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Handwritten Digit Recognition by Adaptive-Subspace
Self-Organizing Map (ASSOM)

Bailing Zhang, Minyue Fu, Hong Yan, and Marwan A. Jabri

Abstract—The adaptive-subspace self-organizing map (AS-
SOM) proposed by Kohonen is a recent development in self-
organizing map (SOM) computation. In this paper, we propose a
method to realize ASSOM using a neural learning algorithm in
nonlinear autoencoder networks. Our method has the advantage
of numerical stability. We have applied our ASSOM model
to build a modular classification system for handwritten digit
recognition. Ten ASSOM modules are used to capture different
features in the ten classes of digits. When a test digit is presented
to all the modules, each module provides a reconstructed pattern
and the system outputs a class label by comparing the ten
reconstruction errors. Our experiments show promising results.
For relatively small size modules, the classification accuracy
reaches 99.3% on the training set and over 97% on the testing set.

Index Terms—Adaptive-subspace self-organizing map, hand-
written digit recognition, principal component analysis.

I. INTRODUCTION

M ANY neural networks learning methods have been pro-
posed to realize principal component analysis (PCA).

For example, an earlier approach for extracting the first
principal component [1] has been extended to a network with
multiple output units, with weight vectors spanning the sub-
space of the first principal components [2]. Another popular
learning rule which allows the weight vectors to converge to
exactly the first eigenvectors was proposed in [4]. The
significance of PCA has been much discussed. For example, in
pattern recognition, the subspace pattern recognition method
(SPRM) [3] can be directly set up on PCA. However, as a
linear method, PCA is inadequate in many real-world nonlinear
problems. In recent years, many developments on nonlinear
extension of PCA have been proposed. Examples include
principal curves [5], [6] and multilayer autoencoders [8],
which establish a global parametric or nonparametric model
to describe the nonlinear data structure. Another paradigm is
to use a mixture of local PCA to collectively model the data
space.

Constructing a mixture of local PCA usually involves the
partitioning of the data space followed by the estimation
of the principal subspace within each partition. A common
practice is to utilize the reconstruction errors from local
principal subspace projections as the relevant distortion mea-
sures to guide the data space partitioning. For example, Dony
and Haykin [8] and Kambhatla and Leen [9] independently
proposed a kind of vector quantization (VQ)/PCA mixture
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model which first partitions the data into disjoint regions
by VQ and then performs a local PCA about each cluster
center. Hintonet al. [10] considered the partition assignments
of examples among different PCA models in both-means
clustering procedure and the expectation maximization (EM)
framework. Recently, Kohonen proposed a modular neural-
network architecture called adaptive-subspace self-organizing
map (ASSOM) [11], [12], which creates a set of local subspace
representations by competitive selection and cooperative learn-
ing. In traditional SOM [13], [15], a set of reference vectors
is spatially organized to partition the input space. In ASSOM,
a number of submodels is topologically ordered, with each
submodel responsible for describing a specific region of the
input space by its local principal subspace. The ASSOM model
is attractive not only because it inherits the topographic repre-
sentation property in the original SOM, but also because the
learning results of ASSOM can faithfully describe the kernels
of various transformation groups. The simulation results in
[11] and [12] have illustrated that different feature filters can
be self-organized to different low-dimensional manifolds and
a wavelet type representation does emerge in the learning.

In an ASSOM model, local subspaces can be adapted by
linear PCA learning algorithms, which often converge slowly.
More importantly, when applying a linear PCA algorithm to an
ASSOM model, it is prone to instability problems. It is known
that there are a number of advantages in introducing non-
linearities into a PCA type network [16]–[18]. For example,
by extending the minimization problem of the mean-square
representation error from a linear network to its nonlinear
counterpart, the stability properties of the resulting learning
algorithm can be much improved over the corresponding
linear PCA learning algorithm. From this consideration, we are
proposing to realize local principal component representation
by an approximative principal subspace algorithm [16]–[18]
and apply the ASSOM model to classification as a generaliza-
tion of the traditional PCA-based subspace pattern recognition
method (SPRM) [3].

For practical multiclasses classification problems, we can
train a separate ASSOM model to describe each class of
data and then classify an unknown data point according to
whichever model gives the best match. As an application, we
apply the ASSOM model to handwritten digit recognition.
Although much progress has been made [19], handwritten
digit recognition remains a difficult problem. A major reason
is that it is often hard to successfully characterize the wide
diversity inherent in handwritten digits. Due to the importance
of invariance with respect to some basic transformation groups
such as translation, rotation, scaling, some efforts have been
made toward designing a recognizer which is tolerant to
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some small transformations. For example, Simardet al. [20]
have established a computationally expensive nearest neighbor
method that allows for typical digit transformation. The elastic
deformable matching [21] also attempts to capture all the vari-
ations with a single model, but using a very complex matching
scheme. As ASSOM has an important feature that some basic
transformation groups invariant filters (detectors) will emerge
directly, we can use these models to combine knowledge from
many examples about the diversity of characters.

This paper is organized as follows. In the next section,
we first review the method of subspace pattern recogni-
tion and neural-network implementations. The least square
reconstruction principle for a simple nonlinear autoencoder
is introduced. In Section III, we propose an approximative
implementation of ASSOM. Section IV presents ASSOM-
based modular classification scheme for handwritten digit
recognition and Section V gives experimental results. Finally,
concluding remarks are discussed in Section VI.

II. PATTERN RECOGNITION USING AUTOENCODERS

The goal of PCA is to find the orthogonal directions
in the -dimensional data space that account for the greatest
possible percentage of the data’s variance. Projecting the
data onto the -dimensional subspace spanned by these
basis vectors produces the optimal dimensionality reduced
description of the data in the sense that it achieves the min-
imum possible information loss. In pattern recognition, these
properties have been straightforwardly used for classification,
which is the subspace pattern recognition method (SPRM) [3].
In SPRM, certain linear subspaces within a pattern space are
used to represent classes and the basis vectors that span the
subspace define the features of the pattern. The most important
significance of establishing a correspondence between classes
and linear subspaces is that many important transformation
groups can be automatically taken into account. Classification
of an unknown pattern can then be set up on an efficiency
metric by which the subspace can represent the data.

A pattern subspace is defined by its basis vectors. A set of
linearly independent vectors in

spans a subspace

for some scalars

(1)

The basic operation on a subspace is a projection of a vector
via , where the projection matrix of is given

by , . If is an
orthonomal matrix, then can be simplified to
and the projection of by is . In this case, the
subspace can be written as

(2)

which is spanned by the -dimensional column vectors
of . The length of the corresponding orthogonal residual

can be used as a measure for efficiency the subspace
describing data , thereby forms the classification criterion.
For a problem with pattern classes, each class can be

represented by its own subspace ,
where is the number of basis vectors in . An
input pattern is classified according to its distances from

classes, with the distance being evaluated by decomposing
in terms of each subspace’s projection

(3)

The class to which is assigned can be defined as

(4)

That is, we choose the closest subspace for each data point.
This is in contrast to other classification approach such as
nearest neighbor, where a single point represents a class. In
SPRM, the decision boundaries between the classes (i.e., the
boundaries where two subspaces are equally far in terms of
orthogonal residual) are quadratic surfaces.

In the above SPRM, it is expedient to select principal
components for the basis vectors of a subspace and use neural
networks in the implementation [11], [12]. Amongst a number
of neural learning paradigms, a three-layer feedforward net-
work can be used to extract principal components, which has
nodes in the input and output layers andnodes in the hidden
layer. The network is usually called an autoassociative network
or - - autoencoder because it is trained to reproduce its
input.

In this paper, we consider a symmetrical network structure
in which input elements are transferred to hidden
units’ activations via the feedforward weights ,

, , ,
with being an activation function. The hidden layer activa-
tions are then carried to linear output units via connections

, yielding the outputs
, . We can rewrite the

connection weights in matrix form , . The
symmetry assumption implies . We denote as
the th column vector of , then the reconstruction vector

can be written as

(5)

Consider the optimization criterion

minimize

(6)

where stands for the expectation operator. Obviously, (6)
is a generalization of the least square reconstruction problem
leading to the standard PCA. Detailed studies of the objective
(6) have been given in [16]–[18], with the gradient descent
based learning rule as follows:

(7)

where is the time scale, is the diagonal matrix
whose th element is the derivative of , i.e.,

. .
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The close relationship between autoencoders and principal
component analysis has been discussed in many papers, for
example, [16]–[18] and [22]. For a linear autoencoder, i.e.,

, it has been proven that the autoencoder acts like a
linear PCA filter. In this case, the output reconstructs
the input with a corresponding squared reconstruction error

, which measures how well the model fits
the data. Similarly, in a nonlinear autoencoder, the activation

provides the coefficients for linear combination
of the basis vectors and the reconstruction
error can be considered as a
distance between and the subspace spanned by

. Algorithm (7) can be termed as an approximative
subspace algorithm because its results are different from
but quite close to strict PCA solutions, especially for mild
nonlinearities, and the learned weight vectors of different units
are typically not exactly orthogonal, but not far from being
orthogonal [17], [18]. In this paper, we chooseas a typical
sigmoidal function, i.e., , with parameter

controlling the nonlinearity.
As pointed out in [17], using nonlinear activation in a

PCA type network implicitly introduces higher-order statistics
into the computations and increases the independence of the
components. In addition, an attractive merit of the approxi-
mative subspace algorithm (7) lies in its numerical benefits.
It has been observed by several researchers that algorithm
(7) is not sensitive to local minima and has much better
stability property compared with some standard neural PCA
learning algorithms. Therefore, an autoencoder with sigmoidal
activation in the “bottleneck” layer can be applied together
with the principle of SPRM. The squared error between the
autoencoder input and output is a measure of the distance
between the actual data point and its projection onto the lower-
dimensional subspace employed by the bottleneck layer. In
practice, we can train separate autoencoder for each class
of data and classify an unknown data point according to
whichever autoencoder produces the smallest reconstruction
error.

III. SELF-ORGANIZATION OF ADAPTIVE SUBSPACES

Basically, a set of autoencoders can be trained com-
petitively so that each one contributes its own representation
to a specific data class. Given a data point from a class,
the reconstruction errors are first compared for all networks.
In either way, we can allow the network with the smallest
reconstruction error to learn and keep all other networks
unchanged, or we can let each network adapt with a step size
depending on the portion of its reconstruction error in all the
errors. In the following, we consider the competitive learning
SOM [15] proposed by Kohonen which plays an important
role as a component in a variety of natural and artificial neural
information processing systems.

A. A Brief Review of SOM

The underlying principle of SOM (and its variants) is the
preservation of the probability distribution and the topology.
The SOM model usually uses a simple single layer network,

where output units affiliated with a predefined topology com-
pete for each input. Units that are neighbors of the winner
update their weights , , together with the
winner unit, according to

(8)

where is the time scale and is a unimodal function
that decreases monotonically for increasing distance between

and . In this original form of the SOM algorithm, arbitrary
sample vectors are compared to weight vectors using a metric
for measuring their distances in the input space. The algorithm
can be generalized by associating each unit with a dynamic
operator, which is the idea of operator map proposed in [14].
ASSOM is a more recent development of SOM [11]–[13].
An essential architectural difference between ASSOM and
traditional SOM is that the simple formal neuron in SOM
is replaced by a basic operational unit, which could be a
module consisting of a linear input layer and a quadratic
neuron. The input pattern is compared with the signal subspace
represented by the module. The learning results of ASSOM are
most descriptive of the kernels of the transformation groups
[11], [12]. In other words, the various feature filters emerge
in learning and become tuned to different low-dimensional
manifolds.

In [11] and [12], the local subspaces are adapted using
a linear learning subspace method, which is computational
costly for real problems. In [11] and [12], and to overcome the
algorithm’s stability problem, measures were proposed in order
to achieve a sufficient stability in the self-organizing process.
As we discussed in the last section, approximative subspace
algorithm (7) has a number of advantages. In our work, we
propose to implement ASSOM by adapting the local subspaces
with algorithm (7), as detailed below.

B. Implementation of an Approximative ASSOM

Consider autoencoders with each one affiliated with a
predefined topology. Theth autoencoder associates
weight matrix , where is the number of units in
its bottleneck layer. When an input pattern is presented to all
the networks, theth network with the smallest reconstruction
error is called the winner and satisfies the following condition:

for (9)

where is the reconstruction vector fromth network,
. The autoencoders can be defined

to be topologically ordered, if for each autoencoder, the
principal subspace representations provided by its immediate
neighbors are closer to principal subspace representation pro-
vided by th autoencoder. An ASSOM can be realized by
first selecting a winning autoencoder and then choosing
a neighborhood set around , which determines those
autoencoders within’s neighborhood. All the autoencoders
within the adapt their weights according to the following
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learning rule:

diag

for

otherwise.

(10)

As in the Kohonen’s SOM, the size of starts large and
slowly decreases over time. For a two dimensional topology,
a square array or hexagonal array topological neighborhood
shape can be selected. However, such a neighborhood selection
procedure usually results in slow convergence. A better alter-
native is to replace the neighborhood set by a continuous
neighborhood interaction function of the distance between
units and in the lattices, as in (8). The corresponding
learning algorithm then becomes

(11)

where the neighborhood interaction function is a mono-
tonically decreasing function of the distance between
autoencoders and in the ASSOM, typically selected as
a Gaussian function

(12)

In practice, it has been found useful for convergence to start
off with a wide range and then gradually reduce it during
learning. This allows the networks initially to form a crude
ordering, and then refine them with respect to the inputs. The
learning rate is typically reduced during learning.

If different transformations exist in the input patterns, dif-
ferent networks of ASSOM’s autoencoders become tuned to
these transformation classes. In other words, each autoencoder
can be made to become invariant to one transformation type
and decode a certain range of features invariantly of this
transformation. Our implementation of the ASSOM algorithm
(11) is always stable with regard to the initial weight selection,
learning step size, and input range.

In summary, the learning process can be outlined as con-
currently performing the following two steps.

1) For an input pattern, determine a winner networkin
autoencoders, the subspace of which is closest to
input based on the reconstruction distance (9). Then
adapt the local subspaces via the learning rule of (11) for
each autoencoder with the step size being proportional
to in (12).

2) Stop if the adaptations have converged, otherwise pick
a new example and return to Step 1).

IV. A N ASSOM-BASED MODULAR CLASSIFICATION

SCHEME FOR HANDWRITTEN DIGIT RECOGNITION

Neural networks have been often exploited in handwritten
digit recognition and a common practice is to train a mul-
tilayer perceptron (MLP) classifier to output one of the ten

class labels. In general, an MPL classifier can yield quite
different classification boundaries with respect to different
initial conditions or different training sets from the same data
space. A better alternative is to train a separate model on
examples of each class and to classify unknown data points
by checking which model offers the best reconstruction of
the data. This idea was proposed in [10] for handwritten
digit recognition, where linear PCA is employed as local
model. Motivated by their works, we focus our attention on
classification performance of the ASSOM. Instead of applying
the EM algorithm to calculate the responsibility of a module
for reconstructing a test pattern, which requires introducing
a variance parameter whose value is often arbitrarily chosen,
we directly use ASSOM paradigm to introduce competition
among the modules. In [10], each digit’s manifold is mod-
eled by a number of linear autoencoders which performs
linear subspace projections. In our method, local modeling is
implemented by a nonlinear autoencoder.

In this paper, we have used a handwritten digit database
of the U.S. National Institute of Standards and Technology
(NIST), which consists of 20 000 numerals. The numerals of
this database have been digitized in bilevel on a 2520 grid.
Among the data, 10 000 numerals were used for training and
another 10 000 for testing. In our experiment, we directly use
the digit bitmaps without a prestage to extract features. Our
modular recognition system shown in Fig. 1 has ten modules
to describe the ten digit classes. Each module consists of a set
of autoencoders and each autoencoder hashidden nodes
and input nodes corresponding to the pixel values in a
numeral bitmap. Learning proceeds in four cycles with samples
taken from the training set. The learning parameterin (11)
is initially set to 1 and then dynamically decreases to 0.1.
The decay constant in the interaction function changes
from to , where is the size of a predefined square
grid. The time dependence for these parameters takes a similar
form, i.e., , in which is the current
adaptation step, is a predefined maximum adaptation
step, 40 000 in all our experiments. The subscripts

and stand for initial value and final value, respectively.
We show the converged weight vectors in Fig. 2(a) and (b),
corresponding to the first and second components in each class,
respectively. There are 49 classes in each ASSOM module
and principal components in each class. Each weight
vector is visualized in mask form after being equalized to 256
greylevels.

After each module is trained by the examples of its class,
the classification of an unlabeled input digit is performed by
finding which module best reconstruct the input pattern. Ob-
viously, the problem is how to yield an overall reconstruction
from an ASSOM module. Consider the reconstruction vectors

, , from autoencoders inth ASSOM
module, . In order to determine an overall
reconstruction, we first specify a virtual response function

of the th autoencoder and then an overall reconstruction
vector associated with it is simply given as
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TABLE I
CLASSIFICATION ACCURACIES OF THEASSOM. IN THESE EXPERIMENTS, � = 0:1. c IS THE SIZE OF THE PREDEFINED GRID (K = c2 IS THE NUMBER OF CLASSES)

AND M IS THE NUMBER OF PRINCIPAL COMPONENTS IN EACH CLASS. BOTH TRAINING AND TESTING DATA-SET HAVE 10 000 SAMPLES

Fig. 1. Our proposed modular classification system for handwritten digits
based on the ASSOM model.

(a)

(b)

Fig. 2. (a) and (b) The weight vectors corresponding to the first and second
components in each class, respectively. There are 49 classes in each ASSOM
module andM = 2 principal components in each class. The converged weight
vectors are visualized in mask forms after being equalized to 256 greylevels.

the weighted average over all , i.e.,

(13)

A simple way of establishing a virtual response function
is to use Gaussian functions with centers at , e.g.,

(14)

where is a parameter that controls the response range of
the th autoencoder.

Based on the above discussion, for a test sample, we
compute the reconstruction error from each ASSOM module
which measures the faithfulness the module in representing the
data. The recognition process can then be simply performed
by comparing the reconstruction errors

(15)

where indicates the number of modules, is calculated
using (13). Then, the class label is associated with the module
with the smallest error, i.e., is assigned to the class if

err (16)

V. EXPERIMENTAL RESULTS

In the following, we turn to report results of experiments
illustrating the recognition performance of the proposed clas-
sification. In Table I, we show the experimental results for the
classification accuracy, which compares different number of
classes in each module ( , where is the size of a
predefined square grid). The experiments are performed with

. The parameter in (14) is taken as one. Intuitively,
increasing the number of classes in each module can bring bet-
ter recognition accuracy, but larger size of ASSOM modules
will slow down the training and classification. As demonstrated
in Table I, 64 classes in each module result in a
satisfactory performance. Adding more principal components
in each class may further improve the recognition accuracy
when is relatively small and an appropriate choice from
our experience is – . We also found that the sigmoidal
nonlinearity parameter has no significant influence on the
recognition results when it is kept in a small range, e.g., .

In general, the parameter in (14) will also influence
the classification accuracy, and as it controls the autoencoder
response range, it should be chosen to be relatively small. We
have assessed different values ofand found that a smaller
brings a better classification accuracy on the training set while
increasing in a limited extent can improve generalization. In
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practice, can be chosen within a reasonable range without
significant difference.

In the handwritten digits samples, there are some samples
with considerable variances in shapes, stroke widths, etc.,
which are harder to be correctly classified. In practice, a very
small error rate is often acceptable. When a recognition system
is established, error rate can be lowered by rejecting some
test patterns. In our scheme, a test pattern can be rejected if
the smallest reconstruction error and the second smallest error
differs by less than a threshold. Specifically, we define an
indicator variable as

err
err

(17)

where err and err are the smallest and second smallest
reconstruction errors, respectively. A decision is made by the
following rule:

is rejected from classification if

is accepted for classification if (18)

where is a threshold which can be experimentally deter-
mined. Usually, the error rate is lowered by increasing the
threshold and a larger means a higher rejection rate.
The relationship between the error rate and the rejection is
shown in Fig. 3(a), in which the rejection rates corresponding
to varying threshold from 0.01 to 0.1 are shown, and where
the error rate and rejection rate are defined as follows:

error rate
number of misrecognized test patterns

number of test patterns
(19)

rejection rate
number of rejected patterns

number of test patterns
(20)

In addition to error rate, another index for evaluating
handwritten digit recognition is the reliability, which refers
to the portion of correctly recognized patterns in all the test
patterns. In Fig. 3(b), we illustrated the relationship between
the reliability and the rejection rate. From Fig. 3 we can see
that the lowest error rate is less than 0.5% with rejection rate of
10% on the testing data set. This shows that the ASSOM based
recognition system can achieve a high recognition and low
error rates. Reducing the rejection rate will cause an increase
in the error rate.

In practical recognition systems, we can set up a rela-
tively high rejection rate and employ a multistage recognition
scheme. Our proposed method can serve as the first stage
which correctly recognize most of the test digits and make
some rejections during the recognition process. For those
rejected digits, another stage then proceeds which undertakes
structural analysis or involves some other possibly more costly
recognition methods.

VI. DISCUSSION AND CONCLUSION

In this paper, we have presented a modular classifica-
tion scheme for handwritten digit recognition, in which each
module is an ASSOM model for modeling the manifolds
of handwritten digits bitmaps. Each module is composed

(a)

(b)

Fig. 3. (a) Relationship between the error rate and the rejection rate. (b)
Relationship between the reliability and the rejection rate. In the simulation,
64 classes in each ASSOM module andM = 2 principal components in each
class are exploited.

of a number of topologically ordered autoencoders which
corresponds to different subspaces in the respective class. An
individual module is trained only by the images belonging to
each digit class. During classification, upon presenting a test
pattern, each module provides its own reconstruction according
to a prescribed principle and the overall decision is determined
by comparing all of the reconstruction errors. We addressed
the importance of a PCA type learning which is based on
the least square representation error principle in a nonlinear
autoencoder network. Compared with exact PCA learning
algorithm, this approximative subspace learning algorithm is
numerically stable and robust to noise. The use of ASSOM
model as a classifier produces promising results. With each
module having 64 autoencoder ( ), the recognition rate
is about 99.3% on the training set and over 97% on the testing
set, with no rejection. The lowest error rate is less than 0.5%
with rejection rate of 10% on the testing data-set.
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