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ABSTRACT

This study investigates the usefulness of wavelet transforms
in phoneme recognition. Both discrete wavelet transforms
(DWT) and sampled continuous wavelet transforms (SCWT)
are tested. The wavelet transform is used as a part of the

front-end processor which extracts feature vectors for a speaker-

independent HMM-based phoneme recognizer. The results
are evaluated on a portion of TIMIT corpus consisting of
30293 phoneme tokens for training and 14489 phoneme to-
kens for testing. The test results suggest that SCWT gives
considerably better recognition rate than DWT. On the other
hand, the improvement of SCWT over Mel-scale cepstral co-
efficients appears to be marginal.

1. INTRODUCTION

The wavelet transform (WT) theory provides an alternative
tool for short time analysis of quasi stationary signal, such
as speech, as opposed to the traditional short-time Fourier
transform (STFT). The WT has been applied widely in dif-
ferent speech analysis problems [16, 8, 9, 7, 3].

Scalograms produced by WT and Spectrograms by STFT
have been visually compared [6, 11, 12, 9, 1]. It has been
found that both the formant frequencies and harmonic struc-
tures of speech are well preserved in the scalogram. This
suggests that WT may be suitable for speech analysis. In
[5], a continuous wavelet transform (CWT) was used in an
E-set alphabet speaker independent isolated word recogni-
tion system, and error reduction ranges from 1.6 % to 6.2
% were reported. The work in [10] uses a discrete wavelet
transform (DWT) in a small vocabulary speaker-dependent
isolated word recognition system. It was shown that DWT
performs better than linear predictive coding (LPC) for un-
voiced sounds. However, it is unclear whether WT can im-
prove the recognition performance at a phonetic level. The
purpose of the present study is to compare both CWT and
DWT with Mel-scale cepstral coefficients and report their
performances in a speaker independent phoneme recognition
system.

2. WAVELET TRANSFORM

The wavelet transform is a non-parametric analysis tool which
allows localizations in both the time and frequency domains.
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The main difference between STFT and WT is that STFT
is a constant-bandwidth analysis method, whereas WT is a
constant-Q analysis method which resembles auditory filters.

Wavelet coeflicients are obtained by computing the corre-
lation between each wavelet and the signal. The realizable
form of continuous wavelet transform is called sampled CWT
(SCWT), which is most widely used in speech signals anal-
ysis [6, 12, 11, 5, 1]. In SCWT, the mother wavelet is trun-
cated in the continuous time ranging from —ry to ry. This
wavelet is sampled with the sampling period given by

=
- NO’ (1)

where Np is the number of samples which gives sufficient
resolution at the smallest scale (highest frequency) in con-
sideration.

Ty

The scaling of the sampled mother wavelet is accomplished
by changing wavelet sampling period Toy = Ty /a. The scal-
ing factor, a > 1, can take any values as long as the resulting
representation is not too sparse. The translation parameters
is fixed at a constant by to avoid irregular sampling. The
SCWT is then defined as
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%with its frequency response given by
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The SCWT is implemented simply by linear filtering {12, 11].
It is common to discretize the scale parameter by choosing
e = ao2™/V where m € Z and V is the number of voices per
loctave.

The DWT is similarly defined as the SCWT, except that a
iand b are restricted to be on a dyadic grid, i.e., a = 2™, b=
n2™ with m,n € Z. As the result, the DWT is much coarser
than SCWT but it can be implemented very efficiently by
fast wavelet transform (FWT) based on subband coding.



3. PHONEME RECOGNITION
ENVIRONMENT

This section details the enviornment in which our phoneme
recognition tests are done.

3.1. Database

Our phoneme recognition tests are evaluated on the proto-
type version (1988) of the TIMIT database. We use the DRI,
DR2 and DR3 regions only. The training tokens consist of
30 females and 75 males, and the testing tokens consist of 13
females and 37 males. The “sa” sentences which are common
to all speakers are not used to avoid possible bias towards
certain phones. There are 840 sentences for training and 400
sentences for testing in total. The speech signals are sampled
at 16 kHz.

For this study, the silent segments /#h/, /h#/, /epi/ and
/pau/ are discarded since we are more interested in mod-
eling phones rather than silence. The rest of 59 phones
from the TIMIT phonetic set are used for modeling. Most
speech recognition systems [14, 13, 15] select about 42 to
48 phonemes to model. This is done by grouping the allo-
phones into one phone group. 15 allophones from TIMIT
phonetic set are identified in [14]. Therefore, there are seven
groups of allophones as shown in Table 1 where within-group
confusions are not counted as errors. Thus, 59 phone mod-
els are built but there are effectively only 46 phonemes to
disambiguate. In this sense, the phoneme recognition rate
represents “accepted correct” recognition rate [15).

Set | Phone

er axr

m em

n nx en

ng eng

hh hv

pcl tel kel qcl bel del gel
ell

O Ok W

Table 1: Seven group of allophones

3.2. Baseline System

All the speech signals are preemphasized by a factor of 0.95
prior to parameterization. Our baseline system uses Mel-
frequency cepstral coefficients which are computed using 40
triangular bandpass filters as described in [4]. Each analysis
frame has a duration of 20 ms with a 10 ms overlap. Cepstral
coefficients of order 12 are produced as the feature vectors.

The phoneme recognizer consists of 59 phone models. Each
phone is modeled by a three state left-to-right HMM. The
output probability distribution of each state is modeled by
a mixture of three multivariate Gaussian density functions
with a diagonal covariance matrix.

The initial estimate of HMM parameters is found by us-
ing the segmental K-mean algorithm. The Baum-Weltch re-
estimation algorithm is then used to further enhance the
initial estimate. During the re-estimation process, the floor
value for the tranmsition probability and the mixture coef-
ficients is chosen to be 0.00001, and that for the diagonal
elements of the covariance matrix is taken to be 0.01.

The same HMM system is used for all the tests (Mel-scale
cepstral coefficients and wavelet transforms).

3.3. Wavelet Transforms

Window modulated wavelets have been widely used in speech
analysis. Examples include Gaussian (Morlet wavelet) [12,
11], Hamming window [2], and Hanning window [1, 5]. It is
important to choose a wavelet function which suits the apphi-
cation. For example, the Mexican hat wavelet is popular in
vision analysis, but it is not suitable for speech analysis due
to its flat frequency response which results in low formant
resolution. We choose to use the Morlet wavelet to construct
SCWT.

After normalization and by taking wo = 5.5, the Morlet
wavelet function is given as,

¥(t) = exp(—iwot)ezp(—1>/2) (5)

Morlet wavelets are shown in Figure 1. The mother wavelet
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Figure 1: (a) The real part of Morlet wavelet (b) The fre-
quency response of Morlet wavelet.
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is a complex function and therefore the CWT coefficients
are complex numbers. In our implementation, No = 10 and
1y = 3. This Morlet wavelet has a constant € factor of about
3.3087, which corresponds to 1/2.28 octave bandwidth (c.f.
the critical band of the ear, i.e. 1/3 octave). Figure 2 shows
a speech segment processed by SCWT with ao =1, V =8
and m = 0,...,53. bo is set to be 1 for all scales. Both
harmonic and formant structure are preserved in the same
plot. The output of SCWT is half-wave rectified and low-
passed. It is then down sampled from 16 kHz to 100 Hz.
Cepstral analysis is used to reduced the wavelet coefficients
down to 12 cepstral coefficients which are then sent to the
HMM system for phoneme recognition.

Our example for DWT is based on the Daubechies wavelet.
This wavelet is one of the popular wavelets and has been
used for speech recognition [10]. A Daubechies wavelet of
otder 8 is shown in Figure 3. As mentioned earlier, the
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Figure 2: Example of SCWT (Morlet wavelet)
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Figure 3: (a) The Daubechies wavelet of order 8 (b) The
frequency response of Daubechies wavelet.

DWT is implemented using FWT and that a dyadic scale is
used. Subsequently, not much information is retained after
the decomposition of the sixth scale. A segment of FWT
of speech signal based on Daubechies wavelet is shown in
Figure 4. The speech is processed by FWT to produce 6 scale
outputs covering 6 octaves. The two FWT coefficients with
the largest magitudes at each scale, and they are updated
every 8ms using non-overlapping time frames. Note that the
number of samples within each frame is different at each
scale. Therefore, 12 FWT coefficients are generated from
each analysis frame. These FWT coefficients are used as the
input to the HMM system. The FWT parameterization does
show very sharp onsets.

4. RESULT AND DISCUSSION

The phoneme recognition results are shown in Figure 5. We
ofter some discussions below.

1) The SCWT gives a slight improvement in the recognition
rate of the untrained tokens in comparison with the baseline
system. However, the improvement is marginal. We suspect
that the main reason for SCWT rot being able to provide sig-
nificant improvement is due to the fact that the many useful
features produced by the scalogram are smoothed out after

the frame rate reduction. A detailed analysis of our results
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Figure 4: FWT (Daubechies wavelet of order 8) of speech
segment “THIS”

Figure 5: The phoneme recognition results.

(as shown in Figure 6) reflects that the SCWT shows more
consistent improvement for most of the vowels and diph-
thongs than other sounds. This improvement could be due
to the fact that the formant structures are well resolved by
SCWT. We could have chosen to use a sampling rate higher
than 100Hz for frame rate reduction. But further experi-
ments show that 200Hz sampling rate does not give signifi-
cant improvement. Choosing an even higher rate will make
the recognition rate impractical due to the increased pro-
cessing time.

2) The recognition rate for liquids degrades in the SCWT
case. We believe that this phenomenon may be due to the
fact that these sounds are characterized by a significant slop-
ing of the resonance bars below 2kHz where the frequency
resolution of the wavelet transform is not enough to capture
this fast transition. Note that the slopes of this transition
are higher than those in the fricative and the stop sounds.

3) The DWT performs very poorly as shown in the figure.
We believe that this is caused by the coarse quantization of
the DWT. Further, no improvement of the recognition rate
for unvoiced speech is observed either. The dyadic decompo-
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Figure 6: The recognition results of individual group of

phonemes.

sition is suitable for speech coding but does not seem to be
suitable for speech recognition. Another problem associated
with FWT is that it is not time-shift invariant.

5. CONCLUSION

The main advantage of scalograms (SCWT) over spectro-
grams (STFT) is that the former can preserve both the har-
monic structure and the formant structure of the speech sig-
nal, resembling analysis performed by the human ear. In par-
ticular, sharp onset points can be identified from the scalo-
gram. Due to these features, SCWT seems to have potential
application in phoneme speech recogntion.

The phoneme recognition results reported in this paper sug-
gest that SCWT is a significant better choice than DWT
for speech recognition. However, the improvement of SCWT
over our Mel-scale cepstral coefficients appears to be very
marginal. This observation may be unique to the particular
post-processing we do to the SCWT coefficients. Work is
now being undertaken to identify whether this is indeed the
case. In particular, it is not clear how detailed features in
the scalogram can be incorporated into the parameterization
to give further improvement of the recognition rate, while at
the same time keeping the computational time to be mod-
erate. We do note that the compuational time for current
implementation of SCWT is much higher than for DWT and
also for Mel-scale cepstral coefficients.
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