
IE
do

www.ietdl.org
Published in IET Control Theory and Applications
Received on 9th January 2008
Revised on 14th January 2009
doi: 10.1049/iet-cta.2008.0007

ISSN 1751-8644

Reduced-order H1 filtering for discrete-time
singular systems with lossy measurements
R. Lu1 H. Su2 J. Chu2 S. Zhou1 M. Fu3

1Institute of Information and Control, Hangzhou Dianzi University, Hangzhou 310018, People’s Republic of China
2Institute of Advanced Process Control, Zhejiang University, Hangzhou 310027, People’s Republic of China
3School of Electrical Engineering and Computer Science, University of Newcastle, Callaghan, N.S.W. 2308, Australia
E-mail: rqlu@hdu.edu.cn

Abstract: In this study, the authors consider an H1 filtering problem for discrete-time singular systems with lossy
measurements. The authors introduce the stochastic variable satisfying Bernoulli random binary distribution to
model the measured outputs. This measurement mode can be used to characterise the effect of data-loss in
information transmissions across limited bandwidth communication channels over a wide area. The authors
design a filter to cope with the losses, which ensures not only the mean-square stochastic stability but also a
prescribed H1 filtering performance for filtering the error singular system. They also derive sufficient
conditions for the existence of such a filter. Finally, the authors give a numerical example to illustrate the
effectiveness of the proposed approach.
T

1 Introduction
Packet-based transmission of data over a wireless network
increases bit error rates relative to wired links. The use of a
wireless network will lead to measurement losses or delays of
the communicated information and may deteriorate the
performance or cause instability as pointed out in [1–4].
Recently, there has been some attention to the research of
systems with lossy measurements, many results have appeared
in the literature to model measurement losses or network
delays. A randomly varying delayed sensor mode was first
introduced by Ray [5]. Since then, empirical observations
have also been used to develop probabilistic characterisations
of measurement losses [6, 7]. Nilsson et al. [8] assumed that
measurement losses have statistically mutually independent
transfer-to-transfer probability distribution. And more
recently, measurement losses have been considered as white in
nature with Bernoulli random binary distribution [9, 10]. In
the meantime, Markov chains are used to describe
probabilistic losses in [2, 3, 11], which is assumed that the
transmitted packet can be classified as lost or received at the
receiving end of channel, the expected Markov Chain state
can be described in terms of a probability on its state space. A
Markov chain with a large number of states can be used to
represent the complicated loss behaviour.
Control Theory Appl., 2010, Vol. 4, Iss. 1, pp. 151–163
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It is worth mentioning that the plants are assumed to
be regular in the above mentioned literature. However,
they may occur in a singular way since singular systems
have extensive applications in large-scale systems,
economic systems and electrical networked systems [12].
A singular system is also referred to as descriptor system,
generalised state-space system or semistate system. Over
the past decades, there has been a growing interest in the
research of singular systems, some fundamental results
based on the theory of normal systems have been
successfully extended to singular systems, such as
controllability and observability [13], H1 control [14–
16], positive realness [17] and so on. Recently, the study
of H1 filtering problem for singular systems has gained
growing interest. In [18], an LMI-based filter design
approach was proposed for impulsive stochastic systems,
and based on the projection lemma, the reduced-order
H1 filtering problem was investigated in [19]. On the
basis of the admissibility assumption of the uncertain
singular systems, an H1 singular filter design method
is proposed in [20] whereas a delay-dependent result
for this problem has been reported in [21–23]. However,
to our knowledge, there are no research results on
H1 filtering for discrete-time singular systems with lossy
measurements up to now.
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Motivated by the works in [9–11], this paper focuses on
the reduced-order H1 filtering problem for discrete-time
singular systems with lossy measurements. The system
plant is discrete-time singular and lossy measurements are
subject to stochastic variables satisfying Bernoulli random
binary distribution. We are interested in designing
reduced-order or zeroth-order filters to cope with the
losses such that the filtering error singular system is
regular, causal and exponentially mean-square stable and
a prescribed H1 filtering performance is achieved.
We show that the reduced-order filtering problem
can effectively be solved by solving the non-convex
optimisation problem based on alternating projections
which are dependent on the probability of event packet-
loss, and the zeroth-order H1 filtering problem can be
solved by solving a convex minimisation problem. We
also obtain that a better H1 filtering performance is
achieved when less packet-loss occurs by an illustrative
numerical example.

The rest of this paper is organised as follows. Section 2
formulates the H1 filtering problem. In Section 3, a
reduced-order H1 filtering approach is proposed. A
numerical example is given to demonstrate the effectiveness
of the proposed method in Section 4, which is followed by
conclusions in Section 5.

Notations: Throughout this paper, C denotes the complex
plane; Zþ denotes the set of positive integers; Rn denotes
the n dimensional Euclidean space; Rm�n denotes the set
of all m� n real matrices. A real symmetric matrix
P . 0 (�0) denotes P being a positive definite (or positive
semi-definite) matrix, and A . ( � )B means
A � B . ( � )0. I denotes an identity matrix of appropriate
dimension. Matrices, if their dimensions are not explicitly
stated, are assumed to have compatible dimensions for
algebraic operations. The superscript ‘T’ represents the
transpose. For a matrix N, N�T stands for the transpose of
matrix N�1. � is used as an ellipsis for terms that are
induced by symmetry. The notation l2 0, 1½ Þ represents the
space of square summable infinite vector sequences with
the usual norm k.k2. A sequence v ¼ {vk} [ l2[0, 1) if

kvk2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP1
i¼1 vT

k vk

q
, 1. Probf.g stands for the

occurrence probability of an event; E{ � } denotes the
expectation operator with respect to some probability
measure. For a matrix M [ Rn�m with rank r,
the orthogonal complement M? is defined as (possibly
non-unique) (n� r)� n matrix such that M?M ¼ 0
and M?M?T

. 0. Dint(0, 1) is the interior of the unit disk
with centre at the origin; s(E, A) ¼ {zjdet(zE � A) ¼ 0}.

2 Problem formulation and
preliminaries
Consider the networked filtering system with measurements
communicated from a remote sensor shown in Fig. 1.
2
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The plant is discrete-time singular system described by

Exkþ1 ¼ Axk þ Awwk (1)

zk ¼ Lxk þ Lwwk (2)

where xk [ Rn is the state; w(k) [ Rw is the disturbance
signal in l2[0, 1); zk [ Rq is the signal to be estimated; A,
Aw, L and Lw are known real matrices with appropriate
dimensions, and E may be singular matrix, we shall assume
that rank E ¼ r � n. The measurement with data-loss is
described by

yk ¼ Cxk þDvk

yck ¼ (1� uk)yk þ ukyk�1

�
(3)

where yk [ Rp is the output, yck [ Rp is the measured
output, vk [ Rv is measured noise in l2[0, 1), C is a
known matrix; the stochastic variable uk is a Bernoulli
distributed white sequence taking value on 0 and 1, which
stands for the effect of data-loss, when data are lost,
uk ¼ 1, when no data-loss occurs, uk ¼ 0. It is described as

Prob{uk ¼ 1} ; E{uk} ¼ r (4)

Prob{uk ¼ 0} ; E{1� uk} ¼ 1� r (5)

where r [ [0, 1] and is a known constant.

Remark 1: In [2, 11], the random packet losses are assumed
to be governed by multi-state Markov chains, where
transmitted packet can be classified as lost (L) or received
(R) at the receiving end of channel, and uk [ {L, R}. The
expected Markov Chain state at time index k can be
described in terms of a probability on its state space.
Therefore a Markov chain with a large number of states can
be used to represent a more complicated loss behaviour. In
(4) and (5), a Bernoulli distributed white sequence (see [9])
taking on values 0 and 1 is used to describe the random
packet losses in this paper, that is, when data are lost,
uk ¼ 1, when no data-loss occurs, uk ¼ 0. Furthermore,
only the probability of uk ¼ 1 and uk ¼ 0 is considered,
which thus lead to the fact that this is not a more precise
model than that in [2, 11] for network transmission.
However, the binary random model has gained considerable
research interests because of its simplicity and practicality in
describing networked-induced lossy measurements (see [5,
9, 10]). The system measurements with data-loss modelled
in (4) and (5) was first introduced in [5] and has been used

Figure 1 Filtering using measurements communicated from
a remote sensor
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to characterise the effect of communication delays and/or
data-loss in information transmissions across limited
bandwidth communication channels over a wide area such as
navigating a vehicle based on the estimations from a sensor
web of its current position and velocity [1].

Remark 2: The output yk produced at a time k is sent to the
observer through a communication channel. If no packet-loss
occurs, the measurement output yck takes value yk; otherwise,
the measurement output yck takes value yk�1. When the
probability of event packet-loss occurring is assumed as r,
the measurement output yck in (4) thus takes the value yk

with probability 1� r, and the value yk�1 with probability r.

Throughout this paper, we use the following definitions.

Definition 1 [9]: The singular system (1) is said to be
exponentially mean-square stable if with wk ¼ 0, there exist
constants a . 0 and t [ (0, 1) such that

E{kxkk
2} � atk

E{kx0k
2}, for all x0 [ Rn, k [ Zþ

Definition 2 [15]:

(1) The singular system (1) with wk ¼ 0 is said to be regular,
that is, the pair (E, A) is regular if det(zE 2 A) is not
identically zero.

(2) The singular system (1) with wk ¼ 0 is said to be causal,
that is, the pair (E, A) is casual if deg(det(zE � A)) ¼ rank E.

(3) The singular system (1) with wk ¼ 0 is said to be stable,
that is, the pair (E, A) is stable if s(E, A) , Dint(0, 1).

(4) The singular system (1) with wk ¼ 0 is admissible if the
pair (E, A) is regular, casual and stable.

Definition 3: The singular system (1) is exponentially
mean-square admissible if it is regular, casual and
exponentially mean-square stable.

For the delayed sensor mode (3), we assume that x�1 ¼ 0,
which implies that y�1 ¼ 0.

We are concerned with the following reduced-order filter
with order n̂ for the estimation of zk

x̂kþ1 ¼ Af x̂k þ Bf yck

ẑk ¼ Cf x̂k þDf yck

�
(6)
Control Theory Appl., 2010, Vol. 4, Iss. 1, pp. 151–163
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where x̂k [ Rn̂, ẑk [ Rq and n̂ � n. Af , Bf , Cf and Df are
matrices to be determined. Combining (1)–(3) and (6) the
filtering error dynamics is given by

�E �xkþ1 ¼ A(uk)�xk þA1(uk)H �xk�1 þA4(uk)4k

�zk ¼ L(uk)�xk þ L1(uk)H �xk�1 þ L4(uk)4k

(
(7)

where

�xk ¼ xT
k x̂T

k

� �T
, �zk ¼ zk � ẑk, 4k ¼ wT

k vT
k vT

k�1

� �T
,

H ¼ I , 0
� �

(8)

(see (9))

The H1 filtering problem addressed in this paper is to
design a filter in the form of (6) such that for a given scalar
g and all non-zero 4k, the filtering error singular system (7)
is regular, casual and exponentially mean-square stable and
under the zero initial condition, the filtering error �zk satisfiesX1

k¼0

E{k�zkk
2} � g2

X1
k¼0

k4kk
2 (10)

In such a case, the filtering error singular system is said to be
exponentially mean-square admissible with H1 filtering
performance g.

Remark 3: We assume that the discrete-time singular
system (1) is regular, casual and stable and the filter (6) is
stable with the order n̂ satisfying n̂ � n throughout this paper.

Remark 4: If n̂ ¼ 0, then the reduced-order filter in (6)
becomes

ẑk ¼ Df yck (11)

and the reduced-order H1 filtering problem reduces to the
static or zeroth-order H1 filtering problem.

Now, we establish a condition of mean-square stability and
H1 performance for the filtering error dynamics (7), which will
play a key role in the derivation of our H1 filter design method.

Lemma 1: Given a scalar g . 0, the filtering error singular
system (7) is exponentially mean-square admissible with a
guaranteed H1 filtering performance g, if there exist
matrices P and Q such that

�E
T

P �E � 0 (12)
�E ¼
E 0

0 I

� �
, A(uk) ¼

A 0

(1� uk)Bf C Af

� �
, A1(uk) ¼

0

ukBf C

� �

A4(uk) ¼
Aw 0 0

0 (1� uk)Bf D �ukBf D

� �
, L4(uk) ¼ Lw � (1� uk)Df D � ukDf D

� �
L(uk) ¼ L� (1� uk)Df C, �Cf

� �
, L1(uk) ¼ �ukDf C

8>>>>>>>><
>>>>>>>>:

(9)
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P 0 PA(r) PA1(r) PA4(r)

� I L(r) L1(r) L4(r)

� � �E
T

P �E �H TQH 0 0

� � � Q 0

� � � � g2I

2
6666664

3
7777775

. 0 (13)

where � denotes the corresponding transposed block matrix
due to symmetry and r-dependent matrices are defined as
in (9) with uk replaced by r.

Proof: Firstly, we shall establish the regularity, causality of
the filtering error singular system (7) with 4k ¼ 0. In this
case, the dynamic equation in (7) becomes

�E �xkþ1 ¼ A(uk)�xk þA1(uk)H �xk�1 (14)

Set

Xk ¼ �xT
k �xT

k�1

� �T
(15)

then system (14) can be rewritten as

ÊXkþ1 ¼ ÂXk (16)

where (see (17))

It is easy to show that the regularity, causality of system
(14) is equivalent to that of system (16). Now, we establish
the regularity, causality of system (16). According to (9)
and (17), we have

det(zÊ � Â) ¼ zn̂þn
� det(z �E �A(uk)� z�1

A1(uk)H )

¼ zn̂þn
�

zE � A 0

�(1� uk þ z�1uk)Bf C zI � Af

����
����

¼ zn̂þn
� jzE � Aj � jzI � Af j (18)

From the assumption in Remark 3, we can obtain that the
pair (E, A) is regular, causal and stable and Af is Hurwitz,
which implies that for sufficiently large z, jzE � Aj= 0
4
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and jzI � Af j= 0. Therefore there exists a scalar z [ C
such that det(zÊ � Â) = 0, this implies that the pair
(Ê, Â) is regular, that is, system (14) is regular.
Furthermore, from (18), it can be seen that

deg(det(zÊ � Â)) ¼ 2n̂þ nþ rankE

¼ rank �E þ n̂þ n ¼ rankÊ

Hence, it follows from Definition 2, that if the pair (E, A) is
causal, this implies that system (14) is causal.

Next, we shall prove the exponentially mean-square
stability of system (14). To this end, define a Lyapunov
functional candidate as

Vk ¼ �xT
k

�E
T

P �E �xk þ �xT
k�1H TQH �xk�1 (19)

Let F k be the minimal s-algebra generated by
{x̂i , 0 � i � k}. By (14), (19) and some algebraic
manipulations, we have

E{Vkþ1jF k}� Vk ¼ hT
k 4hk (20)

where (see equation at the bottom of the page)

We can obtain from (13) and Schur complement formula
that 4 , 0, this implies from (20) that

E{Vkþ1jF k}� Vk ¼ hT
k 4hk � �lmin(4)hT

k hk , �ahT
k hk

(21)

where

0 , a , min{lmin(�4), s}

s ¼ max{lmax( �E
T

P �E), lmax(Q)}

Therefore it can be deduced from Lemma 1 in [9] that system
(14) is exponentially mean-square stable.
(17)

hk ¼ �xT
k xT

k�1

� �T
4 ¼

A
T(r)PA(r)þH TQH � �E

T
P �E A

T(r)PA1(r)

� A
T
1 (r)PA1(r)� Q

" #
IET Control Theory Appl., 2010, Vol. 4, Iss. 1, pp. 151–163
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Finally, we shall show that filtering error �zk satisfies (10).
Let

JN ¼
XN�1

k¼0

[E{k�zkk
2}� g2

k4kk
2] (22)

where N is a positive integer.

For any non-zero 4k [ l2[0, þ1) and zero initial
condition, we have

JN ¼
XN�1

k¼0

[E{k�zkk
2}� g2

k4kk
2
þ E{Vkþ1 � Vk}]

þ EV0 � EVN �
XN�1

k¼0

E{jT
kN (r)jk} (23)

where

jk ¼ �xT
k , xT

k�1, 4T
k

� �T
(24)

N (r) ¼

A
T(r)

A
T
1 (r)

A
T
4(r)

2
664

3
775P A(r) A1(r) A4(r)
� �

þ

L
T(r)

L
T
1 (r)

L
T
4(r)

2
64

3
75 L(r) L1(r) L4(r)
� �

þ

H TQH � �E
T

P �E 0 0

0 �Q 0

0 0 �g2I

2
64

3
75 (25)

It follows from (13) and by Schur complement formula that
N (r) , 0. This implies that for any N, JN , 0, which leads
to that the filtering error �zk satisfies condition (10). This
completes the proof. A

Remark 5: Lemma 1 provides a sufficient condition of
exponentially mean-square admissibility and H1

performance for the filtering error dynamics (7). It should
be pointed out that the inequality (13) is a non-linear
matrix inequality such that it cannot be used to solve the
parameters of the filter by the Matlab/LMI toolbox.
Furthermore, in the case when E ¼ I , that is, singular
system (1) reduces to state-space one, the corresponding
condition of exponentially mean-square stability and H1

performance is given by inequality (13) with P . 0, Q . 0
and Ē replaced by I.

Next, we shall analyse the problem of zeroth-order filtering
proposed in Remark 3. Combining the zeroth-order filter
Control Theory Appl., 2010, Vol. 4, Iss. 1, pp. 151–163
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(11) and system (1), the corresponding zeroth-order
filtering error dynamics is described as

Exkþ1 ¼ Axk þ Az44k

�zk ¼ Lz(uk)xk þ Lz1(uk)xk�1 þ Lz4(uk)4k

�
(26)

where

Az4 ¼ Aw 0 0
� �

, Lz(uk) ¼ L� (1� uk)Df C

Lz1(uk) ¼ �ukDf C,

Lz4(uk) ¼ Lw �(1� uk)Df D �ukDf D
� �

Similar to Lemma 1, we present the results on the
exponentially mean-square stability and H1 performance
for zeroth-order filtering error dynamics (26) shown as the
following lemma.

Lemma 2: Given a scalar g . 0, the filtering error singular
system (26) is exponentially mean-square admissible with a
guaranteed H1 filtering performance g, if there exist
matrices P and Q such that

ETPE � 0 (27)

P 0 PA 0 PAz4

� I Lz(r) Lz1(r) Lz4(r)

� � ETPE � Q 0 0

� � � Q 0

� � � � g2I

2
6666664

3
7777775

. 0 (28)

where r-dependent matrices are defined as in (26) with uk

replaced by r.

Proof: The proof is similar to Lemma 1 and thus is
omitted. A

3 Reduced-order H1 filtering
In this section, we shall present the results on the solvability
of the reduced-order and zeroth-order H1 filtering problem
based on Lemmas 1 and 2, respectively.

The following lemma is useful in the derivation of our
main results in this section.

Lemma 3 [24, 25]: Given a symmetric matrix L [ Rn�n

and two matrices X [ Rn�m and Y [ Rk�n with rank
X , n and rank Y , n. Consider the problem of finding
some matrix D such that

Lþ XDY þ (XDY)T
. 0 (29)
155
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Then (29) is solvable for D if and only if

X
?LX?T . 0, (YT)?L(YT)?T

. 0 (30)

Now, we shall give a sufficient condition on the
solvability for the reduced-order H1 filtering problem
shown as follows.

Theorem 1: There exists an n̂-order filter in the form of (6)
such that the reduced-order H1 filtering problem for the
filtering error singular system (7) with lossy measurements
is solvable if there exist matrices X . 0, Y . 0 and Q . 0
satisfying

ETXE � 0 (31)

ETYE � 0 (32)

Y YA 0 YAw 0 0

ATY T ETYE � Q 0 0 0 0

0 0 Q 0 0 0

AT
wY T 0 0 g2I 0 0

0 0 0 0 g2I 0

0 0 0 0 0 g2I

2
666666664

3
777777775

. 0 (33)

(see (34))

X � Y � 0 (35)

and

rank(X � Y ) � n̂ (36)

where (see equation at the bottom of the page)

In this case, the parameters of all desired filters with order
n̂ corresponding to a feasible solution (X, Y, Q) to (31)–(36)

(34)
IET Control Theory Appl., 2010, Vol. 4, Iss. 1, pp. 151–163
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are given by

Df Cf

Bf Af

� �
¼ [�W �1CTPFT

r (FrPFT
r )�1
þW �1J

1=2

� Y(FrPFT
r )�1=2]Fþl þQ�QFlF

þ
l (37)

where (see equation at the bottom of the page)

and Q is any matrix with appropriate dimensions; Y is any
matrix satisfying �s(Y) , 1, where �s(�) is maximum
singular value of a matrix; Fl and Fr are any full rank
factors of F, that is F ¼ FlFr ; and Fþl is the Moore–
Penrose of Fl . Moreover, X1 [ Rn�n̂, X2 [ Rn̂�n̂, W . 0
and X2 . 0 satisfy

P . 0, X � Y ¼ X1X�1
2 X T

1 � 0
Control Theory Appl., 2010, Vol. 4, Iss. 1, pp. 151–163 157
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Proof: It can be deduced from (12) and (13) that P is a
positive definite symmetric matrix. Set

P ¼
X X1

X T
1 X2

� �
, P�1

¼
Z Z1

ZT
1 Z2

� �
(38)

then, we obtain from (12)

ETXE ETX1

X T
1 E X2

" #
� 0 (39)

which implies that

ETXE � 0, X2 . 0 (40)

ET(X � X1X�1
2 X T

1 )E � 0 (41)

Furthermore, by simple calculation, one have

Z�1
¼ X � X1X�1

2 X T
1 (42)

On the other hand, it is easy to show from (9) and (13) that
the r-dependent matrices A(r), A1(r), L(r) and L1(r) can
be rewritten as

A(r) ¼ �A þ �FG �H (r), A1(r) ¼ �F G �N (r)

L(r) ¼ �Lþ �SG �H (r), L1(r) ¼ �SG �N (r)

A4(r) ¼ �A4 þ
�F G �H4(r), L4(r) ¼ �L4 þ

�SG �H4(r)

(43)

with

�A ¼
A 0

0 0

� �
, �L ¼ L 0

� �
, G ¼

Df Cf

Bf Af

� �
,

�A4 ¼
Aw 0

0 0

� �
, �L4 ¼ Lw 0 0

� �

�F ¼
0 0

0 I

� �
, �S ¼ �I 0

� �
,

�H (r) ¼
(1� r)C 0

0 I

� �

�N (r) ¼
rC

0

� �
, �H4(r) ¼

0 (1� r)D rD

0 0 0

� �

Substituting (43) into inequality (13), we can deduce from
Lemma 1 that

4c þCcGFc þ (CcGFc)
T

. 0 (44)

where

4c ¼

P 0 P �A 0 PAw

� I �L 0 Lw

� � �E
T

P �E �H TQH 0 0

� � � Q 0

� � � � g2I

2
6666664

3
7777775

,

Cc ¼

P �F

�S

0

0

0

2
6666664

3
7777775

(45)

Fc ¼ 0 0 �H (r) �N (r) �H4(r)
� �

By Lemma 3, it is easy to see that a necessary and sufficient
condition for inequality (44) to have a solution G is that the
following two inequalities hold simultaneously

C?c 4cC
?T
c . 0 (46)

FT?
c 4cF

?
c . 0 (47)

Then, by some calculations, we choose (see (48))

ð48Þ
8 IET Control Theory Appl., 2010, Vol. 4, Iss. 1, pp. 151–163
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and (see (49))

C
?
c 4cC

?T
c

¼

Z A 0 0 Aw 0 0

AT ETXE � Q ETX1 0 0 0 0

0 X T
1 E X2 0 0 0 0

0 0 0 Q 0 0 0

AT
w 0 0 0 g2I 0 0

0 0 0 0 0 g2I 0

0 0 0 0 0 0 g2I

2
666666666664

3
777777777775

. 0

(50)

F
T?
c 4cF

?
c

¼
I

M(r)

� �

�

X X1 0 XA XAw 0 0

X T
1 X2 0 X T

1 A X T
1 Aw 0 0

0 0 I L Lw 0 0

ATX ATX1 LT ETXE 0 0 0

AT
wX AT

wX1 LT
w 0 g2I 0 0

0 0 0 0 0 g2I 0

0 0 0 0 0 0 g2I

2
666666666664

3
777777777775

�
I

M
T(r)

� �
. 0 (51)

by using the Schur complement Lemma, we can easily
deduce that (50) is equivalent to

ETXE�Q�ET

X1X�1
2 X T

1 E

Q

g2I

g2I

g2I

2
6666666664

3
7777777775

�

AT

0

AT
w

0

0

2
6666664

3
7777775

Z�1 A 0 Aw 0 0
� �

. 0 (52)

Considering (42), let

Y ¼ Z�1
¼ X �X1X�1

2 X T
1 (53)

pre- and post-multiplying the LMI in (52) by diag(Y, I, I)
and using Schur complement Lemma again, we obtain the
LMI in (33).

Furthermore, by using the Schur complement Lemma and
considering (51) and

X X1

� �
P�1 X T

X T
1

� �
¼ X (54)

we also obtain the LMI in (34).

It follows from (40)–(42) and (53) that the inequalities
(31), (32), (35) and (36) hold. In addition, when (31)–(36)
are satisfied, we can obtain the parameters of all desired
filters with order n̂ corresponding to a feasible solution by
using the results in [24, 25]. This completes the proof. A

Remark 6: Theorem 1 provides a sufficient condition for
the solvability of the reduced-order H1 filtering problem
for discrete-time singular systems with lossy measurements.
It should be noted that the inequalities in (31)–(36) are
non-convex due to the fact that the rank constraint in (36)
with respect to variables X and Y is not linear, although the
constraints in (31)–(35) are convex. Fortunately, to solve
these non-convex inequalities, an efficient numerical
algorithm based on alternating projections with bisection
iterations given in [26] can be resorted to. Similar to [26],
the solution of the optimal H1 model reduction problem is

ð49Þ
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obtained by solving the following non-convex minimisation
problem

min
(X ,Y ,Q)

d subject to (31)–(36) with d ¼ g2

Then, the corresponding optimal H1 filtering performance
g� is given by g� ¼ (min d)1=2.

A bisection iterative algorithm based on alternating
projections onto the constraint sets (31)–(36) is similar to
[26] and thus is omitted.

Remark 7: It can be seen from the definition of the
orthogonal complement that the different orthogonal
complement matrices of a given matrix are equivalent
through non-singular linear transformation. Thus, although
CT? and DT? may be non-unique, the different CT? and
DT? are equivalent in the sense of non-singular linear
transformation. This implies that it is possible that the

different choices of CT? and DT? produce the same
minimal H1 filtering performance g� according to the
equivalence of LMI.

Now, we discuss the problem of the solvability of the
zeroth-order H1 filtering for dynamics (26).

Noting that the inequalities in (27) and (28) are linear with
respect to matrix variables P, Q and Df , therefore, we can
easily obtain the condition on the solvability of the zeroth-
order H1 filtering based on Lemma 2 shown as the
following theorem.

Theorem 2: There exists a zeroth-order filter in the form of
(11) such that the zeroth-order H1 filtering problem for the
filtering error singular system (26) with lossy measurements is
solvable if there exist matrices X . 0, Q . 0 and Df

satisfying

ETXE � 0 (55)

(see (56))

In this case, the parameter Df of zeroth-order filter in the
form of (11) can be obtained by finding a feasible solution (X,
Q, Df) to LMIs in (55) and (56).

Remark 8: Note that constraints (55) and (56) are convex
constraints; therefore, the zero-order H1 filtering problem

is a convex feasibility problem. The optimal zeroth-order
H1 filtering problem is a convex minimisation problem

min
(X ,Q,Df )

d subject to (55)–(56) with d ¼ g2

The corresponding optimal H1 filtering performance g� is
given by g� ¼ (min d)1=2.

4 Illustrative example
In this section, an illustrative example is provided to
demonstrate the applicability and effectiveness of the
proposed approach.

Consider the plant described in (1) and (2) with
parameters as

E ¼

1 1 0

1 �1 1

2 0 1

2
64

3
75, A ¼

�1 0:5 1

�1 �0:3 1

0:5 0 1

2
64

3
75,

Aw ¼

�0:1

0

0:1

2
64

3
75

L ¼

�3:2 0 3:2

3:2 0 1:6

0 0 3:2

2
64

3
75, Lw ¼

�0:1

0:5

0:1

2
64

3
75

and lossy measurements described in (3) with parameters as

C ¼
1 1 0
1 1 0
0 0 1

2
4

3
5, D ¼

0:1
0

0:1

2
4

3
5

The purpose of this example is to design a filter in the form of
(6) for this system such that the filtering error system (7) is
exponentially mean-square stable and an optimal H1

filtering performance g� is achieved.

By some calculations, it can be obtained that

s(E, A) ¼ {0:6203, 0:4116} , Dint(0, 1)

Thus, it can be easily checked that the pair (E, A) is

X 0 XA 0 XAw 0 0
� I L� (1� r)Df C �rDf C Lw �(1� r)Df D �rDf D

� � ETXE � Q 0 0 0 0
� � � Q 0 0 0
� � � � g2I 0 0
� � � � � g2I 0
� � � � � � g2I

2
666666664

3
777777775

. 0 (56)
0 IET Control Theory Appl., 2010, Vol. 4, Iss. 1, pp. 151–163
The Institution of Engineering and Technology 2010 doi: 10.1049/iet-cta.2008.0007



IET
doi

www.ietdl.org
admissible. Now, we choose

CT?
¼ 1 �1 0
� �

, D? ¼
0 1 0

0:01 0:9870 �0:01

� �

By using bisection iterative algorithm based on alternating
projections given in [26] to solve the non-convex
minimisation problem as stated in Remark 5, we obtain the
optimal H1 filtering performance g� for different values of
r, summarised in Table 1.

It is shown that g� decreases as r decreases. In other
words, a better H1 filtering performance is achieved when
less data-loss occurs. In the case when r ¼ 0:5,
g� ¼ 0:8017, the corresponding solution is obtained

X ¼

7:1987 �3:6754 0:3893

�3:6754 7:3567 1:9439

0:3893 1:9439 6:4780

2
64

3
75

Y ¼

3:8914 �2:3257 0:3893

�2:3257 5:3415 1:9439

0:3893 1:9439 6:4780

2
64

3
75,

Q ¼ 10�3
�

0:1016 �0:1079 1:0275

�0:1079 0:5316 �0:1003

1:0275 �0:1003 0:0020

2
64

3
75

When r ¼ 0:5, if we choose

CT?
¼ 5 �5 0
� �

, D? ¼ 10�2
�

1 2 �1
�2 4 2

� �

it can be found that the g� is still 0.8017, the corresponding
solution (X, Y, Q) is the same too.

Furthermore, when r ¼ 0:5, g� ¼ 0:8017, it can be shown
that

X � Y ¼
3:3073 �1:3497 0
�1:3497 2:0152 0

0 0 0

2
4

3
5 � 0

which implies that

rank(X � Y ) ¼ 2

Table 1 Reduced-order optimal H1 filtering performance

r 1 0.8 0.5 0.3 0.1 0

g� 2.9773 1.1429 0.8017 0.3072 0.0027 0.0005
Control Theory Appl., 2010, Vol. 4, Iss. 1, pp. 151–163
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Therefore we can choose

X1 ¼

1:8186 0
�0:7422 1:2101

0 0

2
4

3
5, X2 ¼

1
1

� �

In this case, it is easy to see that matrix F is of full rank, and
thus, we can set Fl to be an identity matrix, and Fr ¼ F.
Furthermore, if we choose Y ¼ diag{0:23, 0:23,0:23,
0:23, 0:23}, W ¼ diag{0:073, 0:073, 0:073, 0:073, 0:073},
then, according to Theorem 1, a desired reduced-order
filter is given by

x̂kþ1 ¼
�0:0406 �0:0478
�0:0493 �0:1289

� �
x̂k

þ
0:0228 �0:0248 0:0004
�0:0039 �0:0002 �0:0001

� �
yck

ẑk ¼ 10�3
�

0:3564 0:5468
0:1279 �0:8789
�0:5753 �0:9655

2
4

3
5x̂k þ 10�3

�

2:2563 0:6444 �0:0036
0:3588 �0:5711 �1:2001
0:0641 0:2101 0:1402

2
4

3
5yck

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

It can be seen that the filter is stable and the error dynamic
system meets H1 filtering performance with g ¼ 0:8017.

The zeroth-order optimal H1 filter is obtained by solving
the convex optimisation problem as stated in Remark 9. The
optimal H1 filtering performance g� for different values of r
is shown in Table 2.

When r ¼ 0:5, g� ¼ 0:9663, the matrix parameters
solution X, Q and Df are

X ¼ 107
�

7:4768 �2:2127 �3:5123

�2:2127 3:6469 �0:9793

�3:5123 �0:9793 4:6412

2
64

3
75,

Q ¼ 104
�

0:0450 0:0064 �0:0028

0:0064 0:2729 0:0239

�0:0028 0:0239 0:1075

2
64

3
75

Df ¼

�1:1084 0:0330 0:2069

�0:0860 �0:0124 0:1089

�0:1146 �0:0815 �3:7703

2
64

3
75

From Tables 1 and 2, it can be found that the optimal H1

performance g� increases as the order of the filter
decreases. This result is similar to [27].

Table 2 Zeroth-order optimal H1 filtering performance

r 1 0.8 0.5 0.3 0.1 0

g� 3.3379 1.6581 0.9663 0.6118 0.1109 0.0015
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5 Conclusions
In this paper, we have investigated the reduced-order H1

filtering problem for a class of discrete-time singular
systems with lossy measurements. The purpose is to design
a filter such that the filtering error system is mean-square
stable and a prescribed level of H1 filtering performance is
guaranteed for lossy measurements. A filter design
approach to cope with lossy measurements has been
developed for this class of systems. It has been shown that
the reduced-order H1 filtering problem can be solved by
solving a non-convex minimisation problem based on
alternating projections, and the zeroth-order H1 filtering
problem can be solved by solving a convex minimisation
problem. A numerical example has been provided to
illustrate the effectiveness of the proposed approach.
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