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A Reset State Estimator Using an Accelerometer for
Enhanced Motion Control With Sensor Quantization

Jinchuan Zheng and Minyue Fu, Fellow, IEEE

Abstract—Sensor quantization is a key factor that deteriorates
the tracking performance of positioning systems with low-resolu-
tion optical encoders. This paper presents a method to improve
the performance of such systems by merging an accelerometer of
low cost. First, to reject the external disturbance, friction force
and system perturbations, we design a disturbance observer (DOB)
based on acceleration signals. Second, a reset kinematic state esti-
mator (RKSE) is designed using acceleration signals to make the
state estimate immune to both system perturbations and input dis-
turbances. Third, a state feedback controller is designed based on
the internal model principle (IMP) for accurate sinusoidal refer-
ence tracking. Simulations and experimental results are used to
demonstrate the effectiveness of the proposed control method for
tracking position reference commands and its robustness to system
uncertainties.

Index Terms—Disturbance observer, high precision tracking
control, reset state estimation, sensor quantization.

I. INTRODUCTION

L INEAR MOTORs (LMs) are used in a variety of industrial
applications which include laser cutting machines, semi-

conductor wafer inspection, high-accuracy alignment, imaging
and precision inspection and many more. In such applications,
the overall motion control performance (e.g., high repeatability
and accuracy) is required by the associated control system. This,
in turn, depends on the accuracy and richness of the sensors that
yield measurement signals used for feedback control.

Optical encoders are the most prevalent sensing devices
that are typically integrated into an LM system to detect the
position of a moving object. The encoder is based on evenly
spaced divisions or line counts on a glass or metal disk, which
is simple in construction and easy to manufacture. Position
control of the drive can be realized by direct feedback of the
encoder signal to the controller. In addition, velocity control is
possible by estimating the velocity from the encoder position
signal [1]. However, the interval of the divisions adversely
leads to the resolution limitation in position measurement.
When the encoder output is used as the feedback signal in a
servo system, the encoder quantization noise will degrade the
achievable position accuracy [2] and even cause self-sustained
oscillations (i.e., limit cycles) [3]. Sensor quantization is a

Manuscript received June 06, 2008; revised September 08, 2008. Manuscript
received in final form October 05, 2008. First published March 24, 2009; current
version published December 23, 2009. Recommended by Associate Editor R.
Landers.

The authors are with the School of Electrical Engineering and Computer Sci-
ence, The University of Newcastle, Callaghan, NSW 2308, Australia (e-mail:
jinchuan.zheng@newcastle.edu.au; minyue.fu@newcastle.edu.au).

Digital Object Identifier 10.1109/TCST.2009.2014467

source of typical measurement inaccuracy in motion control
systems. From the cost and effectiveness point of view, designers
generally need to select an encoder with resolution consistent
with the required performance. In digital control systems,
quantization may be created not only by the sensor itself
but also by the digital-to-analog converter (DAC). In most
cases, the quantization noise is ignored during control design
process if it is substantially small compared to the system
noise and the desired position accuracy.

Quantization is inherently a nonlinear feature. Often the time,
quantization noises are described by a statistical model [4], [5].
In order to alleviate the sensor quantization noise, numerical
algorithms that can be simply implemented on a digital signal
processor (DSP) have been reported. For instance, Kalman
filters have been employed to suppress the sensor quantization
noise under the assumption that they can be modeled as a white
Gaussian noise [6], [7]. However, in motion control systems,
signals tend to be more deterministic and exhibit stronger cor-
relation over time. Thus, quantization noises behave as highly
colored noises, which makes the Kalman filtering approach
inferior. For this reason, there has been intense research on
nonlinear filters such as extended Kalman filters [8], unscented
Kalman filters [9] and particle filters [10], [11] attempting to
improve estimation accuracy for non-Gaussian/nonlinear pro-
cesses. The key practical issue in nonlinear filtering is real-time
computational complexity [12], which generally limits its
applications to motion control systems that require high servo
bandwidth and thus are sensitive to computing cost. Alter-
natively, state estimators based on the observer theory have
been extensively studied in [13]–[16], in which extra useful
information is extracted from the quantizer model and then
used to enhance the estimation. This paper presents a solution
to this problem along this line by resetting the estimated state
based on additional quantization information. In contrast to the
approach above, the reset state estimator is relatively easy to
design and adds insignificant computational cost.

In the presence of plant uncertainties and tracking trajectory
variations, the performance of the state estimator becomes un-
reliable due to the nonlinear dynamics of the quantization noise.
Replacing the sensor with a higher-resolution one would mean
extra costs. A cost-effective way to improve the performance is
to incorporate acceleration sensing. There are two main reasons
for this option. First, the performance of linear accelerometers
have recently improved a lot while the cost and size are both
reduced significantly due to mass fabrication and the micro-
electro-mechanical systems (MEMS) technology. Second, the
use of accelerometers has been well demonstrated in the lit-
erature (e.g., [17]–[21]) in improving motion control perfor-
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mance. For example, in state estimation, the benefit of accel-
eration sensing is yielding a kinematic model from the acceler-
ation to the position, which is independent of the plant parame-
ters [20]. Accordingly, a kinematic Kalman filter can be set up
by using the acceleration measurement as an input for velocity
estimation [21].

In this paper, we consider an LM control system integrated
with a low-resolution position encoder and augmented by an ac-
celerometer. The accelerometer is used to improve the position
tracking control in two ways. One is in the design of a distur-
bance observer (DOB), the roles of which are for disturbance
and friction compensation and for overcoming payload varia-
tions. It will be shown that the performance of a DOB with an
acceleration signal as the input outperforms that with quantized
position measurements because the acceleration sensing noise is
relatively low compared to the quantization noise. The other is
in the design of a reset kinematic state estimator (RKSE). It will
be shown that the kinematic state estimator is more or less inde-
pendent of the system model, thus, is not only robust against
plant parameters but also insensitive to the input disturbance
and friction force. Moreover, we attempt to further decrease the
estimation error by extracting additional information from the
quantized output, which is then used to update the estimated
state by a reset technique. Previous research has demonstrated
that the feedback controller with properly designed state reset-
ting can outperform a purely linear controller (e.g., see [22] and
[23]). Here, we will employ a reset technique to improve the
state estimator. Our reset scheme is guided by the idea that the
actual position is known exactly at the mid-point of two consec-
utive quantizer levels when the quantized measurement changes
the quantization level. Finally, the estimated state is fedback to a
controller derived based on the well-known internal model prin-
ciple (IMP) design technique [24]. The IMP-based controller is
simple to design and straightforward to implement. Further, it
can track sinusoidal reference input with zero steady-state error
if accurate state feedback is available.

The rest of this paper is organized as follows. Section II
describes the LM plant model and the details of the sensors.
Section III illustrates the fusion of the acceleration measure-
ment and quantized position as feedback signals to a control
structure which is comprised of three components, i.e., the
DOB, the RKSE, and a state feedback controller. Details of
these components are then presented in Sections IV–VI, respec-
tively. Section VII presents experimental results to demonstrate
the effectiveness of using the accelerometer and the RKSE in
tracking control. Finally, conclusions are given in Section VIII.

Partial and related results of this paper were presented previ-
ously in [25].

II. PLANT MODELING

The experimental setup for a linear motor positioning system
(by Baldor Electric Company) is shown in Fig. 1. The linear
motor has a 0.5 m travel range with a mounted optical encoder
(by Renishaw PLC), and a voltage-to-current power amplifier. A
simplified plant model of the linear motor system is described in
Fig. 2, where the symbol definitions are described in Table I. The
physical parameters of the linear motor are also listed in Table II,
which are either provided by the manufacturer or identified from

Fig. 1. Experimental setup of a linear motor positioning system.

experiments. In Fig. 2, denotes gain variation mainly caused
by various load mass, which is assumed to be slow-varying. The
power amplifier dynamics is simplified as a constant gain
as it has much higher bandwidth than the desired closed-loop
servo bandwidth. We employ a nonlinear friction model in [3]
to represent the friction model in the linear motor system,
which is given by

(1)

where denotes the sign function, represents the un-
modeled friction force, and other friction parameters are de-
scribed in Table II, whose values are obtained by using the ex-
perimental method in [26]. Fig. 3 shows the measured and iden-
tified friction model, which verifies the accuracy of the identi-
fied friction model. Therefore, the identified friction model in
(1) is used for the simulation of the actual linear motor position
control performance.

A. Position Sensing

In our setup, we consider the position measured by an en-
coder. Thus, the measured position for control is a quantized
version of the actual position given by

(2)

The function represents a uniform quantizer defined by

if (3)

where and denotes the constant quantization step
size, which is also referred to as sensor resolution in motion con-
trol systems. We assume that the quantization range is infinite.
Fig. 4 shows the input-output relationship of (3). The quantizer
introduces a sensing error on the controlled output as fol-
lows:

(4)

with

(5)
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Fig. 2. Plant model of the linear motor positioning system (see Tables I and II for symbol definitions and parameter values).

TABLE I
SYMBOL DEFINITIONS IN PLANT MODEL

TABLE II
PLANT MODEL PARAMETERS

The optical encoder in our setup has a resolution of 1 m.
But we pass the output through an artifical quantizer of (3) im-
plemented in the DSP to simulate a lower resolution encoder by
setting the quantizer step size

10 m (6)

Under such a setting, the original output of the optical encoder
is approximated as the actual position and used for monitoring

Fig. 3. Experimental friction model. (The vertical axis is measured in terms of
the steady-state force input � that compensates for the friction force to make
the linear motor move at the corresponding constant velocity.)

Fig. 4. Quantization characteristic;�: quantization step size (encoder resolu-
tion).

only, while the output of the artifical quantizer is used for control
purposes.
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Fig. 5. Accelerometer sensing noise.

B. Acceleration Sensing

The accelerometer (by Crossbow Inc.) is mounted onto the
linear motor and aligned to the linear bearing rail as shown in
Fig. 1. This is used to measure the linear acceleration of the
motor stage. The accelerometer offers a 39.2 m/s measure-
ment range, has a DC-100 Hz frequency bandwidth, and yields
an analog voltage output proportional to the acceleration such
that a direct interface to an analog-to-digital converter (ADC)
for control purpose can be easily performed. The accelerometer
after calibration offers a low-level sensing noise for our appli-
cation, which is measured and shown in Fig. 5. We can see from
the fast Fourier transform (FFT) spectrum that the noise behaves
like white noise with higher densities in low frequencies. The
accelerometer utilizes a silicon micro-machined technology that
offers a compact sensor size with a significantly lower cost than
a high-resolution optical encoder.

In the rest of this paper, we attempt to investigate how to
fuse the measured acceleration signal and the quantized position
signal for enhanced linear motor tracking performance. As such,
a cost-effective method for linear motor positioning control can
be obtained.

III. CONTROL STRUCTURE

Our objective is to design a control law to make the posi-
tion output of the linear motor stage accurately follow a si-
nusoidal reference input under the constraints of friction, load
mass variations and the position quantization noise. This control
task can be completed through a sequential design procedure.
Fig. 6 shows a block diagram of the overall linear motor posi-
tion control structure, where the controller is comprised of three
components: the DOB, the RKSE, and the state feedback con-
troller based on the IMP. The sequential design procedure sim-
plifies the design into separate steps, each aiming for a specific
goal and as such to achieve the overall control objective. Here,
the DOB is first designed to compensate for the external distur-
bance, friction, and load mass variation. The proposed RKSE
aims to suppress the quantization noise and thus to obtain the
accurate position and velocity information, which is then used
as the input to the state feedback controller for position tracking.

Fig. 6. Overall position control structure for the linear motor positioning
system.

In what follows, we will present the design for each controller
component, the effectiveness of which is then verified through
simulations and experiments.

IV. DISTURBANCE OBSERVER (DOB)

The DOB technique and its variations [27] have been widely
used in many servo systems and industrial applications. In hard
disk drive servo systems, the DOB has been combined to com-
pensate for pivot friction nonlinearity [18], reject shock and vi-
bration disturbances [28], and to cancel the effects of modeling
errors [29]. The error-based DOB is attempted to enhance the ro-
bustness and disturbance rejection for optical disk drive systems
[30]. In [31], the DOB is implemented in a robot for force control
instead of using the force sensor. More recently, communication
disturbance observer is also proposed for time-delay compensa-
tion for network-based teleoperation control systems [32]. In this
section, we apply the DOB technique incorporating the accelera-
tion measurement for disturbance and friction compensation and
for overcoming payload variations in the LM system.

From the plant model in Fig. 2, the friction force , input
disturbance , and the gain uncertainty exert adverse effects
on the tracking performance. The role of DOB is to estimate the
disturbance and thereby eliminate it. Further, the DOB observes
and compensates for the input-output model discrepancies be-
tween the actual plant model and a nominal plant model em-
bedded in the DOB. In our setup, the model discrepancies are
mainly caused by the nonlinear friction and gain variations in
the payload.

Fig. 7 shows the control structure of the DOB based on accel-
eration feedback. The reason for employing acceleration instead
of quantized position feedback is to avoid introducing the quan-
tization noise into the DOB loop. In addition, the DOB is easy
to design and implement since the dynamics from the control
input to the acceleration output can be approximated by a pure
gain within the frequency bandwidth of our interest.

From Fig. 7, the sensed signals and go into the DOB
and the output signal from the low-pass filter is fed
back to the control input. The dynamics from to the actual
acceleration is then given by

(7)
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Fig. 7. Control structure of DOB based on acceleration sensing.

Ideally, given that , we have

Thus, the external disturbance and friction force are perfectly
canceled, although the measurement noise is all-pass. This again
explains the reason for using the acceleration signal as the input
instead of the quantized position that contains a much higher
level of noise. Practically, is selected to be a low-pass
filter to balance the compensation of sensing noise and distur-
bance. Since the nominal model from to can be treated as
a constant gain, there is no strict requirement of the order of the
filter for causality. One simple choice of can be

(8)

where is a positive time constant chosen as 5 to 10 times
the servo bandwidth such that the filter can be approximated as

within the frequency bandwidth of interest. When
the filter is applied, the input-output transfer function of the
DOB is given by

(9)

It is clear that the DOB (9) is stable provided that .
Therefore, there exists an such that

(10)

where represents an equivalent residual disturbance that is be-
yond the capability of the DOB to reject. Generally, contains
high frequency components, which can be further filtered by the
low-pass featured plant model.

Fig. 3 shows the effectiveness of the DOB on friction com-
pensation by experiments. Accordingly, the linear motor plant
model behaves as a second-order linear system given by

(11)

which is employed as the nominal model for the design of the
state feedback controller in Section VI.

V. RESET KINEMATIC STATE ESTIMATOR (RKSE)

In this section, we will employ both the quantized position
signal and the acceleration signal to design the state estimator.
Since acceleration and velocity are the two principal quantities
which describe how the position changes, a purely kinematic
model that relates the acceleration to the position is
given by

(12)

However, in practical applications, only the measured kinematic
variables and are available, which may deviate from their
actual values. Further, the initial values of the kinematic vari-
ables are generally unknown. Thus, it is essential to build a
closed-loop estimator to reduce the sensing noise without the
knowledge of the initial conditions. To proceed, we represent
the kinematic model in the state space as follows:

(13)

where

(14)
Note that the acceleration is treated as the input, and the system
matrices involve none of the plant parameters. Thus, It is clear
that the kinematic model has advantages: It is a simple and exact
representation of the system state up to certain bandwidth. It
involves neither physical parameters nor external disturbance,
friction, and model uncertainties.

In order to achieve a smooth and accurate estimate of the state
using the measured acceleration and the quantized position, the



84 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 18, NO. 1, JANUARY 2010

most common way is to use the standard state estimator (SSE)
as follows:

(15)

(16)

where and are, respectively, the estimate of the state and con-
trolled output, and is the estimator gain. Convention-
ally, can be artificially selected by using the pole placement
method or optimally designed using the Kalman filtering tech-
nique, where both the process noise and quantization error are
assumed to be white Gaussian noises. However, more accurate
state estimate is possible if the quantization scheme is further
employed.

Though the quantized output gives discretized measure-
ments of the actual , we can still extract additional information
given a sequence of measured quantized outputs. From Fig. 4,
we can obtain the following observations.

1) At the time when the quantized output transits from one
quantization step to another, the actual position is known
exactly, which is at the midpoint of the two consecutive
quantization levels.

2) At the time when the quantizer holds its output equivalent
to a certain quantization step, according to the fact of (5),
the actual position relative to the quantized output is al-
ways bounded by . This implies that any estimate of

at these times must be bounded by relative to the
instantaneous quantized output.

We note that these observations can be used to improve the es-
timate of the state.

In the following, we present a RKSE with the use of a reset
technique.

A. Reset Kinematic State Estimator

First, we start with the standard state estimator (15), (16),
where is chosen such that is stable. We then in-
troduce a vector as follows [15]:

(17)

where is a positive definite symmetric matrix, which
is the solution of the following Lyapunov function:

(18)

Next, we modify the standard state estimator (15), (16) to in-
corporate the additional information from the quantized output.
Namely, we reset the estimated state in the following two cases.

1) At the reset time , which is defined as

(19)

the estimated state is reset by

(20)
It is easy to verify that the new estimated state leads to

(21)

2) At the prespecified reset time defined by

(22)

where indicates a predefined reset interval (e.g., equiv-
alent to the sampling period), the estimated state is then
reset by

(23)

where is the saturation function with the saturation
level of . We can see that the new estimated state can
lead to (24) shown at the bottom of the page. Hence, it
can be seen that overestimation of the estimated output

is prevented while the estimated output is unchanged if
overestimation is not detected.

By incorporating the preceding reset schemes into the SSE
(15), we obtain a RKSE, which has the form

(25)

(26)

(27)

(28)

where and are the new estimated state at time
, , respectively.

if ;

otherwise
(24)
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B. Stability Analysis

We now analyze the stability of the RKSE (25)–(28). Define
the estimator error

(29)

Subtracting the estimator (25)–(27) from the kinematic model
(13) yields the estimator error system with the following dy-
namic equations:

(30)

where

Lemma 1: The estimator error system (30) is uniformly
bounded-input bounded-state (UBIBS) stable. More specifi-
cally, for any and , there exists such that

(31)
Proof: See Appendix.

C. Simulated Comparison of RKSE and SSE

We carry out simulation studies on the LM plant model to
show the effectiveness of the reset actions in state estimation.
The performance index compared is the root mean square
(RMS) of the sampled position estimation error , which is
defined by

(32)

where , and is the number of the samples.
According to (30), the estimator gain should be selected to

balance the effects of the acceleration sensing noise and quan-
tization noise on the estimation error. The estimator gain for
the RKSE and SSE is tuned by pole placement method, which
is chosen as

(33)

where , and (in Hz) is referred to as the esti-
mator bandwidth that is tuned iteratively to achieve the smallest

in (32). The estimator gain (33) will result in the
eigenvalues of the estimator system matrix to be placed at

.
During the simulation, the LM is assumed to rest at an initial

position with

23 m (34)

Fig. 8. Position estimation error versus estimator bandwidth �� � 50 �m�.

A simple PID controller with the actual position as feedback
is designed such that the position output follows a sinusoidal
reference command

(35)

where 10 Hz, and (in micrometers) is the reference am-
plitude. The quantized position output together with the ac-
celeration signals added by a white noise with a variance of 7.3
m/s are then injected into the RKSE and SSE, respectively. The
sampling period is set to be one cycle of the reference frequency,
i.e., 0.1 s. The reset interval for RKSE is 50 s. The state esti-
mators RKSE and SSE are run simultaneously.

Fig. 8 shows the simulation results of the achievable estima-
tion errors versus estimator bandwidth for 50 m. It is
obvious that RKSE can achieve a significant smaller
than that by either the SSE or the original quantizer. We can
also see that a lower bandwidth (equivalent to smaller ) is al-
lowed for RKSE to alleviate the quantization noise. The cor-
responding time traces of the position estimation are shown in
Fig. 9, where one of the reset actions is marked, and it can be
seen that RKSE has a faster transient convergence to the actual
position and a smaller maximal estimation error in steady state.
Finally, we carry out simulations with various reference mag-
nitudes. The results are summarized in Table III. It can be seen
from the columns that both the achievable smallest
and in steady state by RKSE and SSE tend to de-
crease when increases. This is because the larger increases
the rate of change of the position output, which in turn can be
correctly updated by the quantizer more frequently and thus re-
duce the variance of the quantization noise. Hence, a higher
bandwidth (larger ) is applied to suppress . From the table,
we see that the performance indices for the RKSE are the best
in each case, which demonstrates that the RKSE is better at po-
sition estimation and more robust against reference amplitude
changes.
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Fig. 9. Time responses of position estimation �� � 50 �m�. (a) RKSE. (b) SSE.

VI. STATE FEEDBACK CONTROL USING IMP

In sinusoidal reference tracking, a state feedback controller
is designed to make the LM follow a sinusoidal reference com-
mand (35) with a known frequency. An effective design method
is to use the IMP. This method includes the model of the refer-
ence signal as a part of the problem formulation and solving the
problem of control in a tracking error space. The method is il-
lustrated in detail in [33]. From Fig. 6, the nominal plant model
is seen as (11), whose state-space representation is given by

(36)

where

(37)

(38)

Note that is the residual disturbance from the DOB as shown
in (10), and is the estimation error (29).

For the purpose of control design, we first assume that the full
state feedback is available and that can be ignored. For the
reference input (35), we then have the differential equation

(39)

Define the tracking error as

(40)

The problem of tracking can be seen as the regulation
problem of tracking error, which means to design a control law

such that the error tends to zero in the steady state. To do
this, we define a new state and control input as follows:

(41)

(42)

which relate the original plant state and control input to the dif-
ferential equation of the reference (39). Accordingly, an overall
system state equation can be described as

(43)

where

(44)

It is easy to verify that is controllable, which implies
that the error system (43) can have arbitrary closed-loop poles
by state feedback. Therefore, there exists a control law

(45)

(46)

such that the error system (43) has arbitrary pole placement.
Expressing the control law in terms of and gives that

(47)



ZHENG AND FU: RESET STATE ESTIMATOR USING AN ACCELEROMETER 87

TABLE III
COMPARISONS OF POSITION ESTIMATION PERFORMANCE

The actual state is unavailable in practice, which should be re-
placed by the estimated state. Therefore, the real control input

is given by

(48)

where and can be obtained from either the SSE or RKSE.

A. System Analysis

In real implementation of (48), the equivalent disturbance
sources and will also enter the feedback loop. It is easy to de-
rive the transfer function from the various inputs to the tracking
error as follows:

(49)

where

(50)
whose roots are equivalent to the eigenvalues of
that are designed to be stable in terms of (45). Therefore, we can
see that the overall closed-loop system is stable and the tracking
error is ensured to be bounded as a result of the bounded
and that have been proved in previous sections. Especially, we
have provided that both and

.

VII. EXPERIMENTAL RESULTS

To show the effectiveness of the proposed control method, ex-
periments are conducted on the LM positioning system. The ad-
vantages of the DOB and RKSE with accelerometer are demon-
strated. For comparison, we also show the experimental results
by a conventional DOB and SSE without accelerometer.

In the experiments, the same state feedback controller is used
in all cases. The state feedback gain in (45) is designed such
that the poles of the corresponding closed-loop system in (49)
are placed at . For the control
scheme using accelerometer, the bandwidth of the filter (8)
in the DOB is chosen as 600 Hz, while the bandwidth of RKSE
is chosen in terms of the reference amplitude and to minimize
the RMS of tracking error. The bandwidth values for RKSE are

found to be closed to the corresponding items in Table III. For
the control scheme without accelerometer, the DOB is replaced
by our previous design in [34] that uses the quantized position
signals as input instead of the acceleration. In this DOB, we
employ a third-order filter given by

(51)

where corresponding to a frequency bandwidth of
100 Hz, which has to be much lower than that with accelerom-
eter for suppressing the quantization noise. Further, the SSE is
used for state estimation with the control signals and quan-
tized position as inputs. Similarly, we refer to the bandwidth
values for SSE in Table III as initial values, which are then finely
tuned to minimize the RMS of tracking error. Interestingly, we
find that the bandwidth of SSE that achieves the smallest RMS
of estimation error does not always lead to the smallest RMS of
tracking error. This is mainly because the quantization noise in
the case of sinusoidal position tracking is harmonic and nonsta-
tionary.

The overall controller was implemented on a real-time DSP
system (dSPACE-DS1103, dSPACE GmbH, Paderborn, Ger-
many) with the sampling period 0.2 ms. After the LM control
system was running steadily, we collected 2501 samples of the
signals of interest, and then calculated the performance indices

, , , , respectively, where the
is defined similarly by (32). Figs. 10–12 present the ex-

perimental results. Fig. 10 shows the time-domain responses of
the position tracking, and from the top and bottom plots we can
easily see that the actual position in (a) follows the reference
command more accurately than that in (b). Moreover, the middle
plots of Fig. 10 indicate that the control input in (a) is smoother
and has less signal chattering than that in (b). We believe that
the chattering is mainly caused by the quantization noise that
enters the DOB without using accelerometer. This is because
the chattering occurs at the points where the rate of change of
the position is fast, which implies the corresponding quantiza-
tion noise features frequent zero crossings at these points. This
problem is largely amended when the accelerometer that of-
fers smooth input signals is incorporated into the DOB. We also
conducted experiments with various reference amplitudes to ex-
amine the robust tracking performance. Fig. 11 summaries the
results for easy comparison. We can see that for any reference
the performance indices from the experiments with accelerom-
eter and RKSE (Exp A) outperform those without accelerometer
and with SSE (Exp B).
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Fig. 10. Experimental position tracking performance �� � 50 �m�. (a) With accelerometer and RKSE; (b) without accelerometer and with SSE.

Fig. 11. Summary and comparison of experimental position tracking perfor-
mance (Exp A indicates experiments with accelerometer and RKSE; Exp B in-
dicates experiments without accelerometer and with SSE).

Finally, we evaluated the robust tracking performance when
the LM stage was carrying a 1 kg payload. The results are shown
in Fig. 12, which indicates that the controller with accelerometer
and RKSE has better robustness in terms of smaller difference
of between with payload and no payload. This veri-
fies the effectiveness of the DOB on the compensation for gain
variations.

In summary, we can see from the above results that the per-
formance achieved by the setup with accelerometer and RKSE
significantly outperforms that without accelerometer. From the

Fig. 12. Experimental robust tracking performance �������	 � 1 kg�.

industrial point of view, the tradeoff between cost and perfor-
mance is a critical issue. In our setup, the add-on accelerometer
costs roughly 2% in the whole system budget. Alternatively, we
may use a more expensive replacement encoder to achieve the
equivalent improved tracking performance. From simulations,
this requires an encoder of at least twice higher resolution than
the original encoder. As far as we know from the manufacturer,
such an encoder for our application will cost much more than an
accelerometer. It should also be noted that the use of accelerom-
eter can provide additional advantages such as control signal
smoothing and enhanced robustness as shown in the above ex-
perimental results. Therefore, the scheme using the accelerom-
eter and RKSE is cost-effective for motion control systems.
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VIII. CONCLUSION

This paper has attempted to enhance the tracking perfor-
mance of an LM control system by incorporating a cost-effec-
tive accelerometer. The controller is composed of the DOB, the
RKSE, and the IMP-based feedback controller, which are se-
quentially designed based on the fusion of the acceleration and
quantized position signals. Particularly, the DOB is designed
with the acceleration signals as feedback to prevent the quanti-
zation noise from entering the DOB loop. A RKSE is built with
the acceleration signals as input that makes the state estimate
immune to both system perturbations and input disturbances.
Further, a reset technique is proposed in the RKSE, which can
thus update the estimated state by using the extracted infor-
mation from the quantizer output. Analysis and simulations
have shown that the RKSE provides more accurate and robust
position estimate than the SSE without reset. Lastly, we apply
the IMP to design the state feedback controller for sinusoidal
reference tracking. Experimental results have demonstrated that
the use of accelerometer and RKSE can significantly enhance
the position tracking performance and the robustness to system
gain variations caused by payload.

The DOB and RKSE incorporating acceleration measure-
ment is applicable in other motion control systems. However,
it should be noted that other technical problems may arise for
some specific applications. For example, in rotational motion
control, the mounting of an accelerometer on the rotor is
generally difficult and the transmitted signal from the rotor
to the controller is easily influenced by electrical noise [21].
Further, for servo systems where the sampling rate is rather
low or the encoder is significantly imperfect due to optical,
mechanical and electrical inaccuracy [35], the performance of
RKSE decreases because the trusted position transition is not
captured accurately. To alleviate this problem, we may identify
the imperfections by experiments and then precompensate for
the imperfections prior to the RKSE. Finally, we may explore
the design of the feedback controller and the estimator jointly
to further suppress the quantization noise rather than individual
design. We will further investigate these issues in future work.

APPENDIX

PROOF OF LEMMA 1

First, we consider the case of . Let
be the Lyapunov function of the estimator error

system (30). Thus, we have

(52)

where is a small scalar such that . Since
and are both bounded, is bounded.

Next, we evaluate the Lyapunov function increment at

Last, we evaluate the Lyapunov function increment at

where

(53)

From (24), it is implied that

if

if

Accordingly, we have , and thus

(54)

Following (52), we can show that there exist positive , ,
and such that

(55)

where . We can thus take

(56)

for (31).
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