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Abstract—The time-interleaved architecture permits imple-
menting high frequency analog-to-digital converters (ADCs) by
multiplexing the output of several time-shifted low frequency
ADCs. An issue in the design of a time-interleaved ADC is
the compensation of timing mismatch, which is the difference
between the ideal and the real sampling times. In this paper
we propose a compensation method which, as opposite to other
approaches, do not make a bandlimited assumption on the
signal to be sampled. The proposed compensation is designed
in a statistically optimal sense, to minimize the power of the
reconstruction error in the samples, for a given input signal
power spectrum. Due to the non-bandlimited assumption, perfect
reconstruction is not possible in general. However, if the input
signal is bandlimited, the proposed method achieves perfect
reconstruction, if no constraints are made in the order of
the compensation. Simulation results show that the proposed
compensation outperforms the other methods, in terms of the
reconstruction error power, for a given fixed compensation order,
except for signal having large zero regions in their power
spectrum. A generalization of the proposed method solves this
drawback, and will be addressed in a journal version.

I. I NTRODUCTION

A high speed analog-to-digital converter (ADC) can be re-
alized by using the so-called time-interleaved architecture [1].
In this technique, aD channel time-interleaved ADC consists
of D ADCs (called channel ADCs) having the same sampling
rate but different sampling phases, as if they were a single
converter operating at aD times higher sampling rate. Recent
high-speed ADCs using this technology achieve sampling rates
of up to 20 GS/s [2].

In spite of its conceptual simplicity, a drawback of the
time-interleaved technique is that mismatches between differ-
ent channel ADCs deteriorate the overall signal-to-noise-and-
distortion ratio (SINAD). Compensation methods for different
types of mismatches (gain, offset, jitter and timing) are avail-
able, for which a survey can be found in [3].

In this paper we consider the problem of timing mismatch
compensation, which is the difference between the ideal and
the real sampling time of each channel ADC. A first step in
a timing mismatch compensation strategy consists in estimat-
ing the mismatches. To this end, a number of methods are
available [4], [5], [6]. The timing mismatch information is
then used to design a compensation, which can be done using
different available approaches. An early method carries out
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the compensation in the frequency domain [7]. The drawback
of this approach is that, being a frequency domain method,
it theoretically requires the batch processing of the “whole
history” of the sampled signal, which prevents its usage for
real time applications. To go around this issue, a number of
methods have been proposed which carry out the compensation
using multirate filterbanks [8], [9], [10]. We give an overview
of these methods in Section III.

A common assumption of the methods in [8], [9], [10] is that
the signal to be sampled is bandlimited. Under this assumption,
all methods are able to achieve perfect reconstruction (i.e.,
the contribution of the timing mismatch to the overall SINAD
is completely removed), if the order of the compensation is
not truncated. The arguable point of doing so is that this
might not be a realistic assumption in many applications. To
address this issue, we propose in this paper a filterbank-based
method which uses the knowledge of the power spectrum
of the signal to be sampled, to carry out a compensation
in a statistically optimal (least-mean-squares (LMS)) sense.
The proposed compensation is derived as a (matrix) Wiener
filter [11]. However, we point out in Section V that, like
the methods in [8], [9], [10], it is equivalent to a filterbank
compensation. Since the proposed method is designed for
non-bandlimited signals, it obviously cannot achieve perfect
reconstruction in general. However, as we show in Section VI,
it does so in the bandlimited case, if no constraints are made
in the order of the compensation.

Throughout the paper we use the following:

Notation: Continuous-time signals are denoted using non-
bold letters (e.g.,X(t)) and discrete-time signals using bold
letters (e.g.,X(k)). Thez-transform of a discrete-time signal is
denoted byX(z), andX∗(z) denotes the transpose conjugate
of X(z). Finally, X ∗ Y denotes the convolution of discrete-
time signals, i.e.,

(X ∗ Y)(k)=
∑

l∈Z

X(l)Y(k − l)

Matrix pseudoinverse: Let M† denote the (Moore-
Penrose) pseudoinverse [12] of the matrixM . For any M ,
the following conditions hold:

MM†M = M (1)

M†MM† = M† (2)

(M†)∗ = (M∗)† =: M†∗ (3)



Also, if M has a left inverse (i.e., there existsML such that
MLM = I), then

(MN)† = N†M† (4)

II. T IME-INTERLEAVED ADCS

The time-interleaved ADC scheme is depicted in Fig.??.
The continuous-time input signalx(t) is a stationary random
process which is sampled usingD slow rate channel ADCs,
operating at sampling frequency1/DT , but having different
sampling phases. Thed-th ADC’s sampling phase is denoted
by td, i.e., its outputyd(k) is given by

yd(k) = x(td + kDT ) (5)

The outputsyd(k), d = 1, · · · ,D are then multiplexed to
generate the time-interleaved ADC outputy(k), which has an
average rate of1/T .
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Fig. 1. Time-interleaved analog-to-digital converter scheme.

Obviously, if the sampling phasestd satisfy

td = (d − 1)T, d = 1, · · · ,D (6)

theny(k) equals the samplesz(k) that would be obtained by
using a fast ADC of sampling frequency1/T , i.e.,

y(k) = z(k) := x(kT ) (7)

However, (6) cannot always be guaranteed in practice, and
therefore, an estimatêz(k) of the regular samplesz(k) need
to be constructed from the available samplesyd(k), d =
1, · · · ,D.

III. M ETHODS FORTIMING M ISMATCH COMPENSATION

As mentioned in Section I, a number of filterbank-based
methods have been proposed to address the timing mismatch
compensation problem described in Section II. A general
scheme describing all of them is shown in Fig.??. In this
scheme, the arrangement ofM channel ADCs, with its asso-
ciated sampling phases, is considered as an analysis filterbank
with continuous-time input and discrete-time output, formed
by the filters etms, m = 1, · · ·M (with s denoting the
Laplace variable), whose outputs are synchronously sampled
at frequency1/DT . Notice that this scheme permits the use
of oversampling (i.e.,M > D) in the design of the time-
interleaved ADC. The compensation is then done by using a

synthesis filterbank, which is implemented by an upsampling
operation (i.e.,D− 1 zero valued samples are added between
every two samples), then filtering each component using the
array of filters fm(z) m = 1, · · · ,M , and finally adding
together all the resulting signals.

+
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Fig. 2. Filterbank-based timing mismatch compensation scheme.

Using the scheme in Fig.??, we give a brief overview of
the available methods below.

EO: Yao and Thomas proposed in [13] a formula for perfect
reconstruction of a bandlimited continuous-time signal which
is irregularly sampled with an average rate higher than or equal
to the Nyquist rate. It was shown in [8] that if the sampling
grid is periodic (as is the case in a time-interleaved ADC),
and the continuous-time signal needs only be reconstructed
in a regular grid (as in (7)), then the reconstruction formula
is equivalent to a filterbank-based reconstruction, as shown in
Fig. ??. In the resulting filterbank,M = D and the filters
fm(z) m = 1, · · · ,M are given by

fm(ejω) =
1

T
f̂m

(ω

T

)

e−j
ωtm

T , |ω| < π

wheref̂m (ω) denotes the Fourier transform of

fm(t) = sinc

(

πt

MT

) M
∏

n=1,n 6=m

sin
(

π(t+tm−tn)
MT

)

sin
(

π(tm−tn)
MT

)

and sinc(x) = sin(x)/x.

JL: In [9] the synthesis filterbank is designed using digital
fractional delay filters. More precisely,

fm(ejω) = ame−j
ωtm

T , m = 1, · · · ,M, |ω| < π

and the coefficientsam, m = 1, · · ·M are designed to
minimize the reconstruction error. It is shown that if the input
signalx(t) is bandlimited to|f | ≤ f0 and

f0 ≤
D + 1

4MT
, (8)

the proposed scheme achieves perfect reconstruction.



PLH: A different approach is used in [10], where in order
to design the compensation, the continuous-input/discrete-
output analysis filterbank in Fig.?? is replaced by a discrete-
input/discrete-output filterbank, formed by digital fractional
delay filters, i.e.,

hm(ejω) = ej
ωtm

T , m = 1, · · · ,M, |ω| < π

Then, the synthesis filterbank is designed to minimize the
reconstruction error of a hypothetical discrete-time signal
applied to the input of the filtershm, m = 1, · · · ,M . This
analysis filterbank substitution introduces no error ifx(t) is
bandlimited to|f | ≤ 1/T , in which case, this scheme is able
to achieve perfect reconstruction ifM ≥ D.

IV. PROPOSEDMETHOD

The measured sampling grid{tm + kDT : k ∈ Z,m =
1, · · · ,M} is irregular and periodic with periodDT , while
the desired grid{kT : k ∈ Z} is regular with rate1/T . Now,
both grids can be turned into regular sampling grids of rate
1/DT taken on the vector signals

Y (t) = [x(t1 + t), x(t2 + t), · · · , x(tM + t)]T

Z(t) = [x(t), x(T + t), · · · , x((D − 1)T + t)]T

Hence, we can restate the problem as that of estimating
Z(k) = Z(kDT ) from Y(k) = Y (kDT ). This is a classical
problem in estimation theory, and since the (vector) signals
Y(k) andZ(k) are stationary random processes, the solution
is given by the so-called Wiener filter [11]. More precisely,
the estimatêZ(k) of Z(k) is given by

Ẑ(k) = (W ∗ Y)(k)

where W(k) denotes the Wiener filter (matrix) impulse re-
sponse, which is calculated to minimize the power of the
reconstruction error signalE(k) = Z(k) − Ẑ(k), i.e.,

W = arg min
W′

E
{

|Z(0) − (W′ ∗ Y)(0)|
2
}

(9)

whereE{·} denotes expected value. The resulting scheme is
shown in Fig.??.

To derive an expression forW(k), let RY(k) andRZY(k)
denote the correlation matrix ofY(k) and the cross-correlation
matrix betweenZ(k) andY(k), respectively, i.e.,

RY(k) = E{Y(k)Y∗(0)} (10)

RZY(k) = E{Z(k)Y∗(0)} (11)

and letrx(t) denote the autocorrelation ofx(t), i.e.,

rx(t) = E{x(t)x(0)}

We have that, for eachm,n = 1, · · · ,M ,

[RY]m,n(k) = E{[Y]m(k)[Y]n(0)}

= E{x(tm + kMT )x(tn)}

= rx(kMT + tm − tn)
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Fig. 3. Proposed compensation scheme.

and for eachd = 1, · · · ,D,

[RZY]d,m(k) = E{[Z]d(k)[Y]m(0)}

= E{x((d − 1)T + kDT )x(tn)}

= rx(kDT + (d − 1)T − tn)

Then, the solution of (9) is given by

W(z) = SZY(z)S†
Y

(z) (12)

where

SY = Z{RY}

SZY = Z{RZY}

V. I NTERPRETATION AS AFILTERBANK -BASED

COMPENSATIONMETHOD

As mentioned in Section I, the proposed compensation
method is equivalent to a filterbank-based method as depicted
in Fig. ??. Using the so-called polyphase representation of a
filterbank [14], we can interpret theM × D transfer matrix
W(z) as the polyphase representation of a synthesis filterbank
with upsampling factorD and filters

fm(z) =

D−1
∑

d=0

zdWm,d(z
D), m = 1, · · · ,M (13)

where Wm,d(z
D) denotes the(m, d)-entry of the transfer

matrix W(z). Then, the proposed method provides, for any
value of M and D, an optimal reconstruction ofz(k) from
the samplesy(k), and for a prescribed input power spectrum
φx = Z{rx}.

A common feature of the methods in Section III is that
they achieve perfect reconstruction ifx(t) is bandlimited. In
the next section we show that the proposed method also enjoys
this property ifM ≥ D.



VI. BANDLIMITED CASE

Let x(t) be bandlimited with support in|f | < 1/T . Then,
we can write

x(t) =
∑

k

x(kT )sinc

(

t

T
− K

)

Consider the discrete-timeM×D transfer matrixA(z), whose
(m, d)-entry Am,d(z) has impulse response

Am,d(k) = sinc

(

kD +
tm
T

− (d − 1)

)

Then, it is straightforward to see that

SY(z) = A(z)SZ(z)A∗(z) (14)

SZY(z) = SZ(z)A∗(z) (15)

We need the following lemma:
Lemma 1: If x(t) is bandlimited with support in|f | < 1/T

andM ≥ D, then

SZY(z)S†
Y

(z)SYZ(z) = SZ(z)

Proof: It was shown in [13] that a bandlimited signal can
be perfectly reconstructed from its irregular samples if the
average sampling rate is grater than or equal to the Nyquist
rate. In our context, this implies thatA(z) has a left inverse
on the unit circle. Hence, for all|z| = 1,

A†(z)A(z) = I

Now, from (14) and (4), it follows that

S
†
Y

(z) = A†∗(z)S†
Z
(z)A†(z) (16)

Combining (15) and (16) we have that

SZY(z)S†
Y

(z)SYZ(z) = SZ(z)S†
Z
(z)SZ(z)

= SZ(z)

where the second equality follows from (1).
Thez-transformSE(z) of the autocorrelation matrixRE of

the error signalE(k) = Z(k) − Ẑ(k) is given by

SE(z) = SZ(z) − SZY(z)W∗(z)

−W(z)SYZ(z) + W(z)SY(z)W∗(z) (17)

Now, using (12) and Lemma 1, we have that

W(z)SYZ(z) = SZY(z)S†
Y

(z)SYZ(z)

= SZ(z) (18)

and

SZY(z)W∗(z) = (W(z)SYZ(z))∗

= S∗
Z
(z)

= SZ(z) (19)

Also, from (2) and Lemma 1 it follows that

W(z)SY(z)W∗(z) = SZY(z)S†
Y

(z)SY(z)S†
Y

(z)SYZ(z)

= SZY(z)S†
Y

(z)SYZ(z)

= SZ(z) (20)

Finally, putting (18), (19) and (20) in (17), we have that

SE(z) = SZ(z) − SZ(z) − SZ(z) + SZ(z)

= 0

implying that the proposed compensation achieves perfect
reconstruction.

VII. S IMULATION

In order to evaluate the proposed compensation method
we compare its performance with those of the methods
EO, JL and PLH described in Section III. To this end
we consider the example used in [9], [10], which uses5
channel ADCs (M = 5) with no oversampling (D = 5),
and with sampling phases[0, 0.96T, 2.02T, 2.99T, 4.03T ].
This corresponds to the following timing mismatches
[0,−0.04T, 0.02T,−0.01T, 0.03T ]. For simplicity, the sam-
pling period isT = 1. However, as opposite to the example
in [9], [10], we consider the input signal to be a random
process instead of a sum of sinusoids. This is a more realistic
assumption on the input signal, which corresponds to the
stochastic setting used to derive the proposed compensation
method.

The filters fm(z) m = 1, · · · ,M in the EO, JL and PLH
methods, as well as the Wiener filterW(z) in the proposed
method, have in theory infinite order, and therefore need to be
truncated. Following the design in [10] we have truncated the
synthesis filters to150 taps, and we have truncated the order
of W(z) so that its equivalent synthesis filterbank (13) has
the same number of taps.

In order to quantify the performance we use the inverse of
the SINAD, i.e.,

SINAD−1 = 10 log10

(

∑N

t=1 |z(t) − ẑ(t)|2
∑N

t=1 |z(t)|
2

)

In the first simulation we compare the performances of
the different methods, for several values ofωc, when the
input signal is generated as filtered white noise using a
Butterworth lowpass filter (input filter) of5-th order. The
frequency response of one of such filters, with cutoff frequency
ωc = 0.3Hz, is shown in Fig.??. The result is shown in
Fig. ??. We see that the proposed method outperforms the
EO, JL and PLH methods, in the whole cutoff frequency
range, but its extra performance is not so clear for high cutoff
frequency values. The reason for this is that, for these cutoff
frequency values, the performance of all methods is limited
by the amount signal power above the Nyquist frequency.

In the second simulation we repeat the experiment con-
sidering a Butterworth lowpass filter of20-th order for the
input filter. In this case, we observe that the performance
of the proposed method deteriorates at low cutoff frequency
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Fig. 5. Performance comparison of different compensation methods, using
a 5-th order Butterworth input filter.

values. This due to the truncation of the very high order
Wiener filter W(z), which is induced, viaS†

Y
(z), by the

large zero regions in the power spectrum of the input signal.
This drawback is not serious from a practical point of view,
since it corresponds to a rather unusual application of a high
frequency sampler. However, it illustrates how the performance
of the proposed method can be undermined if the input power
spectrum has large zero regions. If necessary, this drawback
can be eliminated, by designingW(z) as a constrained Wiener
filter, taking into account the desired truncation order. Due
to space limitations, this issue will be addressed in a journal
version.
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Fig. 6. Performance comparison of different compensation methods, using
a 20-th order Butterworth input filter.

Remark: The performance of the JL method is rather poor
in the high frequency range. The reason for this is that,

according to (8), the method is suitable for signals with cutoff
frequency smaller than0.3Hz (instead of0.5Hz as for the
EO and PLH methods). On the other hand, for very low
frequencies, it outperforms the other methods.

VIII. C ONCLUSION

We have proposed a compensation method for timing
mismatches in time-interleaved ADCs. As opposite to other
approaches, the proposed method does not require the input
signal to be bandlimited, hence, perfect reconstruction is
not possible in general. To deal with the non-bandlimited
assumption, the compensation was designed in a statistically
optimal (LMS) sense, i.e., to minimize the power of the
reconstruction error in the samples, for a prescribed input
signal power spectrum. While the compensation was designed
as a Wiener filter, we showed that it is equivalent to a
filterbank-based compensation. Also, we showed that, under
the bandlimited assumption, the proposed method achieves
perfect reconstruction, if no constraints are made in the order
of the compensation. Simulation results show that the proposed
compensation outperforms the other methods, in terms of the
SINAD, for a given fixed compensation order, except for signal
having large spectral zero regions. Due to space limitations,
this unusual situation will be dealt with in a journal version.
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