation control laws
[5]. Our previous works ( [14], [20]–[22]) also establish
a new framework for formation shape control with a flex-
ible formation scale, which is adaptable to environment
changes. However, unlike consensus control [13], [18], there
are few works in formation control dealing with switching
topologies, which are practically significant due to unreliable
sensing and communications.

This paper concentrates on the switching topology case
by extending our previous work on the fixed topology case
( [14], [20]–[22]). The goal is to achieve a formation shape
for a team of autonomous robots when the sensing graph
may switch over time. The scale of an achieved formation
is not a concern in the paper. This is because as shown
in [15], if a formation shape can be achieved, then the
scale of the entire formation can be controlled by only a
small portion of robots (e.g., two robots in the team). For
formation shape control under a fixed sensing graph, we
show in our earlier work [21] that a formation shape is
realizable if and only if the sensing graph is 2-rooted, a
kind of connectedness in graph theory. Thus, in the paper,
we assume that the sensing graph switches over a family
of 2-rooted graphs to make the formation control problem
feasible. Under this assumption, a switching linear control
law is proposed depending on the sensing graph. It is
then shown that for any switching signal satisfying a dwell
time or average dwell time condition, which is often met
for practical systems, the proposed linear control law with
properly designed parameters ensures globally exponential
convergence of mobile robots to a desired formation shape.
The approach can also be applied for formation maneuvering
provided that their maneuvering velocities are synchronized.
Simulations and experiments using Rovio omni-directional
mobile robots are conducted to validate our theoretic results.

Notation: C and R denote the set of complex and real
numbers, respectively. ι =

√
−1 denotes the imaginary unit

and 1n represents the n-dimensional vector of ones.

II. PRELIMINARY AND PROBLEM SETUP

A. Graphical notions and preliminary results

A directed graph G = (V , E) consists of a non-empty
node set V = {1, 2, · · · , n} and an edge set E ⊆ V ×V . The
neighbor set of node i is denoted by Ni = {j : (j, i) ∈ E}.
In the paper, we assume that directed graphs do not have
self-loops, i.e., i 6∈ Ni for any node i. Next, we introduce
two concepts from [20]. For a directed graph G, a node v is
said to be 2-reachable from a non-singleton set U of nodes
if there exists a path from a node in U to v after removing
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any one node except node v. Moreover, a directed graph G is
said to be 2-rooted if there exists a subset of two nodes, from
which every other node is 2-reachable. These two nodes are
called roots in the graph.

Examples are given in Fig 1-3 to explain these notions.
In Fig. 1, let U = {u1, u2, u3}. Node v is 2-reachable from
U as after removing any one other node there is still a path
from a node in U to node v. However, in Fig. 2, v is not
2-reachable from U because when node u2 is removed, there
does not exist a path from a node in U to node v. The graph
in Fig. 3 is 2-rooted, for which nodes u1 and u2 are the two
roots, because nodes v1, v2, and v3 are all 2-reachable from
U = {u1, u2}.

u1

u2

u3

v

U

Fig. 1. 2-reachable.

u1

u2

u3

v

U

Fig. 2. Not-2-reachable.

u1 u2

v3v1

v2

U

Fig. 3. 2-rooted.

For a directed graph G, we define a corresponding complex
Laplacian L as follows: The ijth entry

L(i, j) =















−wij if i 6= j and j ∈ Ni

0 if i 6= j and j 6∈ Ni
∑

j∈Ni

wij if i = j

where wij ∈ C is called the complex weight on edge (j, i).
From the definition, it is true that a complex Laplacian has
at least one zero-eigenvalue whose associated eigenvector is
1n. Finally, we recall two preliminary results from [21] about
a complex Laplacian with minor modifications.

Lemma 2.1: Consider a directed graph G of n nodes and a
generic vector ξ ∈ Cn. Then rank(L) = n− 2 for almost all
complex Laplacians L associated to G and satisfying Lξ = 0
if and only if G is 2-rooted.

Lemma 2.2: Consider a directed graph G of n nodes and
a generic vector ξ ∈ Cn. If G is 2-rooted, then for almost
all complex Laplacians L satisfying Lξ = 0, there exists a
diagonal matrix D such that the eigenvalues of DL can be
assigned at any locations in addition to two fixed eigenvalues
at the origin.

B. Problem setup

We consider a group of n robots in the plane. The positions
of n robots are denoted by complex numbers z1, · · · , zn ∈
C. A directed graph G = (V , E) of n nodes represents the
sensing graph in which an edge (j, i) indicates that robot i
can measure the relative position of robot j in robot i’s local
frame and also its ID. Our goal is to make the n robots reach
and maintain a desired formation shape.

We use a complex number ξi ∈ C (i = 1, · · · , n) to rep-
resent a point in a reference frame Σ. Let the n-dimensional
composite complex vector ξ = [ξ1, ξ2, · · · , ξn]T ∈ Cn be the
formation vector for the n robots in the reference frame Σ. In

the paper, we consider point robots and assume that ξi 6= ξj
if i 6= j, meaning that no two robots overlap each other. For
practical applications, pairs of robots should be separated by
at least certain distance away in the target formation.

Next we introduce the concept of similar formation. For a
directed graph G and an associated complex Laplacian L, if
a configuration ξ ∈ Cn satisfies a constraint L : Lξ = 0, we
call ξ a realization of the graph G and the linear constraint L.
A framework is a graph together with a realization, denoted
as (G, ξ,L) where G is a directed graph, ξ is a configuration
and L represents the linear constraint Lξ = 0. In this paper,
a framework is defined in terms of a linear constraint rather
than the distance constraints on edges as in [6], [7].

Definition 2.1: A framework (G, ξ,L) is said similar if

ker(L) = {c11n + c2ξ : c1, c2 ∈ C}.
Remark 2.1: Note that a complex number c2 can be

written in the polar coordinate form (namely, c2 = ρeιθ).
So the solutions to the linear constraint Lξ = 0 consist of
points related by translations c1, rotations θ, and scaling ρ

(four degrees of freedom). That is, the formations subject to
the linear constraint Lξ = 0 are scalable from the formation ξ

in addition to rigid body motions (translations and rotations).
Moreover, it is worth to point out that if there is additional
distance constraints on at least one edge, the framework then
becomes globally rigid with a determined size.

In our previous work [20], [21], we have derived the
necessary and sufficient graphical condition for a framework
to be similar, which is stated below.

Theorem 2.1 ( [20], [21]): A framework (G, ξ,L) is sim-
ilar for almost all L and ξ if and only if G is 2-rooted.

The theorem says that in order to reach a formation shape
for a group of n robots, the sensing graph G should be 2-
rooted. Otherwise, with insufficient number of information
links, a group of n robots is never able to reach a desired
formation shape. In the paper, we consider a sensing graph
that may switch over time as the robots evolve. Denote by
{Gp : p ∈ P} the family of possible sensing graphs that the
robots may take. But in order to make the formation shape
control problem feasible, we assume in the following that
A1: Gp is 2-rooted for all p ∈ P .

For robots modeled by continuous time dynamics

żi(t) = ui(t), i = 1, . . . , n, (1)

the aim of the paper is to design a distributed control law
such that a network of robots can globally exponentially
reach and maintain a formation shape (i.e., similar to a
desired formation ξ) under switching sensing topologies.

III. DISTRIBUTED FORMATION CONTROL AND
STABILITY

In this section, we first propose a distributed formation
control law under switching topologies. Next, we show
that under dwell time (average dwell time) conditions with
arbitrarily small dwell time (average dwell time), our pro-
posed control law with properly designed control param-
eters ensures globally exponential convergence of multi-
robot formations. Finally, we discuss the design, distributed
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implementation, and extension to formation maneuvering of
our control law.

A. A switching formation control law

We denote by Gσ(t) a switching sensing graph with σ:
[0,∞) → P being a piecewise constant switching signal,
and denote by Ni(t) the set of neighbors at t. For a generic
formation ξ ∈ Cn and for any p ∈ P , we select complex
weights wij(p)’s associated to edges (j, i)’s on graph Gp

such that the complex Laplacian Lp associated with Gp

and complex weights wij(p) satisfies Lpξ = 0. Detailed
explanation on how to pre-calculate complex weights will
be given in Subsection III-C. Without loss of generality, we
assume that rank(Lp) = n − 2 as it can always be assured
for 2-rooted graph Gp’s by Lemma 2.1.

The following linear switching control law is proposed for
each robot i = 1, . . . , n:

ui = di(σ(t))
∑

j∈Ni(t)

wij(σ(t))(zj − zi), (2)

where di(σ(t)) ∈ C is a control parameter to be designed.
Under the distributed control law (2), the overall closed-

loop dynamics of n continuous-time robots becomes

ż = −Dσ(t)Lσ(t)z (3)

where z ∈ Cn is the aggregate state vector of n robots,
Dσ(t) = diag{d1(σ(t)), · · · , dn(σ(t))} is an n-by-n diago-
nal complex matrix, and Lσ(t) is a complex Laplacian matrix
associated to Gσ(t).

It is clear that the switched system (3) switches its
dynamics from a family of subsystems

ż = −DpLpz, p ∈ P . (4)

However, the stability of all subsystems does not ensure
the stability of the switched system (3). But notice that in
practical applications, the sensing graph usually does not
switch arbitrarily fast. In other words, it must satisfy a dwell
time constraint or an average dwell time constraint. In the
following, we are going to show that under a dwell time or
average dwell time condition, globally exponential stability
of multi-robot formations can be guaranteed by a properly
designed control gain Dp for every subsystem.

B. Stability analysis

First, we introduce the concept of dwell time. Suppose the
switching signal σ(t) switches its value at time instants t1,
t2, . . . . We say the switching signal has dwell time τD if
ti+1− ti ≥ τD for all i’s. We denote by S(τD) the set of all
switching signals with dwell time τD , i.e.,

S(τD) = {σ(t) : ti+1 − ti ≥ τD for all i}.
We then present a main result to show that the switched

system (3) can be made globally exponentially convergent
under a dwell time condition.

Theorem 3.1: For any τD > 0 and any switching signal
σ(t) ∈ S(τD), there exist Dp’s, p ∈ P , such that a net-

work of n robots globally exponentially reaches a formation
(similar to ξ) under the distributed control law (2).

Proof: Let ei be the n-dimensional vector whose ith
entry is 1 and all others are 0. Then we define an n × n

matrix
Q =

[

e1 · · · en−2 1n ξ
]

.

For a nonsingular matrix Dp, DpLp has rank n − 2 and
moreover DpLp1 = DpLpξ = 0. So −Q−1DpLpQ must be
of the following form

−Q−1DpLpQ =

[

Mp 0
∗ 0

]

(5)

where Mp ∈ C(n−2)×(n−2) satisfying rank(Mp) = n − 2.
Furthermore, Mp has the same eigenvalues as −DpLp except
the two zero eigenvalues.

Consider the coordinate transformation y = Q−1z for the
switched system (3). Then it can be obtained that

ẏ =

[

Mσ(t) 0
∗ 0

]

y.

Let x be a sub-vector of y consisting of the first n − 2
components of z. Then it is clear that

ẋ = Mσ(t)x. (6)

It is true that globally exponential stability of (6) is equiv-
alent to globally exponential convergence of n robots to a
formation similar to ξ.

Suppose temporarily that for any p ∈ P , ẋ = Mpx is
exponentially stable. That is, there exist positive constants
c and α0 such that ‖eMpt‖ ≤ ce−α0t for all p ∈ P and
all t ≥ 0. Now consider a switching signal σ(t) ∈ S(τD)
for a constant τD. Denote by t1, t2, . . . the time instants, at
which the switching occurs and suppose σ(t) = pi for t ∈
[ti−1, ti). We choose a constant αc ∈ (0, α0) and show in the
following by induction that if τD ≥ ln c

α0−αc
, then ‖x(tk)‖ ≤

c‖x(0)‖e−αctk .
At t1, we have

‖x(t1)‖ = ‖eMp1
t1x(0)‖ ≤ c‖x(0)‖e−α0t1 ≤ c‖x(0)‖e−αct1 .

Suppose at tk, ‖x(tk)‖ ≤ c‖x(0)‖e−αctk . Then at tk+1,

‖x(tk+1)‖ = ‖eMpk+1
(tk+1−tk)x(tk)‖

≤ c‖x(tk)‖e−α0(tk+1−tk)

≤ c2‖x(0)‖e−αctke−α0(tk+1−tk).

Note that tk+1 − tk ≥ τD ≥ ln c
α0−αc

. So it follows that
ce−α0(tk+1−tk) ≤ e−αc(tk+1−tk) and thus

‖x(tk+1)‖ ≤ c‖x(0)‖e−αctk+1 .

Also, notice that for t in any interval [tk, tk+1), it holds that
‖x(t)‖ ≤ c‖x(tk)‖e−α0(t−tk). Therefore, if

τD ≥ ln c

α0 − αc

, (7)

then for any switching signal σ(t) ∈ S(τD), the switched
system (6) is globally exponentially stable, implying that the
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n robots globally exponentially reach the desired formation
shape.

Finally, we show for any given τD how τD ≥ ln c
α0−αc

can
be satisfied by properly designing Dp’s. Suppose without loss
of generality that Dp is of the form Dp = γpD

′
p where γp is

a positive real constant and D′
p is a complex diagonal matrix.

Since every Gp is 2-rooted, then by Lemma 2.2 it follows
that the eigenvalues of D′

pLp, p ∈ P , can be assigned in
the right complex plane in addition to two fixed eigenvalues
at the origin by designing a proper D′

p. Moreover, notice
that c in (7) is a parameter satisfying ‖eMpt‖ ≤ ce−α0t

for all p ∈ P , which relates to the eigenvectors of Mp

(or equivalently D′
pLp), p ∈ P , as γp does not change

the eigenvectors. However, the choice of γp can change the
locations of non-zero eigenvalues and thus can change α0

to any value. Therefore, the condition τD ≥ ln c
α0−αc

can be
met by selecting a proper Dp (namely, D′

p and γp). Thus,
the conclusion follows.

Theorem 3.1 shows that if a switching signal has dwell
time τD , then the n robots can reach a desired formation
shape under the proposed control law. However, in certain
situations, the switching signals may occasionally have con-
secutive discontinuities separated by less than τD , but for
which the average interval between consecutive discontinu-
ities is no less than τD . This leads to the concept of average
dwell time. For a switching signal σ(t), we let Nσ(t0, t)
denote the number of discontinuities of σ(t) in the interval
[t0, t). Then the set of all switch signals with average dwell
time τD and chatter bound N0 is denoted as

Save(τD, N0) = {σ(t) : Nσ(t0, t) ≤ N0 +
t− t0

τD
}.

Roughly speaking, as the time interval is long enough, the
average dwell time is approximately τD considering the
upper-bound of the number of discontinuities in the interval.
Then we have the following result in terms of average dwell
time.

Theorem 3.2: For any switching signal σ(t) ∈
Save(τD, N0) with any average dwell time τD > 0
and arbitrary chatter bound N0, there exist Dp’s, p ∈ P ,
such that a network of n robots globally exponentially
reaches a formation (similar to ξ) under the distributed
control law (2).

Proof: From the proof of Theorem 3.1, we know that
there exist Dp’s, p ∈ P , such that ‖eMpt‖ ≤ ce−α0t where
c is a constant and α0 can be made arbitrarily large. We
choose a constant αc ∈ (0, α0) and by designing Dp’s so
that τD ≥ ln c

α0−αc
holds.

Denote by t1, t2, . . . the time instants, at which the
switching occurs and suppose σ(t) = pi for t ∈ [ti−1, ti).
For any t ∈ [ti, ti+1), we have

x(t) = eMpi+1
(t−ti)eMpi

(ti−ti−1) · · · eMp1
t1x(0).

As ‖eMpt‖ ≤ ce−α0t, we have

‖x(t)‖ ≤ cNσ(0,t)e−α0t‖x(0)‖
where Nσ(0, t) is the number of switchings of σ(t) in the

interval [0, t). Note that c ≥ 1 and Nσ(0, t) ≤ N0 +
t
τD

for
any switching signal σ(t) ∈ Save(τD, N0), so it follows that

‖x(t)‖ ≤ cN0c
t

τD e−α0t‖x(0)‖.
Moreover, since τD ≥ ln c

α0−αc
, then

‖x(t)‖ ≤ cN0‖x(0)‖e−αct,

meaning that the switched system (6) is globally exponen-
tially stable and the n robots globally exponentially reach a
formation similar to ξ.

C. Design of control parameters and distributed implemen-
tation

In order to run the control law (2) for the purpose of forma-
tion shape control, the parameters should be pre-computed.
It consists of two main steps. The first is the design of wij(p)
for each robot i and for j ∈ Ni in every possible sensing
graph Gp. This can be done in a distributed manner. That
is, the complex weights wij(p) can be calculated by robot i
from the following equation

∑

j∈Ni(Gp)

wij(p)(ξj − ξi) = 0

as ξj ’s for j ∈ Ni(Gp) are available to robot i. It should be
pointed out that the solution may not be unique. The second
is the design of Dp. A distributed approach for the design of
Dp is challenging and is still unknown. Thus, a centralized
way is considered in the paper. First, a diagonal matrix D′

p

(introduced in the proof of Theorem 3.1) is designed using
the homotopy Newton iteration method ( [21]) to assign the
eigenvalues of D′

pLp in the right complex plane in addition
to two fixed eigenvalues at the origin. Second, a sufficiently
large γp (introduced in the proof of Theorem 3.1) is chosen
to satisfy the condition τD ≥ ln c

α0−αc
for any given dwell time

or average dwell time τD. Thus, Dp = γpD
′
p is obtained.

Next, we discuss distributed and local implantation of the
switching control law (2). First of all, the linear control
law (2) uses only the relative positions (i.e., (zj − zi),
j ∈ Ni(t)) of its neighbors at t. It is locally implementable
by onboard sensors without requiring all the robots to have
a common sense of direction and scale unit. However, a
common notion of clockwise rotation should be shared by
all the robots. Consider for example that robot i has two
neighbors j and k. With an onboard sensor (e.g., camera)
on robot i, it can measure the relative states zj − zi and
zk − zi in its own local frame with the x-axis coincident
to the optical axis. Then the control input is obtained by
a linear combination of the two relative positions using
complex weights also defined in its own local frame. A
more detailed discussion on how to locally implement a
control law on a point-mass robot using relative position
measurements refers to [13] (pages 141-143). Second, as
evident from (2), implementing the local control law requires
every robot to know the switching sensing graph under which
the robots are operating. The entire sensing graph is a piece
of global information, but it can be known by all the robots in
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a distributed way. At time t, each robot i knows its neighbor
set Ni(t). By knowing this, robot i then knows a subset
of graphs, which the current entire sensing graph belongs to,
denoted by Pi(0) = {p ∈ P : Ni(Gp) = Ni(t)}. Every robot
exchanges Pi(k) with its neighbors and updates Pi(k + 1)
according to

Pi(k + 1) = Pi(k)
⋂

j∈Mi

Pj(k),

where Mi represents the set of communication neighbors
of robot i. As long as the communication graph has certain
connectivity property, the iteration converges in finite steps
and leads to a unique solution p, that is the sensing graph at
time t. Thus, the switching control law (2) can be determined.

Finally, we discuss a possible extension to formation
maneuvering (i.e., reach and maintain a formation shape
while moving). Suppose a reference velocity, say v0(t) is
known to all robots, or they synchronize their reference
velocities by a distributed consensus control law. Then a
group of n robots can achieve formation maneuvering with a
common velocity v0(t) by the following distributed control
laws:

ui = di(σ(t))
∑

j∈Ni(t)

wij(σ(t))(zj − zi) + v0(t). (8)

IV. SIMULATION AND EXPERIMENT

A. A simulation result

We consider an example consisting of 9 robots. Suppose
the sensing graph switches over {Gp : p = 1, 2} periodically.
The graphs G1 and G2 are shown in Fig. 4, both of which
are 2-rooted with roots {4, 6} for G1 and roots {1, 3} for G2.
The switching signal is shown in Fig. 5.

1 12 23 3

4 45 56 6

7 78 89 9

(a) G1 (b) G2

Fig. 4. A family of sensing graphs for our simulation.

10 20 30 40

G1

G2

σ(t)

t

Fig. 5. A switching signal σ(t).

Consider a formation shape described by ξ = [−1 +
ι, ι, 1 + ι, −1, 0, 1, −1 − ι, −ι, 1 − ι]T , which is a

3-by-3 grid. We design D1L1 and D2L2 by the homotopy
Newton iteration method ( [21]) such that the eigenvalues of
both them lie in {0.9 + 0.01ι, 0.9− 0.01ι, 1 + 0.02ι, 1−
0.02ι, 1.1 + 0.05ι, 1.1 − 0.05ι, 0.8 + 0.020ι, 0, 0}. It
also makes the dwell time condition hold. In the simulation,
we suppose all the agents take the control law (8) with a
common reference velocity v0 = 4 + 3ι.

Fig. 6 records the trajectories of the 9 robots using the
proposed distributed control law. The blue circles are the
initial positions of the robots and the red diamonds represent
the positions of the robots at the end of the simulation.
Moreover, the trajectories in blue indicate that during that
interval, the sensing graph is G1 while the trajectories in red
indicate that during that interval, the sensing graph is G2.

−50 0 50 100 150 200 250 300
−50

0

50

100

150

200

250

Fig. 6. Simulated trajectories under the proposed formation control law.

B. An experiment result

Our proposed formation control law is also implemented
on a group of Rovio mobile robots under switching sensing
topologies. The Rovio robots contain a true-track beacon,
with which they can localize themselves [9], but in the
experiment we convert the absolute location information to
relative positions as specified by the directed graphs in Fig. 7.
The Rovio robot is equipped with three omni-directional
wheels so that they can move freely in the plane like a point
mass.

11

22 33

44

(a) G1
(b) G2

Fig. 7. A family of sensing graphs for our experiment.

We consider four Rovio robots for our formation control
experiment. The switching signal is also the periodic one
shown in Fig. 5, which switches the sensing graph between
G1 and G2 in Fig. 7. We consider a square formation shape,
described by ξ = [1+2ι, −1+2ι, −1, 1]T . The formation
control law is implemented in a sampled-data setup. The
complex Laplacian matrices for G1 and G2 are given below:

L1 =







0.4− 0.4ι 0.4ι 0 −0.4
0.6ι −0.6− 0.6ι 0.6 0
0 −0.8 0.8− 0.8ι 0.8ι

−0.4 + 0.4ι −0.4ι 0 0.4






and
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L2 =







−0.4 0 −0.4ι 0.4 + 0.4ι
−0.6ι 0.6 + 0.6ι −0.6 0
0 −0.8 0.8− 0.8ι 0.8ι
0.4 0 0.4ι −0.4− 0.4ι






.

To meet the dwell time condition, D1 = diag{0.9244 +

1.1354ι, −0.4930 − 0.6996ι, 1, 1} and D2 = diag{−1.1660 −

1.1709ι, 1.4711 − 0.2516ι, 1, 1} are designed to assign the
eigenvalues of D1L1 and D2L2 at {0.95 + 0.5ι, 0.95 −
0.5ι, 0, 0}.

With a common reference velocity v0 = 5 + 5ι, the
trajectories of the four Rovio robots are plotted in Fig. 8,
which shows the four Rovio robots asymptotically converge
to form and maintain a square formation shape. A snapshot
when the square formation is reached is given in Fig. 9.

−250 −200 −150 −100 −50 0 50 100 150 200 250
−250
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Fig. 8. The experimental trajectories of four Rovio robots under switching
sensing topologies with v0 = 5 + 5ι.

Fig. 9. A snapshot of square formation achieved in our experiment.

V. CONCLUSION

The paper developed a distributed control strategy for for-
mation shape control of autonomous robots under switching
sensing topologies. It is practical that a dwell time or average
dwell time condition is often satisfied. Thus, with a known
dwell time (average dwell time) constant, we showed that
our proposed distributed control schemes are effective with
properly designed control gains. However, in this work we
assumed that the sensing graph switches over a family of
2-rooted graphs. Certainly, the sensing graph may become
not 2-rooted sometimes in practical setting and it is more
interesting to see whether our distributed control strategies
still work for the situation that the sensing graph switches
among all possible topologies.
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